1
0
mirror of https://github.com/msberends/AMR.git synced 2024-12-27 12:46:12 +01:00
AMR/R/mo.R

879 lines
39 KiB
R
Raw Normal View History

# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
2019-01-02 23:24:07 +01:00
# SOURCE #
# https://gitlab.com/msberends/AMR #
# #
# LICENCE #
2019-01-02 23:24:07 +01:00
# (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
# #
2019-01-02 23:24:07 +01:00
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# #
# This R package was created for academic research and was publicly #
# released in the hope that it will be useful, but it comes WITHOUT #
# ANY WARRANTY OR LIABILITY. #
# Visit our website for more info: https://msberends.gitab.io/AMR. #
# ==================================================================== #
2018-08-31 13:36:19 +02:00
#' Transform to microorganism ID
#'
2018-09-24 23:33:29 +02:00
#' Use this function to determine a valid microorganism ID (\code{mo}). Determination is done using Artificial Intelligence (AI) and the complete taxonomic kingdoms \emph{Bacteria}, \emph{Fungi} and \emph{Protozoa} (see Source), so the input can be almost anything: a full name (like \code{"Staphylococcus aureus"}), an abbreviated name (like \code{"S. aureus"}), an abbreviation known in the field (like \code{"MRSA"}), or just a genus. You could also \code{\link{select}} a genus and species column, zie Examples.
#' @param x a character vector or a \code{data.frame} with one or two columns
#' @param Becker a logical to indicate whether \emph{Staphylococci} should be categorised into Coagulase Negative \emph{Staphylococci} ("CoNS") and Coagulase Positive \emph{Staphylococci} ("CoPS") instead of their own species, according to Karsten Becker \emph{et al.} [1].
#'
#' This excludes \emph{Staphylococcus aureus} at default, use \code{Becker = "all"} to also categorise \emph{S. aureus} as "CoPS".
2018-09-24 23:33:29 +02:00
#' @param Lancefield a logical to indicate whether beta-haemolytic \emph{Streptococci} should be categorised into Lancefield groups instead of their own species, according to Rebecca C. Lancefield [2]. These \emph{Streptococci} will be categorised in their first group, e.g. \emph{Streptococcus dysgalactiae} will be group C, although officially it was also categorised into groups G and L.
#'
#' This excludes \emph{Enterococci} at default (who are in group D), use \code{Lancefield = "all"} to also categorise all \emph{Enterococci} as group D.
2018-12-07 12:04:55 +01:00
#' @param allow_uncertain a logical to indicate whether the input should be checked for less possible results, see Details
2018-10-01 11:39:43 +02:00
#' @param reference_df a \code{data.frame} to use for extra reference when translating \code{x} to a valid \code{mo}. The first column can be any microbial name, code or ID (used in your analysis or organisation), the second column must be a valid \code{mo} as found in the \code{\link{microorganisms}} data set.
2018-08-31 13:36:19 +02:00
#' @rdname as.mo
#' @aliases mo
#' @keywords mo Becker becker Lancefield lancefield guess
2018-09-24 23:33:29 +02:00
#' @details
2018-10-01 11:39:43 +02:00
#' A microbial ID from this package (class: \code{mo}) typically looks like these examples:\cr
2018-09-24 23:33:29 +02:00
#' \preformatted{
2018-12-07 12:04:55 +01:00
#' Code Full name
#' --------------- --------------------------------------
#' B_KLBSL Klebsiella
#' B_KLBSL_PNE Klebsiella pneumoniae
#' B_KLBSL_PNE_RHI Klebsiella pneumoniae rhinoscleromatis
2018-09-24 23:33:29 +02:00
#' | | | |
#' | | | |
#' | | | ----> subspecies, a 3-4 letter acronym
#' | | ----> species, a 3-4 letter acronym
#' | ----> genus, a 5-7 letter acronym, mostly without vowels
2018-10-29 17:26:17 +01:00
#' ----> taxonomic kingdom, either B (Bacteria), F (Fungi) or P (Protozoa)
2018-09-24 23:33:29 +02:00
#' }
2018-08-01 08:03:31 +02:00
#'
#' Use the \code{\link{mo_property}} functions to get properties based on the returned code, see Examples.
#'
2018-10-31 12:10:49 +01:00
#' This function uses Artificial Intelligence (AI) to help getting fast and logical results. It tries to find matches in this order:
#' \itemize{
#' \item{Taxonomic kingdom: it first searches in bacteria, then fungi, then protozoa}
#' \item{Human pathogenic prevalence: it first searches in more prevalent microorganisms, then less prevalent ones}
2018-11-24 20:25:09 +01:00
#' \item{Valid MO codes and full names: it first searches in already valid MO code and known genus/species combinations}
2018-10-31 12:10:49 +01:00
#' \item{Breakdown of input values: from here it starts to breakdown input values to find possible matches}
#' }
#'
2018-12-07 12:04:55 +01:00
#' A couple of effects because of these rules:
2018-07-23 14:14:03 +02:00
#' \itemize{
#' \item{\code{"E. coli"} will return the ID of \emph{Escherichia coli} and not \emph{Entamoeba coli}, although the latter would alphabetically come first}
#' \item{\code{"H. influenzae"} will return the ID of \emph{Haemophilus influenzae} and not \emph{Haematobacter influenzae} for the same reason}
2018-07-23 14:14:03 +02:00
#' \item{Something like \code{"p aer"} will return the ID of \emph{Pseudomonas aeruginosa} and not \emph{Pasteurella aerogenes}}
#' \item{Something like \code{"stau"} or \code{"S aur"} will return the ID of \emph{Staphylococcus aureus} and not \emph{Staphylococcus auricularis}}
2018-07-23 14:14:03 +02:00
#' }
2018-10-01 11:39:43 +02:00
#' This means that looking up human pathogenic microorganisms takes less time than looking up human \strong{non}-pathogenic microorganisms.
2018-09-24 23:33:29 +02:00
#'
2018-12-07 12:04:55 +01:00
#' When using \code{allow_uncertain = TRUE} (which is the default setting), it will use additional rules if all previous AI rules failed to get valid results. Examples:
#' \itemize{
#' \item{\code{"Streptococcus group B (known as S. agalactiae)"}. The text between brackets will be removed and a warning will be thrown that the result \emph{Streptococcus group B} (\code{B_STRPTC_GRB}) needs review.}
#' \item{\code{"S. aureus - please mind: MRSA"}. The last word will be stripped, after which the function will try to find a match. If it does not, the second last word will be stripped, etc. Again, a warning will be thrown that the result \emph{Staphylococcus aureus} (\code{B_STPHY_AUR}) needs review.}
#' \item{\code{"D. spartina"}. This is the abbreviation of an old taxonomic name: \emph{Didymosphaeria spartinae} (the last "e" was missing from the input). This fungus was renamed to \emph{Leptosphaeria obiones}, so a warning will be thrown that this result (\code{F_LPTSP_OBI}) needs review.}
#' }
#'
2018-09-24 23:33:29 +02:00
#' \code{guess_mo} is an alias of \code{as.mo}.
2019-01-02 23:24:07 +01:00
#' @inheritSection itis ITIS
2018-10-31 12:10:49 +01:00
# (source as a section, so it can be inherited by other man pages)
2018-09-24 23:33:29 +02:00
#' @section Source:
#' [1] Becker K \emph{et al.} \strong{Coagulase-Negative Staphylococci}. 2014. Clin Microbiol Rev. 27(4): 870926. \url{https://dx.doi.org/10.1128/CMR.00109-13}
#'
#' [2] Lancefield RC \strong{A serological differentiation of human and other groups of hemolytic streptococci}. 1933. J Exp Med. 57(4): 57195. \url{https://dx.doi.org/10.1084/jem.57.4.571}
2018-09-24 23:33:29 +02:00
#'
#' [3] Integrated Taxonomic Information System (ITIS). Retrieved September 2018. \url{http://www.itis.gov}
#' @export
2018-08-31 13:36:19 +02:00
#' @return Character (vector) with class \code{"mo"}. Unknown values will return \code{NA}.
2018-09-24 23:33:29 +02:00
#' @seealso \code{\link{microorganisms}} for the \code{data.frame} with ITIS content that is being used to determine ID's. \cr
#' The \code{\link{mo_property}} functions (like \code{\link{mo_genus}}, \code{\link{mo_gramstain}}) to get properties based on the returned code.
2019-01-02 23:24:07 +01:00
#' @inheritSection AMR Read more on our website!
#' @examples
2018-10-01 11:39:43 +02:00
#' # These examples all return "B_STPHY_AUR", the ID of S. aureus:
2018-08-31 13:36:19 +02:00
#' as.mo("stau")
#' as.mo("STAU")
#' as.mo("staaur")
#' as.mo("S. aureus")
#' as.mo("S aureus")
#' as.mo("Staphylococcus aureus")
2018-12-07 12:04:55 +01:00
#' as.mo("Staphylococcus aureus (MRSA)")
2018-08-31 13:36:19 +02:00
#' as.mo("MRSA") # Methicillin Resistant S. aureus
#' as.mo("VISA") # Vancomycin Intermediate S. aureus
#' as.mo("VRSA") # Vancomycin Resistant S. aureus
2018-09-24 23:33:29 +02:00
#' as.mo(369) # Search on TSN (Taxonomic Serial Number), a unique identifier
#' # for the Integrated Taxonomic Information System (ITIS)
#'
2018-09-05 10:51:46 +02:00
#' as.mo("Streptococcus group A")
#' as.mo("GAS") # Group A Streptococci
#' as.mo("GBS") # Group B Streptococci
#'
2018-08-31 13:36:19 +02:00
#' # guess_mo is an alias of as.mo and works the same
2018-09-24 23:33:29 +02:00
#' guess_mo("S. epidermidis") # will remain species: B_STPHY_EPI
#' guess_mo("S. epidermidis", Becker = TRUE) # will not remain species: B_STPHY_CNS
#'
2018-09-24 23:33:29 +02:00
#' guess_mo("S. pyogenes") # will remain species: B_STRPTC_PYO
#' guess_mo("S. pyogenes", Lancefield = TRUE) # will not remain species: B_STRPTC_GRA
#'
2018-08-31 13:36:19 +02:00
#' # Use mo_* functions to get a specific property based on `mo`
2018-09-24 23:33:29 +02:00
#' Ecoli <- as.mo("E. coli") # returns `B_ESCHR_COL`
#' mo_genus(Ecoli) # returns "Escherichia"
2018-09-24 23:33:29 +02:00
#' mo_gramstain(Ecoli) # returns "Gram negative"
#' # but it uses as.mo internally too, so you could also just use:
#' mo_genus("E. coli") # returns "Escherichia"
#'
#'
#' \dontrun{
2018-08-31 13:36:19 +02:00
#' df$mo <- as.mo(df$microorganism_name)
#'
#' # the select function of tidyverse is also supported:
2018-07-23 14:14:03 +02:00
#' library(dplyr)
2018-08-31 13:36:19 +02:00
#' df$mo <- df %>%
2018-07-23 14:14:03 +02:00
#' select(microorganism_name) %>%
2018-11-24 20:25:09 +01:00
#' as.mo()
#'
#' # and can even contain 2 columns, which is convenient for genus/species combinations:
2018-08-31 13:36:19 +02:00
#' df$mo <- df %>%
2018-07-23 14:14:03 +02:00
#' select(genus, species) %>%
2018-11-24 20:25:09 +01:00
#' as.mo()
#' # although this works easier and does the same:
2018-07-23 14:14:03 +02:00
#' df <- df %>%
2018-11-24 20:25:09 +01:00
#' mutate(mo = as.mo(paste(genus, species)))
#' }
2018-12-07 12:04:55 +01:00
as.mo <- function(x, Becker = FALSE, Lancefield = FALSE, allow_uncertain = TRUE, reference_df = NULL) {
2018-12-06 14:36:39 +01:00
mo <- mo_validate(x = x, property = "mo",
Becker = Becker, Lancefield = Lancefield,
allow_uncertain = allow_uncertain, reference_df = reference_df)
structure(.Data = mo, class = "mo")
}
#' @rdname as.mo
#' @export
is.mo <- function(x) {
2018-12-22 22:39:34 +01:00
identical(class(x), "mo")
}
#' @rdname as.mo
#' @export
guess_mo <- as.mo
2018-07-23 14:14:03 +02:00
2018-12-07 12:04:55 +01:00
#' @importFrom dplyr %>% pull left_join n_distinct progress_estimated
2018-10-31 12:10:49 +01:00
#' @importFrom data.table data.table as.data.table setkey
2018-12-06 14:36:39 +01:00
#' @importFrom crayon magenta red italic
exec_as.mo <- function(x, Becker = FALSE, Lancefield = FALSE,
2018-12-07 12:04:55 +01:00
allow_uncertain = TRUE, reference_df = NULL,
2018-12-06 14:36:39 +01:00
property = "mo", clear_options = TRUE) {
2018-10-31 12:10:49 +01:00
2018-11-24 20:25:09 +01:00
if (!"AMR" %in% base::.packages()) {
library("AMR")
# These data.tables are available as data sets when the AMR package is loaded:
# microorganismsDT # this one is sorted by kingdom (B<F<P), prevalence, TSN
# microorganisms.prevDT # same as microorganismsDT, but with prevalence != 9999
# microorganisms.unprevDT # same as microorganismsDT, but with prevalence == 9999
# microorganisms.oldDT # old taxonomic names, sorted by name (genus+species), TSN
}
2018-10-31 12:10:49 +01:00
2018-12-06 14:36:39 +01:00
if (clear_options == TRUE) {
options(mo_failures = NULL)
options(mo_renamed = NULL)
}
if (NCOL(x) == 2) {
# support tidyverse selection like: df %>% select(colA, colB)
# paste these columns together
x_vector <- vector("character", NROW(x))
for (i in 1:NROW(x)) {
x_vector[i] <- paste(pull(x[i,], 1), pull(x[i,], 2), sep = " ")
}
x <- x_vector
} else {
if (NCOL(x) > 2) {
stop('`x` can be 2 columns at most', call. = FALSE)
}
2018-09-09 12:11:44 +02:00
x[is.null(x)] <- NA
2018-07-23 14:14:03 +02:00
# support tidyverse selection like: df %>% select(colA)
2018-11-15 12:42:35 +01:00
if (!is.vector(x) & !is.null(dim(x))) {
x <- pull(x, 1)
}
}
2018-12-14 10:52:20 +01:00
notes <- character(0)
failures <- character(0)
x_input <- x
# only check the uniques, which is way faster
x <- unique(x)
2018-11-30 12:05:59 +01:00
# remove empty values (to later fill them in again with NAs)
2018-10-19 00:17:03 +02:00
x <- x[!is.na(x) & !is.null(x) & !identical(x, "")]
2018-10-01 11:39:43 +02:00
# defined df to check for
if (!is.null(reference_df)) {
if (!is.data.frame(reference_df) | NCOL(reference_df) < 2) {
2018-10-09 15:41:44 +02:00
stop('`reference_df` must be a data.frame with at least two columns.', call. = FALSE)
2018-10-01 11:39:43 +02:00
}
# remove factors, just keep characters
suppressWarnings(
reference_df[] <- lapply(reference_df, as.character)
)
}
2018-10-31 12:10:49 +01:00
if (all(x %in% microorganismsDT[["mo"]])) {
# existing mo codes when not looking for property "mo", like mo_genus("B_ESCHR_COL")
x <- microorganismsDT[data.table(mo = x), on = "mo", ..property][[1]]
2018-10-01 11:39:43 +02:00
} else if (!is.null(reference_df)
& all(x %in% reference_df[, 1])
2018-10-31 12:10:49 +01:00
& all(reference_df[, 2] %in% microorganismsDT[["mo"]])) {
2018-10-01 11:39:43 +02:00
# manually defined reference
colnames(reference_df)[1] <- "x"
colnames(reference_df)[2] <- "mo"
suppressWarnings(
x <- data.frame(x = x, stringsAsFactors = FALSE) %>%
left_join(reference_df, by = "x") %>%
2018-11-24 20:25:09 +01:00
left_join(microorganisms, by = "mo") %>%
2018-10-01 11:39:43 +02:00
pull(property)
)
2018-11-24 20:25:09 +01:00
} else if (all(toupper(x) %in% microorganisms.certe[, "certe"])) {
# old Certe codes
2018-11-24 20:25:09 +01:00
y <- as.data.table(microorganisms.certe)[data.table(certe = toupper(x)), on = "certe", ]
2018-10-31 12:10:49 +01:00
x <- microorganismsDT[data.table(mo = y[["mo"]]), on = "mo", ..property][[1]]
} else if (!all(x %in% microorganismsDT[[property]])) {
2018-09-24 23:33:29 +02:00
x_backup <- trimws(x, which = "both")
2018-11-24 20:25:09 +01:00
# remove spp and species
2018-12-06 14:36:39 +01:00
x <- trimws(gsub(" +(spp.?|ssp.?|subsp.?|species)", " ", x_backup, ignore.case = TRUE), which = "both")
2018-11-24 20:25:09 +01:00
x_species <- paste(x, "species")
# translate to English for supported languages of mo_property
2018-12-06 14:36:39 +01:00
x <- gsub("(Gruppe|gruppe|groep|grupo|gruppo|groupe)", "group", x, ignore.case = TRUE)
# remove 'empty' genus and species values
x <- gsub("(no MO)", "", x, fixed = TRUE)
2018-11-24 20:25:09 +01:00
# remove non-text in case of "E. coli" except dots and spaces
x <- gsub("[^.a-zA-Z0-9/ \\-]+", "", x)
# but spaces before and after should be omitted
x <- trimws(x, which = "both")
x_trimmed <- x
x_trimmed_species <- paste(x_trimmed, "species")
2018-12-06 14:36:39 +01:00
x_trimmed_without_group <- gsub(" group$", "", x_trimmed, ignore.case = TRUE)
# remove last part from "-" or "/"
x_trimmed_without_group <- gsub("(.*)[-/].*", "\\1", x_trimmed_without_group)
2018-11-24 20:25:09 +01:00
# replace space and dot by regex sign
x_withspaces <- gsub("[ .]+", ".* ", x)
x <- gsub("[ .]+", ".*", x)
# add start en stop regex
x <- paste0('^', x, '$')
x_withspaces_start <- paste0('^', x_withspaces)
x_withspaces <- paste0('^', x_withspaces, '$')
2018-12-06 14:36:39 +01:00
# cat(paste0('x "', x, '"\n'))
# cat(paste0('x_species "', x_species, '"\n'))
# cat(paste0('x_withspaces_start "', x_withspaces_start, '"\n'))
# cat(paste0('x_withspaces "', x_withspaces, '"\n'))
# cat(paste0('x_backup "', x_backup, '"\n'))
# cat(paste0('x_trimmed "', x_trimmed, '"\n'))
# cat(paste0('x_trimmed_species "', x_trimmed_species, '"\n'))
# cat(paste0('x_trimmed_without_group "', x_trimmed_without_group, '"\n'))
2018-12-07 12:04:55 +01:00
progress <- progress_estimated(n = length(x), min_time = 3)
for (i in 1:length(x)) {
2018-12-07 12:04:55 +01:00
progress$tick()$print()
2018-10-19 00:17:03 +02:00
if (identical(x_trimmed[i], "")) {
# empty values
2018-10-19 00:17:03 +02:00
x[i] <- NA_character_
next
}
if (nchar(x_trimmed[i]) < 3) {
2018-11-24 20:25:09 +01:00
# check if search term was like "A. species", then return first genus found with ^A
if (x_backup[i] %like% "species" | x_backup[i] %like% "spp[.]?") {
# get mo code of first hit
2018-11-30 12:05:59 +01:00
found <- microorganismsDT[fullname %like% x_withspaces_start[i], mo]
2018-11-24 20:25:09 +01:00
if (length(found) > 0) {
2018-11-30 12:05:59 +01:00
mo_code <- found[1L] %>% strsplit("_") %>% unlist() %>% .[1:2] %>% paste(collapse = "_")
found <- microorganismsDT[mo == mo_code, ..property][[1]]
# return first genus that begins with x_trimmed, e.g. when "E. spp."
if (length(found) > 0) {
x[i] <- found[1L]
next
}
2018-11-24 20:25:09 +01:00
}
}
2018-11-30 12:05:59 +01:00
# fewer than 3 chars and not looked for species, add as failure
x[i] <- NA_character_
failures <- c(failures, x_backup[i])
next
}
2018-09-24 23:33:29 +02:00
2018-11-30 12:05:59 +01:00
# translate known trivial abbreviations to genus + species ----
if (!is.na(x_trimmed[i])) {
if (toupper(x_trimmed[i]) == 'MRSA'
2018-10-12 16:35:18 +02:00
| toupper(x_trimmed[i]) == 'MSSA'
| toupper(x_trimmed[i]) == 'VISA'
| toupper(x_trimmed[i]) == 'VRSA') {
2018-10-31 12:10:49 +01:00
x[i] <- microorganismsDT[mo == 'B_STPHY_AUR', ..property][[1]][1L]
next
}
2018-10-12 16:35:18 +02:00
if (toupper(x_trimmed[i]) == 'MRSE'
| toupper(x_trimmed[i]) == 'MSSE') {
2018-10-31 12:10:49 +01:00
x[i] <- microorganismsDT[mo == 'B_STPHY_EPI', ..property][[1]][1L]
next
}
2018-12-06 14:36:39 +01:00
if (toupper(x_trimmed[i]) == "VRE"
| x_trimmed[i] %like% '(enterococci|enterokok|enterococo)[a-z]*?$') {
2018-10-31 12:10:49 +01:00
x[i] <- microorganismsDT[mo == 'B_ENTRC', ..property][[1]][1L]
next
}
if (toupper(x_trimmed[i]) == 'MRPA') {
# multi resistant P. aeruginosa
2018-10-31 12:10:49 +01:00
x[i] <- microorganismsDT[mo == 'B_PDMNS_AER', ..property][[1]][1L]
next
}
2018-10-12 16:35:18 +02:00
if (toupper(x_trimmed[i]) == 'CRS'
| toupper(x_trimmed[i]) == 'CRSM') {
# co-trim resistant S. maltophilia
2018-10-31 12:10:49 +01:00
x[i] <- microorganismsDT[mo == 'B_STNTR_MAL', ..property][[1]][1L]
2018-10-12 16:35:18 +02:00
next
}
if (toupper(x_trimmed[i]) %in% c('PISP', 'PRSP', 'VISP', 'VRSP')) {
# peni I, peni R, vanco I, vanco R: S. pneumoniae
2018-10-31 12:10:49 +01:00
x[i] <- microorganismsDT[mo == 'B_STRPTC_PNE', ..property][[1]][1L]
next
}
if (toupper(x_trimmed[i]) %like% '^G[ABCDFGHK]S$') {
2018-12-06 14:36:39 +01:00
# Streptococci, like GBS = Group B Streptococci (B_STRPTC_GRB)
x[i] <- microorganismsDT[mo == gsub("G([ABCDFGHK])S", "B_STRPTC_GR\\1", x_trimmed[i], ignore.case = TRUE), ..property][[1]][1L]
next
}
if (toupper(x_trimmed[i]) %like% '(streptococc|streptokok).* [ABCDFGHK]$') {
# Streptococci in different languages, like "estreptococos grupo B"
x[i] <- microorganismsDT[mo == gsub(".*(streptococ|streptokok|estreptococ).* ([ABCDFGHK])$", "B_STRPTC_GR\\2", x_trimmed[i], ignore.case = TRUE), ..property][[1]][1L]
next
}
if (toupper(x_trimmed[i]) %like% 'group [ABCDFGHK] (streptococ|streptokok|estreptococ)') {
# Streptococci in different languages, like "Group A Streptococci"
x[i] <- microorganismsDT[mo == gsub(".*group ([ABCDFGHK]) (streptococ|streptokok|estreptococ).*", "B_STRPTC_GR\\1", x_trimmed[i], ignore.case = TRUE), ..property][[1]][1L]
next
}
# CoNS/CoPS in different languages (support for German, Dutch, Spanish, Portuguese) ----
if (tolower(x[i]) %like% '[ck]oagulas[ea] negatie?[vf]'
| tolower(x_trimmed[i]) %like% '[ck]oagulas[ea] negatie?[vf]'
| tolower(x[i]) %like% '[ck]o?ns[^a-z]?$') {
# coerce S. coagulase negative
2018-10-31 12:10:49 +01:00
x[i] <- microorganismsDT[mo == 'B_STPHY_CNS', ..property][[1]][1L]
next
}
if (tolower(x[i]) %like% '[ck]oagulas[ea] positie?[vf]'
| tolower(x_trimmed[i]) %like% '[ck]oagulas[ea] positie?[vf]'
| tolower(x[i]) %like% '[ck]o?ps[^a-z]?$') {
# coerce S. coagulase positive
2018-10-31 12:10:49 +01:00
x[i] <- microorganismsDT[mo == 'B_STPHY_CPS', ..property][[1]][1L]
next
}
2018-12-06 14:36:39 +01:00
if (tolower(x[i]) %like% 'gram[ -]?neg.*'
| tolower(x_trimmed[i]) %like% 'gram[ -]?neg.*') {
2018-11-02 10:27:57 +01:00
# coerce S. coagulase positive
x[i] <- microorganismsDT[mo == 'B_GRAMN', ..property][[1]][1L]
next
}
2018-12-06 14:36:39 +01:00
if (tolower(x[i]) %like% 'gram[ -]?pos.*'
| tolower(x_trimmed[i]) %like% 'gram[ -]?pos.*') {
2018-11-02 10:27:57 +01:00
# coerce S. coagulase positive
x[i] <- microorganismsDT[mo == 'B_GRAMP', ..property][[1]][1L]
next
}
2018-12-06 14:36:39 +01:00
if (grepl("[sS]almonella [A-Z][a-z]+ ?.*", x_trimmed[i])) {
# Salmonella with capital letter species like "Salmonella Goettingen" - they're all S. enterica
x[i] <- microorganismsDT[mo == 'B_SLMNL_ENT', ..property][[1]][1L]
2018-12-14 10:52:20 +01:00
notes <- c(notes,
magenta(paste0("Note: ", italic(x_trimmed[i]),
" was considered (a subspecies of) ",
italic("Salmonella enterica"),
" (B_SLMNL_ENT)")))
2018-12-06 14:36:39 +01:00
next
}
}
# FIRST TRY FULLNAMES AND CODES
2018-10-01 11:39:43 +02:00
# if only genus is available, return only genus
if (all(!c(x[i], x_trimmed[i]) %like% " ")) {
2018-10-31 12:10:49 +01:00
found <- microorganismsDT[tolower(fullname) %in% tolower(c(x_species[i], x_trimmed_species[i])), ..property][[1]]
if (length(found) > 0) {
x[i] <- found[1L]
next
}
if (nchar(x_trimmed[i]) > 4) {
# not when abbr is esco, stau, klpn, etc.
2018-10-31 12:10:49 +01:00
found <- microorganismsDT[tolower(fullname) %like% gsub(" ", ".*", x_trimmed_species[i], fixed = TRUE), ..property][[1]]
if (length(found) > 0) {
x[i] <- found[1L]
next
}
}
}
2018-10-01 11:39:43 +02:00
# TRY OTHER SOURCES ----
2018-11-30 12:05:59 +01:00
if (toupper(x_backup[i]) %in% microorganisms.certe[, 1]) {
mo_found <- microorganisms.certe[toupper(x_backup[i]) == microorganisms.certe[, 1], 2][1L]
if (length(mo_found) > 0) {
x[i] <- microorganismsDT[mo == mo_found, ..property][[1]][1L]
next
}
}
2018-11-24 20:25:09 +01:00
if (x_backup[i] %in% microorganisms.umcg[, 1]) {
mo_umcg <- microorganisms.umcg[microorganisms.umcg[, 1] == x_backup[i], 2]
2018-11-30 12:05:59 +01:00
mo_found <- microorganisms.certe[microorganisms.certe[, 1] == mo_umcg, 2][1L]
2018-11-15 12:42:35 +01:00
if (length(mo_found) == 0) {
# not found
x[i] <- NA_character_
failures <- c(failures, x_backup[i])
} else {
x[i] <- microorganismsDT[mo == mo_found, ..property][[1]][1L]
}
2018-10-01 11:39:43 +02:00
next
}
2018-11-24 20:25:09 +01:00
if (!is.null(reference_df)) {
if (x_backup[i] %in% reference_df[, 1]) {
ref_mo <- reference_df[reference_df[, 1] == x_backup[i], 2]
if (ref_mo %in% microorganismsDT[, mo]) {
x[i] <- microorganismsDT[mo == ref_mo, ..property][[1]][1L]
next
} else {
warning("Value '", x_backup[i], "' was found in reference_df, but '", ref_mo, "' is not a valid MO code.", call. = FALSE)
}
2018-10-01 11:39:43 +02:00
}
}
# TRY FIRST THOUSAND MOST PREVALENT IN HUMAN INFECTIONS ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.prevDT[tolower(fullname) %in% tolower(c(x_backup[i], x_trimmed[i])), ..property][[1]]
# most probable: is exact match in fullname
if (length(found) > 0) {
x[i] <- found[1L]
2018-07-30 01:18:40 +02:00
next
}
2018-10-31 12:10:49 +01:00
found <- microorganisms.prevDT[tsn == x_trimmed[i], ..property][[1]]
# is a valid TSN
if (length(found) > 0) {
x[i] <- found[1L]
2018-08-01 08:03:31 +02:00
next
}
2018-10-31 12:10:49 +01:00
found <- microorganisms.prevDT[mo == toupper(x_backup[i]), ..property][[1]]
# is a valid mo
if (length(found) > 0) {
x[i] <- found[1L]
2018-07-30 01:18:40 +02:00
next
}
2018-12-06 14:36:39 +01:00
found <- microorganisms.prevDT[tolower(fullname) == tolower(x_trimmed_without_group[i]), ..property][[1]]
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try any match keeping spaces ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.prevDT[fullname %like% x_withspaces[i], ..property][[1]]
if (length(found) > 0) {
x[i] <- found[1L]
2018-07-30 01:18:40 +02:00
next
}
# try any match keeping spaces, not ending with $ ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.prevDT[fullname %like% x_withspaces_start[i], ..property][[1]]
if (length(found) > 0) {
x[i] <- found[1L]
2018-09-24 23:33:29 +02:00
next
}
# try any match diregarding spaces ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.prevDT[fullname %like% x[i], ..property][[1]]
if (length(found) > 0) {
x[i] <- found[1L]
2018-08-01 09:45:11 +02:00
next
}
2018-10-29 17:26:17 +01:00
# try splitting of characters in the middle and then find ID ----
# only when text length is 6 or lower
# like esco = E. coli, klpn = K. pneumoniae, stau = S. aureus, staaur = S. aureus
if (nchar(x_trimmed[i]) <= 6) {
x_length <- nchar(x_trimmed[i])
2018-11-02 10:27:57 +01:00
x[i] <- paste0(x_trimmed[i] %>% substr(1, x_length / 2),
'.* ',
x_trimmed[i] %>% substr((x_length / 2) + 1, x_length))
found <- microorganisms.prevDT[fullname %like% paste0('^', x[i]), ..property][[1]]
2018-10-29 17:26:17 +01:00
if (length(found) > 0) {
x[i] <- found[1L]
next
}
2018-09-05 10:51:46 +02:00
}
2018-11-02 10:27:57 +01:00
# try fullname without start and stop regex, to also find subspecies ----
# like "K. pneu rhino" -> "Klebsiella pneumoniae (rhinoscleromatis)" = KLEPNERH
found <- microorganisms.prevDT[fullname %like% x_withspaces_start[i], ..property][[1]]
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# THEN TRY ALL OTHERS ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.unprevDT[tolower(fullname) == tolower(x_backup[i]), ..property][[1]]
# most probable: is exact match in fullname
2018-09-24 23:33:29 +02:00
if (length(found) > 0) {
x[i] <- found[1L]
next
}
2018-10-31 12:10:49 +01:00
found <- microorganisms.unprevDT[tolower(fullname) == tolower(x_trimmed[i]), ..property][[1]]
# most probable: is exact match in fullname
if (length(found) > 0) {
x[i] <- found[1L]
next
}
2018-10-31 12:10:49 +01:00
found <- microorganisms.unprevDT[tsn == x_trimmed[i], ..property][[1]]
# is a valid TSN
if (length(found) > 0) {
x[i] <- found[1L]
next
}
2018-10-31 12:10:49 +01:00
found <- microorganisms.unprevDT[mo == toupper(x_backup[i]), ..property][[1]]
# is a valid mo
if (length(found) > 0) {
x[i] <- found[1L]
next
2018-09-24 23:33:29 +02:00
}
2018-12-06 14:36:39 +01:00
found <- microorganisms.unprevDT[tolower(fullname) == tolower(x_trimmed_without_group[i]), ..property][[1]]
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try any match keeping spaces ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.unprevDT[fullname %like% x_withspaces[i], ..property][[1]]
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try any match keeping spaces, not ending with $ ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.unprevDT[fullname %like% x_withspaces_start[i], ..property][[1]]
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try any match diregarding spaces ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.unprevDT[fullname %like% x[i], ..property][[1]]
2018-12-06 14:36:39 +01:00
if (length(found) > 0 & nchar(x_trimmed[i]) >= 6) {
x[i] <- found[1L]
next
}
2018-10-29 17:26:17 +01:00
# try splitting of characters in the middle and then find ID ----
# only when text length is 6 or lower
# like esco = E. coli, klpn = K. pneumoniae, stau = S. aureus, staaur = S. aureus
if (nchar(x_trimmed[i]) <= 6) {
x_length <- nchar(x_trimmed[i])
2018-11-02 10:27:57 +01:00
x[i] <- paste0(x_trimmed[i] %>% substr(1, x_length / 2),
'.* ',
x_trimmed[i] %>% substr((x_length / 2) + 1, x_length))
found <- microorganisms.unprevDT[fullname %like% paste0('^', x[i]), ..property][[1]]
2018-10-29 17:26:17 +01:00
if (length(found) > 0) {
x[i] <- found[1L]
next
}
}
2018-09-24 23:33:29 +02:00
2018-11-02 10:27:57 +01:00
# try fullname without start and stop regex, to also find subspecies ----
# like "K. pneu rhino" -> "Klebsiella pneumoniae (rhinoscleromatis)" = KLEPNERH
found <- microorganisms.unprevDT[fullname %like% x_withspaces_start[i], ..property][[1]]
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# MISCELLANEOUS ----
# look for old taxonomic names ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.oldDT[tolower(name) == tolower(x_backup[i])
| tsn == x_trimmed[i]
| name %like% x_withspaces[i],]
2018-09-25 16:44:40 +02:00
if (NROW(found) > 0) {
2018-11-09 13:11:54 +01:00
# when property is "ref" (which is the case in mo_ref, mo_authors and mo_year), return the old value, so:
# mo_ref("Chlamydia psittaci) = "Page, 1968" (with warning)
# mo_ref("Chlamydophila psittaci) = "Everett et al., 1999"
if (property == "ref") {
x[i] <- found[1, ref]
} else {
x[i] <- microorganismsDT[tsn == found[1, tsn_new], ..property][[1]]
}
2018-12-14 10:52:20 +01:00
notes <- c(notes,
renamed_note(name_old = found[1, name],
name_new = microorganismsDT[tsn == found[1, tsn_new], fullname],
ref_old = found[1, ref],
ref_new = microorganismsDT[tsn == found[1, tsn_new], ref],
mo = microorganismsDT[tsn == found[1, tsn_new], mo]))
2018-09-25 16:44:40 +02:00
next
}
# check for uncertain results ----
if (allow_uncertain == TRUE) {
2018-12-14 10:52:20 +01:00
2018-12-14 11:44:15 +01:00
uncertain_fn <- function(a.x_backup, b.x_trimmed, c.x_withspaces, d.x_withspaces_start, e.x) {
2018-12-14 10:52:20 +01:00
# (1) look again for old taxonomic names, now for G. species ----
2018-12-14 11:44:15 +01:00
found <- microorganisms.oldDT[name %like% c.x_withspaces
| name %like% d.x_withspaces_start
| name %like% e.x,]
if (NROW(found) > 0 & nchar(b.x_trimmed) >= 6) {
2018-12-14 10:52:20 +01:00
if (property == "ref") {
# when property is "ref" (which is the case in mo_ref, mo_authors and mo_year), return the old value, so:
# mo_ref("Chlamydia psittaci) = "Page, 1968" (with warning)
# mo_ref("Chlamydophila psittaci) = "Everett et al., 1999"
x <- found[1, ref]
} else {
x <- microorganismsDT[tsn == found[1, tsn_new], ..property][[1]]
}
warning(red(paste0('UNCERTAIN - "',
2018-12-14 11:44:15 +01:00
a.x_backup, '" -> ', italic(found[1, name]))),
2018-12-14 10:52:20 +01:00
call. = FALSE, immediate. = FALSE)
notes <<- c(notes,
renamed_note(name_old = found[1, name],
name_new = microorganismsDT[tsn == found[1, tsn_new], fullname],
ref_old = found[1, ref],
ref_new = microorganismsDT[tsn == found[1, tsn_new], ref],
mo = microorganismsDT[tsn == found[1, tsn_new], mo]))
return(x)
2018-11-09 13:11:54 +01:00
}
2018-12-14 10:52:20 +01:00
# (2) strip values between brackets ----
2018-12-14 11:44:15 +01:00
a.x_backup_stripped <- gsub("( [(].*[)])", "", a.x_backup)
a.x_backup_stripped <- trimws(gsub(" ", " ", a.x_backup_stripped, fixed = TRUE))
found <- suppressMessages(suppressWarnings(exec_as.mo(a.x_backup_stripped, clear_options = FALSE, allow_uncertain = FALSE)))
if (!is.na(found) & nchar(b.x_trimmed) >= 6) {
2018-12-14 10:52:20 +01:00
found <- microorganismsDT[mo == found, ..property][[1]]
warning(red(paste0('UNCERTAIN - "',
2018-12-14 11:44:15 +01:00
a.x_backup, '" -> ', italic(microorganismsDT[mo == found[1L], fullname][[1]]), " (", found[1L], ")")),
2018-12-14 10:52:20 +01:00
call. = FALSE, immediate. = FALSE)
return(found[1L])
}
2018-12-06 14:36:39 +01:00
2018-12-14 10:52:20 +01:00
# (3) try to strip off one element and check the remains ----
2018-12-14 11:44:15 +01:00
x_strip <- a.x_backup %>% strsplit(" ") %>% unlist()
if (length(x_strip) > 1 & nchar(b.x_trimmed) >= 6) {
for (i in 1:(length(x_strip) - 1)) {
x_strip_collapsed <- paste(x_strip[1:(length(x_strip) - i)], collapse = " ")
found <- suppressMessages(suppressWarnings(exec_as.mo(x_strip_collapsed, clear_options = FALSE, allow_uncertain = FALSE)))
if (!is.na(found)) {
found <- microorganismsDT[mo == found, ..property][[1]]
warning(red(paste0('UNCERTAIN - "',
a.x_backup, '" -> ', italic(microorganismsDT[mo == found[1L], fullname][[1]]), " (", found[1L], ")")),
call. = FALSE, immediate. = FALSE)
return(found[1L])
2018-12-06 14:36:39 +01:00
}
}
}
2018-12-14 11:44:15 +01:00
# didn't found in uncertain results too
return(NA_character_)
2018-12-06 14:36:39 +01:00
}
2018-12-14 10:52:20 +01:00
2018-12-14 11:44:15 +01:00
x[i] <- uncertain_fn(x_backup[i], x_trimmed[i], x_withspaces[i], x_withspaces_start[i], x[i])
if (!is.na(x[i])) {
next
}
}
# not found ----
x[i] <- NA_character_
failures <- c(failures, x_backup[i])
2018-07-30 00:14:06 +02:00
}
}
2018-07-23 14:14:03 +02:00
failures <- failures[!failures %in% c(NA, NULL, NaN)]
if (length(failures) > 0) {
2018-12-06 14:36:39 +01:00
options(mo_failures = sort(unique(failures)))
if (n_distinct(failures) > 25) {
warning(n_distinct(failures), " different values could not be coerced to a valid MO code. See mo_failures() to review them.",
call. = FALSE)
} else {
2018-12-14 11:44:15 +01:00
warning(red(paste0("These ", length(failures) , " values could not be coerced to a valid MO code: ",
paste('"', unique(failures), '"', sep = "", collapse = ', '),
". See mo_failures() to review them.")),
call. = FALSE,
immediate. = FALSE)
2018-12-06 14:36:39 +01:00
}
2018-07-23 14:14:03 +02:00
}
2018-09-14 10:31:21 +02:00
# Becker ----
2018-09-01 21:19:46 +02:00
if (Becker == TRUE | Becker == "all") {
# See Source. It's this figure:
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187637/figure/F3/
2018-10-31 12:10:49 +01:00
MOs_staph <- microorganismsDT[genus == "Staphylococcus"]
2018-09-25 16:44:40 +02:00
setkey(MOs_staph, species)
CoNS <- MOs_staph[species %in% c("arlettae", "auricularis", "capitis",
"caprae", "carnosus", "cohnii", "condimenti",
"devriesei", "epidermidis", "equorum",
"fleurettii", "gallinarum", "haemolyticus",
"hominis", "jettensis", "kloosii", "lentus",
"lugdunensis", "massiliensis", "microti",
"muscae", "nepalensis", "pasteuri", "petrasii",
"pettenkoferi", "piscifermentans", "rostri",
"saccharolyticus", "saprophyticus", "sciuri",
"stepanovicii", "simulans", "succinus",
"vitulinus", "warneri", "xylosus"), ..property][[1]]
2018-09-25 16:44:40 +02:00
CoPS <- MOs_staph[species %in% c("simiae", "agnetis", "chromogenes",
"delphini", "felis", "lutrae",
"hyicus", "intermedius",
"pseudintermedius", "pseudointermedius",
"schleiferi"), ..property][[1]]
2018-10-31 12:10:49 +01:00
x[x %in% CoNS] <- microorganismsDT[mo == 'B_STPHY_CNS', ..property][[1]][1L]
x[x %in% CoPS] <- microorganismsDT[mo == 'B_STPHY_CPS', ..property][[1]][1L]
2018-09-01 21:19:46 +02:00
if (Becker == "all") {
2018-10-31 12:10:49 +01:00
x[x == microorganismsDT[mo == 'B_STPHY_AUR', ..property][[1]][1L]] <- microorganismsDT[mo == 'B_STPHY_CPS', ..property][[1]][1L]
2018-09-01 21:19:46 +02:00
}
}
2018-09-14 10:31:21 +02:00
# Lancefield ----
if (Lancefield == TRUE | Lancefield == "all") {
# group A - S. pyogenes
2018-10-31 12:10:49 +01:00
x[x == microorganismsDT[mo == 'B_STRPTC_PYO', ..property][[1]][1L]] <- microorganismsDT[mo == 'B_STRPTC_GRA', ..property][[1]][1L]
# group B - S. agalactiae
2018-10-31 12:10:49 +01:00
x[x == microorganismsDT[mo == 'B_STRPTC_AGA', ..property][[1]][1L]] <- microorganismsDT[mo == 'B_STRPTC_GRB', ..property][[1]][1L]
2018-09-01 21:19:46 +02:00
# group C
2018-10-31 12:10:49 +01:00
S_groupC <- microorganismsDT %>% filter(genus == "Streptococcus",
species %in% c("equisimilis", "equi",
"zooepidemicus", "dysgalactiae")) %>%
pull(property)
2018-10-31 12:10:49 +01:00
x[x %in% S_groupC] <- microorganismsDT[mo == 'B_STRPTC_GRC', ..property][[1]][1L]
if (Lancefield == "all") {
# all Enterococci
2018-10-31 12:10:49 +01:00
x[x %like% "^(Enterococcus|B_ENTRC)"] <- microorganismsDT[mo == 'B_STRPTC_GRD', ..property][[1]][1L]
}
# group F - S. anginosus
2018-10-31 12:10:49 +01:00
x[x == microorganismsDT[mo == 'B_STRPTC_ANG', ..property][[1]][1L]] <- microorganismsDT[mo == 'B_STRPTC_GRF', ..property][[1]][1L]
# group H - S. sanguinis
2018-10-31 12:10:49 +01:00
x[x == microorganismsDT[mo == 'B_STRPTC_SAN', ..property][[1]][1L]] <- microorganismsDT[mo == 'B_STRPTC_GRH', ..property][[1]][1L]
# group K - S. salivarius
2018-10-31 12:10:49 +01:00
x[x == microorganismsDT[mo == 'B_STRPTC_SAL', ..property][[1]][1L]] <- microorganismsDT[mo == 'B_STRPTC_GRK', ..property][[1]][1L]
2018-09-01 21:19:46 +02:00
}
# comply to x, which is also unique and without empty values
x_input_unique_nonempty <- unique(x_input[!is.na(x_input) & !is.null(x_input) & !identical(x_input, "")])
2018-10-19 00:17:03 +02:00
# left join the found results to the original input values (x_input)
df_found <- data.frame(input = as.character(x_input_unique_nonempty),
found = as.character(x),
stringsAsFactors = FALSE)
df_input <- data.frame(input = as.character(x_input),
stringsAsFactors = FALSE)
x <- df_input %>%
left_join(df_found,
by = "input") %>%
pull(found)
if (property == "mo") {
class(x) <- "mo"
} else if (property == "tsn") {
x <- as.integer(x)
}
2018-12-14 10:52:20 +01:00
if (length(notes > 0)) {
notes <- sort(notes)
for (i in 1:length(notes)) {
base::message(notes[i])
}
}
x
}
2018-07-23 14:14:03 +02:00
2018-12-06 16:07:06 +01:00
#' @importFrom crayon blue italic
renamed_note <- function(name_old, name_new, ref_old = "", ref_new = "", mo = "") {
2018-10-01 14:44:40 +02:00
if (!is.na(ref_old)) {
ref_old <- paste0(" (", ref_old, ")")
} else {
ref_old <- ""
}
if (!is.na(ref_new)) {
ref_new <- paste0(" (", ref_new, ")")
} else {
ref_new <- ""
}
2018-12-06 16:07:06 +01:00
if (!is.na(mo)) {
mo <- paste0(" (", mo, ")")
} else {
mo <- ""
}
msg <- paste0(italic(name_old), ref_old, " was renamed ", italic(name_new), ref_new, mo)
msg <- gsub("et al.", italic("et al."), msg)
2018-12-06 14:36:39 +01:00
msg_plain <- paste0(name_old, ref_old, " -> ", name_new, ref_new)
msg_plain <- c(getOption("mo_renamed", character(0)), msg_plain)
options(mo_renamed = sort(msg_plain))
2018-12-14 10:52:20 +01:00
return(blue(paste("Note:", msg)))
2018-09-25 16:44:40 +02:00
}
2018-08-31 13:36:19 +02:00
#' @exportMethod print.mo
#' @export
#' @noRd
print.mo <- function(x, ...) {
cat("Class 'mo'\n")
2018-10-12 16:35:18 +02:00
x_names <- names(x)
x <- as.character(x)
names(x) <- x_names
print.default(x, quote = FALSE)
2018-08-31 13:36:19 +02:00
}
2018-07-23 14:14:03 +02:00
2018-12-07 12:04:55 +01:00
#' @exportMethod summary.mo
#' @export
#' @noRd
summary.mo <- function(object, ...) {
# unique and top 1-3
x <- object
top_3 <- unname(top_freq(freq(x), 3))
c("Class" = "mo",
"<NA>" = length(x[is.na(x)]),
"Unique" = dplyr::n_distinct(x[!is.na(x)]),
"#1" = top_3[1],
"#2" = top_3[2],
"#3" = top_3[3])
}
2018-08-31 13:36:19 +02:00
#' @exportMethod as.data.frame.mo
2018-07-23 14:14:03 +02:00
#' @export
2018-08-31 13:36:19 +02:00
#' @noRd
as.data.frame.mo <- function (x, ...) {
2018-10-31 12:10:49 +01:00
# same as as.data.frame.character but with removed stringsAsFactors, since it will be class "mo"
2018-08-31 13:36:19 +02:00
nm <- paste(deparse(substitute(x), width.cutoff = 500L),
collapse = " ")
if (!"nm" %in% names(list(...))) {
as.data.frame.vector(x, ..., nm = nm)
} else {
as.data.frame.vector(x, ...)
}
}
#' @exportMethod pull.mo
#' @export
#' @importFrom dplyr pull
#' @noRd
pull.mo <- function(.data, ...) {
pull(as.data.frame(.data), ...)
2018-07-23 14:14:03 +02:00
}
2018-12-06 14:36:39 +01:00
#' Vector of failed coercion attempts
#'
#' Returns a vector of all failed attempts to coerce values to a valid MO code with \code{\link{as.mo}}.
#' @seealso \code{\link{as.mo}}
#' @export
mo_failures <- function() {
getOption("mo_failures")
}
#' Vector of taxonomic renamed items
#'
#' Returns a vector of all renamed items of the last coercion to valid MO codes with \code{\link{as.mo}}.
#' @seealso \code{\link{as.mo}}
#' @export
mo_renamed <- function() {
getOption("mo_renamed")
}