2018-06-08 12:06:54 +02:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
2019-01-02 23:24:07 +01:00
# SOURCE #
# https://gitlab.com/msberends/AMR #
2018-06-08 12:06:54 +02:00
# #
# LICENCE #
2019-01-02 23:24:07 +01:00
# (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
2018-06-08 12:06:54 +02:00
# #
2019-01-02 23:24:07 +01:00
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# #
# This R package was created for academic research and was publicly #
# released in the hope that it will be useful, but it comes WITHOUT #
# ANY WARRANTY OR LIABILITY. #
# Visit our website for more info: https://msberends.gitab.io/AMR. #
2018-06-08 12:06:54 +02:00
# ==================================================================== #
2018-08-31 13:36:19 +02:00
#' Transform to microorganism ID
2018-06-08 12:06:54 +02:00
#'
2018-09-24 23:33:29 +02:00
#' Use this function to determine a valid microorganism ID (\code{mo}). Determination is done using Artificial Intelligence (AI) and the complete taxonomic kingdoms \emph{Bacteria}, \emph{Fungi} and \emph{Protozoa} (see Source), so the input can be almost anything: a full name (like \code{"Staphylococcus aureus"}), an abbreviated name (like \code{"S. aureus"}), an abbreviation known in the field (like \code{"MRSA"}), or just a genus. You could also \code{\link{select}} a genus and species column, zie Examples.
2018-09-04 11:33:30 +02:00
#' @param x a character vector or a \code{data.frame} with one or two columns
#' @param Becker a logical to indicate whether \emph{Staphylococci} should be categorised into Coagulase Negative \emph{Staphylococci} ("CoNS") and Coagulase Positive \emph{Staphylococci} ("CoPS") instead of their own species, according to Karsten Becker \emph{et al.} [1].
#'
#' This excludes \emph{Staphylococcus aureus} at default, use \code{Becker = "all"} to also categorise \emph{S. aureus} as "CoPS".
2018-09-24 23:33:29 +02:00
#' @param Lancefield a logical to indicate whether beta-haemolytic \emph{Streptococci} should be categorised into Lancefield groups instead of their own species, according to Rebecca C. Lancefield [2]. These \emph{Streptococci} will be categorised in their first group, e.g. \emph{Streptococcus dysgalactiae} will be group C, although officially it was also categorised into groups G and L.
2018-09-04 11:33:30 +02:00
#'
#' This excludes \emph{Enterococci} at default (who are in group D), use \code{Lancefield = "all"} to also categorise all \emph{Enterococci} as group D.
2018-12-07 12:04:55 +01:00
#' @param allow_uncertain a logical to indicate whether the input should be checked for less possible results, see Details
2018-10-01 11:39:43 +02:00
#' @param reference_df a \code{data.frame} to use for extra reference when translating \code{x} to a valid \code{mo}. The first column can be any microbial name, code or ID (used in your analysis or organisation), the second column must be a valid \code{mo} as found in the \code{\link{microorganisms}} data set.
2018-08-31 13:36:19 +02:00
#' @rdname as.mo
#' @aliases mo
#' @keywords mo Becker becker Lancefield lancefield guess
2018-09-24 23:33:29 +02:00
#' @details
2018-10-01 11:39:43 +02:00
#' A microbial ID from this package (class: \code{mo}) typically looks like these examples:\cr
2018-09-24 23:33:29 +02:00
#' \preformatted{
2018-12-07 12:04:55 +01:00
#' Code Full name
#' --------------- --------------------------------------
#' B_KLBSL Klebsiella
#' B_KLBSL_PNE Klebsiella pneumoniae
#' B_KLBSL_PNE_RHI Klebsiella pneumoniae rhinoscleromatis
2018-09-24 23:33:29 +02:00
#' | | | |
#' | | | |
#' | | | ----> subspecies, a 3-4 letter acronym
#' | | ----> species, a 3-4 letter acronym
#' | ----> genus, a 5-7 letter acronym, mostly without vowels
2018-10-29 17:26:17 +01:00
#' ----> taxonomic kingdom, either B (Bacteria), F (Fungi) or P (Protozoa)
2018-09-24 23:33:29 +02:00
#' }
2018-08-01 08:03:31 +02:00
#'
2018-09-04 11:33:30 +02:00
#' Use the \code{\link{mo_property}} functions to get properties based on the returned code, see Examples.
2018-08-28 13:51:13 +02:00
#'
2018-10-31 12:10:49 +01:00
#' This function uses Artificial Intelligence (AI) to help getting fast and logical results. It tries to find matches in this order:
#' \itemize{
#' \item{Taxonomic kingdom: it first searches in bacteria, then fungi, then protozoa}
#' \item{Human pathogenic prevalence: it first searches in more prevalent microorganisms, then less prevalent ones}
2018-11-24 20:25:09 +01:00
#' \item{Valid MO codes and full names: it first searches in already valid MO code and known genus/species combinations}
2018-10-31 12:10:49 +01:00
#' \item{Breakdown of input values: from here it starts to breakdown input values to find possible matches}
#' }
#'
2018-12-07 12:04:55 +01:00
#' A couple of effects because of these rules:
2018-07-23 14:14:03 +02:00
#' \itemize{
#' \item{\code{"E. coli"} will return the ID of \emph{Escherichia coli} and not \emph{Entamoeba coli}, although the latter would alphabetically come first}
2018-09-16 16:43:29 +02:00
#' \item{\code{"H. influenzae"} will return the ID of \emph{Haemophilus influenzae} and not \emph{Haematobacter influenzae} for the same reason}
2018-07-23 14:14:03 +02:00
#' \item{Something like \code{"p aer"} will return the ID of \emph{Pseudomonas aeruginosa} and not \emph{Pasteurella aerogenes}}
2018-09-16 16:43:29 +02:00
#' \item{Something like \code{"stau"} or \code{"S aur"} will return the ID of \emph{Staphylococcus aureus} and not \emph{Staphylococcus auricularis}}
2018-07-23 14:14:03 +02:00
#' }
2018-10-01 11:39:43 +02:00
#' This means that looking up human pathogenic microorganisms takes less time than looking up human \strong{non}-pathogenic microorganisms.
2018-09-24 23:33:29 +02:00
#'
2018-12-07 12:04:55 +01:00
#' When using \code{allow_uncertain = TRUE} (which is the default setting), it will use additional rules if all previous AI rules failed to get valid results. Examples:
#' \itemize{
#' \item{\code{"Streptococcus group B (known as S. agalactiae)"}. The text between brackets will be removed and a warning will be thrown that the result \emph{Streptococcus group B} (\code{B_STRPTC_GRB}) needs review.}
#' \item{\code{"S. aureus - please mind: MRSA"}. The last word will be stripped, after which the function will try to find a match. If it does not, the second last word will be stripped, etc. Again, a warning will be thrown that the result \emph{Staphylococcus aureus} (\code{B_STPHY_AUR}) needs review.}
#' \item{\code{"D. spartina"}. This is the abbreviation of an old taxonomic name: \emph{Didymosphaeria spartinae} (the last "e" was missing from the input). This fungus was renamed to \emph{Leptosphaeria obiones}, so a warning will be thrown that this result (\code{F_LPTSP_OBI}) needs review.}
#' }
#'
2018-09-24 23:33:29 +02:00
#' \code{guess_mo} is an alias of \code{as.mo}.
2019-01-02 23:24:07 +01:00
#' @inheritSection itis ITIS
2018-10-31 12:10:49 +01:00
# (source as a section, so it can be inherited by other man pages)
2018-09-24 23:33:29 +02:00
#' @section Source:
2018-09-04 11:33:30 +02:00
#' [1] Becker K \emph{et al.} \strong{Coagulase-Negative Staphylococci}. 2014. Clin Microbiol Rev. 27(4): 870– 926. \url{https://dx.doi.org/10.1128/CMR.00109-13}
#'
#' [2] Lancefield RC \strong{A serological differentiation of human and other groups of hemolytic streptococci}. 1933. J Exp Med. 57(4): 571– 95. \url{https://dx.doi.org/10.1084/jem.57.4.571}
2018-09-24 23:33:29 +02:00
#'
#' [3] Integrated Taxonomic Information System (ITIS). Retrieved September 2018. \url{http://www.itis.gov}
2018-06-08 12:06:54 +02:00
#' @export
2018-08-31 13:36:19 +02:00
#' @return Character (vector) with class \code{"mo"}. Unknown values will return \code{NA}.
2018-09-24 23:33:29 +02:00
#' @seealso \code{\link{microorganisms}} for the \code{data.frame} with ITIS content that is being used to determine ID's. \cr
#' The \code{\link{mo_property}} functions (like \code{\link{mo_genus}}, \code{\link{mo_gramstain}}) to get properties based on the returned code.
2019-01-02 23:24:07 +01:00
#' @inheritSection AMR Read more on our website!
2018-06-08 12:06:54 +02:00
#' @examples
2018-10-01 11:39:43 +02:00
#' # These examples all return "B_STPHY_AUR", the ID of S. aureus:
2018-08-31 13:36:19 +02:00
#' as.mo("stau")
#' as.mo("STAU")
#' as.mo("staaur")
#' as.mo("S. aureus")
#' as.mo("S aureus")
#' as.mo("Staphylococcus aureus")
2018-12-07 12:04:55 +01:00
#' as.mo("Staphylococcus aureus (MRSA)")
2018-08-31 13:36:19 +02:00
#' as.mo("MRSA") # Methicillin Resistant S. aureus
#' as.mo("VISA") # Vancomycin Intermediate S. aureus
#' as.mo("VRSA") # Vancomycin Resistant S. aureus
2018-09-24 23:33:29 +02:00
#' as.mo(369) # Search on TSN (Taxonomic Serial Number), a unique identifier
#' # for the Integrated Taxonomic Information System (ITIS)
2018-06-08 12:06:54 +02:00
#'
2018-09-05 10:51:46 +02:00
#' as.mo("Streptococcus group A")
#' as.mo("GAS") # Group A Streptococci
#' as.mo("GBS") # Group B Streptococci
#'
2018-08-31 13:36:19 +02:00
#' # guess_mo is an alias of as.mo and works the same
2018-09-24 23:33:29 +02:00
#' guess_mo("S. epidermidis") # will remain species: B_STPHY_EPI
#' guess_mo("S. epidermidis", Becker = TRUE) # will not remain species: B_STPHY_CNS
2018-08-02 13:15:45 +02:00
#'
2018-09-24 23:33:29 +02:00
#' guess_mo("S. pyogenes") # will remain species: B_STRPTC_PYO
#' guess_mo("S. pyogenes", Lancefield = TRUE) # will not remain species: B_STRPTC_GRA
2018-08-02 13:15:45 +02:00
#'
2018-08-31 13:36:19 +02:00
#' # Use mo_* functions to get a specific property based on `mo`
2018-09-24 23:33:29 +02:00
#' Ecoli <- as.mo("E. coli") # returns `B_ESCHR_COL`
2018-08-28 13:51:13 +02:00
#' mo_genus(Ecoli) # returns "Escherichia"
2018-09-24 23:33:29 +02:00
#' mo_gramstain(Ecoli) # returns "Gram negative"
#' # but it uses as.mo internally too, so you could also just use:
#' mo_genus("E. coli") # returns "Escherichia"
#'
2018-08-28 13:51:13 +02:00
#'
2018-06-08 12:06:54 +02:00
#' \dontrun{
2018-08-31 13:36:19 +02:00
#' df$mo <- as.mo(df$microorganism_name)
2018-06-08 12:06:54 +02:00
#'
#' # the select function of tidyverse is also supported:
2018-07-23 14:14:03 +02:00
#' library(dplyr)
2018-08-31 13:36:19 +02:00
#' df$mo <- df %>%
2018-07-23 14:14:03 +02:00
#' select(microorganism_name) %>%
2018-11-24 20:25:09 +01:00
#' as.mo()
2018-06-08 12:06:54 +02:00
#'
#' # and can even contain 2 columns, which is convenient for genus/species combinations:
2018-08-31 13:36:19 +02:00
#' df$mo <- df %>%
2018-07-23 14:14:03 +02:00
#' select(genus, species) %>%
2018-11-24 20:25:09 +01:00
#' as.mo()
#' # although this works easier and does the same:
2018-07-23 14:14:03 +02:00
#' df <- df %>%
2018-11-24 20:25:09 +01:00
#' mutate(mo = as.mo(paste(genus, species)))
2018-06-08 12:06:54 +02:00
#' }
2018-12-07 12:04:55 +01:00
as.mo <- function ( x , Becker = FALSE , Lancefield = FALSE , allow_uncertain = TRUE , reference_df = NULL ) {
2018-12-06 14:36:39 +01:00
mo <- mo_validate ( x = x , property = " mo" ,
Becker = Becker , Lancefield = Lancefield ,
allow_uncertain = allow_uncertain , reference_df = reference_df )
structure ( .Data = mo , class = " mo" )
2018-09-27 23:23:48 +02:00
}
#' @rdname as.mo
#' @export
is.mo <- function ( x ) {
2018-12-22 22:39:34 +01:00
identical ( class ( x ) , " mo" )
2018-09-27 23:23:48 +02:00
}
#' @rdname as.mo
#' @export
guess_mo <- as.mo
2018-07-23 14:14:03 +02:00
2018-12-07 12:04:55 +01:00
#' @importFrom dplyr %>% pull left_join n_distinct progress_estimated
2018-10-31 12:10:49 +01:00
#' @importFrom data.table data.table as.data.table setkey
2018-12-06 14:36:39 +01:00
#' @importFrom crayon magenta red italic
exec_as.mo <- function ( x , Becker = FALSE , Lancefield = FALSE ,
2018-12-07 12:04:55 +01:00
allow_uncertain = TRUE , reference_df = NULL ,
2018-12-06 14:36:39 +01:00
property = " mo" , clear_options = TRUE ) {
2018-10-31 12:10:49 +01:00
2018-11-24 20:25:09 +01:00
if ( ! " AMR" %in% base :: .packages ( ) ) {
library ( " AMR" )
# These data.tables are available as data sets when the AMR package is loaded:
# microorganismsDT # this one is sorted by kingdom (B<F<P), prevalence, TSN
# microorganisms.prevDT # same as microorganismsDT, but with prevalence != 9999
# microorganisms.unprevDT # same as microorganismsDT, but with prevalence == 9999
# microorganisms.oldDT # old taxonomic names, sorted by name (genus+species), TSN
}
2018-10-31 12:10:49 +01:00
2018-12-06 14:36:39 +01:00
if ( clear_options == TRUE ) {
options ( mo_failures = NULL )
options ( mo_renamed = NULL )
}
2018-06-08 12:06:54 +02:00
if ( NCOL ( x ) == 2 ) {
# support tidyverse selection like: df %>% select(colA, colB)
# paste these columns together
x_vector <- vector ( " character" , NROW ( x ) )
for ( i in 1 : NROW ( x ) ) {
x_vector [i ] <- paste ( pull ( x [i , ] , 1 ) , pull ( x [i , ] , 2 ) , sep = " " )
}
x <- x_vector
} else {
if ( NCOL ( x ) > 2 ) {
stop ( ' `x` can be 2 columns at most' , call. = FALSE )
}
2018-09-09 12:11:44 +02:00
x [is.null ( x ) ] <- NA
2018-07-23 14:14:03 +02:00
2018-06-08 12:06:54 +02:00
# support tidyverse selection like: df %>% select(colA)
2018-11-15 12:42:35 +01:00
if ( ! is.vector ( x ) & ! is.null ( dim ( x ) ) ) {
2018-06-08 12:06:54 +02:00
x <- pull ( x , 1 )
}
}
2018-12-14 10:52:20 +01:00
notes <- character ( 0 )
2018-09-27 23:23:48 +02:00
failures <- character ( 0 )
x_input <- x
# only check the uniques, which is way faster
x <- unique ( x )
2018-11-30 12:05:59 +01:00
# remove empty values (to later fill them in again with NAs)
2018-10-19 00:17:03 +02:00
x <- x [ ! is.na ( x ) & ! is.null ( x ) & ! identical ( x , " " ) ]
2018-09-27 23:23:48 +02:00
2018-10-01 11:39:43 +02:00
# defined df to check for
if ( ! is.null ( reference_df ) ) {
if ( ! is.data.frame ( reference_df ) | NCOL ( reference_df ) < 2 ) {
2018-10-09 15:41:44 +02:00
stop ( ' `reference_df` must be a data.frame with at least two columns.' , call. = FALSE )
2018-10-01 11:39:43 +02:00
}
# remove factors, just keep characters
suppressWarnings (
reference_df [ ] <- lapply ( reference_df , as.character )
)
}
2018-10-31 12:10:49 +01:00
if ( all ( x %in% microorganismsDT [ [ " mo" ] ] ) ) {
# existing mo codes when not looking for property "mo", like mo_genus("B_ESCHR_COL")
x <- microorganismsDT [data.table ( mo = x ) , on = " mo" , ..property ] [ [1 ] ]
2018-10-01 11:39:43 +02:00
} else if ( ! is.null ( reference_df )
& all ( x %in% reference_df [ , 1 ] )
2018-10-31 12:10:49 +01:00
& all ( reference_df [ , 2 ] %in% microorganismsDT [ [ " mo" ] ] ) ) {
2018-10-01 11:39:43 +02:00
# manually defined reference
colnames ( reference_df ) [1 ] <- " x"
colnames ( reference_df ) [2 ] <- " mo"
suppressWarnings (
x <- data.frame ( x = x , stringsAsFactors = FALSE ) %>%
left_join ( reference_df , by = " x" ) %>%
2018-11-24 20:25:09 +01:00
left_join ( microorganisms , by = " mo" ) %>%
2018-10-01 11:39:43 +02:00
pull ( property )
)
2018-11-24 20:25:09 +01:00
} else if ( all ( toupper ( x ) %in% microorganisms.certe [ , " certe" ] ) ) {
2018-09-27 23:23:48 +02:00
# old Certe codes
2018-11-24 20:25:09 +01:00
y <- as.data.table ( microorganisms.certe ) [data.table ( certe = toupper ( x ) ) , on = " certe" , ]
2018-10-31 12:10:49 +01:00
x <- microorganismsDT [data.table ( mo = y [ [ " mo" ] ] ) , on = " mo" , ..property ] [ [1 ] ]
} else if ( ! all ( x %in% microorganismsDT [ [property ] ] ) ) {
2018-09-24 23:33:29 +02:00
2018-09-27 23:23:48 +02:00
x_backup <- trimws ( x , which = " both" )
2018-11-24 20:25:09 +01:00
# remove spp and species
2018-12-06 14:36:39 +01:00
x <- trimws ( gsub ( " +(spp.?|ssp.?|subsp.?|species)" , " " , x_backup , ignore.case = TRUE ) , which = " both" )
2018-11-24 20:25:09 +01:00
x_species <- paste ( x , " species" )
2018-09-27 23:23:48 +02:00
# translate to English for supported languages of mo_property
2018-12-06 14:36:39 +01:00
x <- gsub ( " (Gruppe|gruppe|groep|grupo|gruppo|groupe)" , " group" , x , ignore.case = TRUE )
2018-09-27 23:23:48 +02:00
# remove 'empty' genus and species values
x <- gsub ( " (no MO)" , " " , x , fixed = TRUE )
2018-11-24 20:25:09 +01:00
# remove non-text in case of "E. coli" except dots and spaces
x <- gsub ( " [^.a-zA-Z0-9/ \\-]+" , " " , x )
2018-09-27 23:23:48 +02:00
# but spaces before and after should be omitted
x <- trimws ( x , which = " both" )
x_trimmed <- x
x_trimmed_species <- paste ( x_trimmed , " species" )
2018-12-06 14:36:39 +01:00
x_trimmed_without_group <- gsub ( " group$" , " " , x_trimmed , ignore.case = TRUE )
# remove last part from "-" or "/"
x_trimmed_without_group <- gsub ( " (.*)[-/].*" , " \\1" , x_trimmed_without_group )
2018-11-24 20:25:09 +01:00
# replace space and dot by regex sign
x_withspaces <- gsub ( " [ .]+" , " .* " , x )
x <- gsub ( " [ .]+" , " .*" , x )
2018-09-27 23:23:48 +02:00
# add start en stop regex
x <- paste0 ( ' ^' , x , ' $' )
x_withspaces_start <- paste0 ( ' ^' , x_withspaces )
x_withspaces <- paste0 ( ' ^' , x_withspaces , ' $' )
2018-12-06 14:36:39 +01:00
# cat(paste0('x "', x, '"\n'))
# cat(paste0('x_species "', x_species, '"\n'))
# cat(paste0('x_withspaces_start "', x_withspaces_start, '"\n'))
# cat(paste0('x_withspaces "', x_withspaces, '"\n'))
# cat(paste0('x_backup "', x_backup, '"\n'))
# cat(paste0('x_trimmed "', x_trimmed, '"\n'))
# cat(paste0('x_trimmed_species "', x_trimmed_species, '"\n'))
# cat(paste0('x_trimmed_without_group "', x_trimmed_without_group, '"\n'))
2018-09-27 23:23:48 +02:00
2018-12-07 12:04:55 +01:00
progress <- progress_estimated ( n = length ( x ) , min_time = 3 )
2018-09-27 23:23:48 +02:00
for ( i in 1 : length ( x ) ) {
2018-12-07 12:04:55 +01:00
progress $ tick ( ) $ print ( )
2018-10-19 00:17:03 +02:00
if ( identical ( x_trimmed [i ] , " " ) ) {
2018-09-27 23:23:48 +02:00
# empty values
2018-10-19 00:17:03 +02:00
x [i ] <- NA_character_
next
}
if ( nchar ( x_trimmed [i ] ) < 3 ) {
2018-11-24 20:25:09 +01:00
# check if search term was like "A. species", then return first genus found with ^A
if ( x_backup [i ] %like% " species" | x_backup [i ] %like% " spp[.]?" ) {
# get mo code of first hit
2018-11-30 12:05:59 +01:00
found <- microorganismsDT [fullname %like% x_withspaces_start [i ] , mo ]
2018-11-24 20:25:09 +01:00
if ( length ( found ) > 0 ) {
2018-11-30 12:05:59 +01:00
mo_code <- found [1L ] %>% strsplit ( " _" ) %>% unlist ( ) %>% .[1 : 2 ] %>% paste ( collapse = " _" )
found <- microorganismsDT [mo == mo_code , ..property ] [ [1 ] ]
# return first genus that begins with x_trimmed, e.g. when "E. spp."
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
2018-11-24 20:25:09 +01:00
}
}
2018-11-30 12:05:59 +01:00
# fewer than 3 chars and not looked for species, add as failure
x [i ] <- NA_character_
failures <- c ( failures , x_backup [i ] )
next
2018-09-27 23:23:48 +02:00
}
2018-09-24 23:33:29 +02:00
2018-11-30 12:05:59 +01:00
2018-09-27 23:23:48 +02:00
# translate known trivial abbreviations to genus + species ----
if ( ! is.na ( x_trimmed [i ] ) ) {
if ( toupper ( x_trimmed [i ] ) == ' MRSA'
2018-10-12 16:35:18 +02:00
| toupper ( x_trimmed [i ] ) == ' MSSA'
2018-09-27 23:23:48 +02:00
| toupper ( x_trimmed [i ] ) == ' VISA'
| toupper ( x_trimmed [i ] ) == ' VRSA' ) {
2018-10-31 12:10:49 +01:00
x [i ] <- microorganismsDT [mo == ' B_STPHY_AUR' , ..property ] [ [1 ] ] [1L ]
2018-09-27 23:23:48 +02:00
next
}
2018-10-12 16:35:18 +02:00
if ( toupper ( x_trimmed [i ] ) == ' MRSE'
| toupper ( x_trimmed [i ] ) == ' MSSE' ) {
2018-10-31 12:10:49 +01:00
x [i ] <- microorganismsDT [mo == ' B_STPHY_EPI' , ..property ] [ [1 ] ] [1L ]
2018-09-27 23:23:48 +02:00
next
}
2018-12-06 14:36:39 +01:00
if ( toupper ( x_trimmed [i ] ) == " VRE"
| x_trimmed [i ] %like% ' (enterococci|enterokok|enterococo)[a-z]*?$' ) {
2018-10-31 12:10:49 +01:00
x [i ] <- microorganismsDT [mo == ' B_ENTRC' , ..property ] [ [1 ] ] [1L ]
2018-09-27 23:23:48 +02:00
next
}
if ( toupper ( x_trimmed [i ] ) == ' MRPA' ) {
# multi resistant P. aeruginosa
2018-10-31 12:10:49 +01:00
x [i ] <- microorganismsDT [mo == ' B_PDMNS_AER' , ..property ] [ [1 ] ] [1L ]
2018-09-27 23:23:48 +02:00
next
}
2018-10-12 16:35:18 +02:00
if ( toupper ( x_trimmed [i ] ) == ' CRS'
| toupper ( x_trimmed [i ] ) == ' CRSM' ) {
# co-trim resistant S. maltophilia
2018-10-31 12:10:49 +01:00
x [i ] <- microorganismsDT [mo == ' B_STNTR_MAL' , ..property ] [ [1 ] ] [1L ]
2018-10-12 16:35:18 +02:00
next
}
2018-09-27 23:23:48 +02:00
if ( toupper ( x_trimmed [i ] ) %in% c ( ' PISP' , ' PRSP' , ' VISP' , ' VRSP' ) ) {
# peni I, peni R, vanco I, vanco R: S. pneumoniae
2018-10-31 12:10:49 +01:00
x [i ] <- microorganismsDT [mo == ' B_STRPTC_PNE' , ..property ] [ [1 ] ] [1L ]
2018-09-27 23:23:48 +02:00
next
}
if ( toupper ( x_trimmed [i ] ) %like% ' ^G[ABCDFGHK]S$' ) {
2018-12-06 14:36:39 +01:00
# Streptococci, like GBS = Group B Streptococci (B_STRPTC_GRB)
x [i ] <- microorganismsDT [mo == gsub ( " G([ABCDFGHK])S" , " B_STRPTC_GR\\1" , x_trimmed [i ] , ignore.case = TRUE ) , ..property ] [ [1 ] ] [1L ]
next
}
if ( toupper ( x_trimmed [i ] ) %like% ' (streptococc|streptokok).* [ABCDFGHK]$' ) {
# Streptococci in different languages, like "estreptococos grupo B"
x [i ] <- microorganismsDT [mo == gsub ( " .*(streptococ|streptokok|estreptococ).* ([ABCDFGHK])$" , " B_STRPTC_GR\\2" , x_trimmed [i ] , ignore.case = TRUE ) , ..property ] [ [1 ] ] [1L ]
next
}
if ( toupper ( x_trimmed [i ] ) %like% ' group [ABCDFGHK] (streptococ|streptokok|estreptococ)' ) {
# Streptococci in different languages, like "Group A Streptococci"
x [i ] <- microorganismsDT [mo == gsub ( " .*group ([ABCDFGHK]) (streptococ|streptokok|estreptococ).*" , " B_STRPTC_GR\\1" , x_trimmed [i ] , ignore.case = TRUE ) , ..property ] [ [1 ] ] [1L ]
2018-09-27 23:23:48 +02:00
next
}
# CoNS/CoPS in different languages (support for German, Dutch, Spanish, Portuguese) ----
if ( tolower ( x [i ] ) %like% ' [ck]oagulas[ea] negatie?[vf]'
| tolower ( x_trimmed [i ] ) %like% ' [ck]oagulas[ea] negatie?[vf]'
| tolower ( x [i ] ) %like% ' [ck]o?ns[^a-z]?$' ) {
# coerce S. coagulase negative
2018-10-31 12:10:49 +01:00
x [i ] <- microorganismsDT [mo == ' B_STPHY_CNS' , ..property ] [ [1 ] ] [1L ]
2018-09-27 23:23:48 +02:00
next
}
if ( tolower ( x [i ] ) %like% ' [ck]oagulas[ea] positie?[vf]'
| tolower ( x_trimmed [i ] ) %like% ' [ck]oagulas[ea] positie?[vf]'
| tolower ( x [i ] ) %like% ' [ck]o?ps[^a-z]?$' ) {
# coerce S. coagulase positive
2018-10-31 12:10:49 +01:00
x [i ] <- microorganismsDT [mo == ' B_STPHY_CPS' , ..property ] [ [1 ] ] [1L ]
2018-09-27 23:23:48 +02:00
next
}
2018-12-06 14:36:39 +01:00
if ( tolower ( x [i ] ) %like% ' gram[ -]?neg.*'
| tolower ( x_trimmed [i ] ) %like% ' gram[ -]?neg.*' ) {
2018-11-02 10:27:57 +01:00
# coerce S. coagulase positive
x [i ] <- microorganismsDT [mo == ' B_GRAMN' , ..property ] [ [1 ] ] [1L ]
next
}
2018-12-06 14:36:39 +01:00
if ( tolower ( x [i ] ) %like% ' gram[ -]?pos.*'
| tolower ( x_trimmed [i ] ) %like% ' gram[ -]?pos.*' ) {
2018-11-02 10:27:57 +01:00
# coerce S. coagulase positive
x [i ] <- microorganismsDT [mo == ' B_GRAMP' , ..property ] [ [1 ] ] [1L ]
next
}
2018-12-06 14:36:39 +01:00
if ( grepl ( " [sS]almonella [A-Z][a-z]+ ?.*" , x_trimmed [i ] ) ) {
# Salmonella with capital letter species like "Salmonella Goettingen" - they're all S. enterica
x [i ] <- microorganismsDT [mo == ' B_SLMNL_ENT' , ..property ] [ [1 ] ] [1L ]
2018-12-14 10:52:20 +01:00
notes <- c ( notes ,
magenta ( paste0 ( " Note: " , italic ( x_trimmed [i ] ) ,
" was considered (a subspecies of) " ,
italic ( " Salmonella enterica" ) ,
" (B_SLMNL_ENT)" ) ) )
2018-12-06 14:36:39 +01:00
next
}
2018-09-27 23:23:48 +02:00
}
2018-08-28 13:51:13 +02:00
2018-09-27 23:23:48 +02:00
# FIRST TRY FULLNAMES AND CODES
2018-10-01 11:39:43 +02:00
# if only genus is available, return only genus
2018-09-27 23:23:48 +02:00
if ( all ( ! c ( x [i ] , x_trimmed [i ] ) %like% " " ) ) {
2018-10-31 12:10:49 +01:00
found <- microorganismsDT [tolower ( fullname ) %in% tolower ( c ( x_species [i ] , x_trimmed_species [i ] ) ) , ..property ] [ [1 ] ]
2018-09-27 23:23:48 +02:00
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
if ( nchar ( x_trimmed [i ] ) > 4 ) {
# not when abbr is esco, stau, klpn, etc.
2018-10-31 12:10:49 +01:00
found <- microorganismsDT [tolower ( fullname ) %like% gsub ( " " , " .*" , x_trimmed_species [i ] , fixed = TRUE ) , ..property ] [ [1 ] ]
2018-09-27 23:23:48 +02:00
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
}
}
2018-08-28 13:51:13 +02:00
2018-10-01 11:39:43 +02:00
# TRY OTHER SOURCES ----
2018-11-30 12:05:59 +01:00
if ( toupper ( x_backup [i ] ) %in% microorganisms.certe [ , 1 ] ) {
mo_found <- microorganisms.certe [toupper ( x_backup [i ] ) == microorganisms.certe [ , 1 ] , 2 ] [1L ]
if ( length ( mo_found ) > 0 ) {
x [i ] <- microorganismsDT [mo == mo_found , ..property ] [ [1 ] ] [1L ]
next
}
}
2018-11-24 20:25:09 +01:00
if ( x_backup [i ] %in% microorganisms.umcg [ , 1 ] ) {
mo_umcg <- microorganisms.umcg [microorganisms.umcg [ , 1 ] == x_backup [i ] , 2 ]
2018-11-30 12:05:59 +01:00
mo_found <- microorganisms.certe [microorganisms.certe [ , 1 ] == mo_umcg , 2 ] [1L ]
2018-11-15 12:42:35 +01:00
if ( length ( mo_found ) == 0 ) {
# not found
x [i ] <- NA_character_
failures <- c ( failures , x_backup [i ] )
} else {
x [i ] <- microorganismsDT [mo == mo_found , ..property ] [ [1 ] ] [1L ]
}
2018-10-01 11:39:43 +02:00
next
}
2018-11-24 20:25:09 +01:00
if ( ! is.null ( reference_df ) ) {
if ( x_backup [i ] %in% reference_df [ , 1 ] ) {
ref_mo <- reference_df [reference_df [ , 1 ] == x_backup [i ] , 2 ]
if ( ref_mo %in% microorganismsDT [ , mo ] ) {
x [i ] <- microorganismsDT [mo == ref_mo , ..property ] [ [1 ] ] [1L ]
next
} else {
warning ( " Value '" , x_backup [i ] , " ' was found in reference_df, but '" , ref_mo , " ' is not a valid MO code." , call. = FALSE )
}
2018-10-01 11:39:43 +02:00
}
}
2018-09-27 23:23:48 +02:00
# TRY FIRST THOUSAND MOST PREVALENT IN HUMAN INFECTIONS ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.prevDT [tolower ( fullname ) %in% tolower ( c ( x_backup [i ] , x_trimmed [i ] ) ) , ..property ] [ [1 ] ]
2018-09-27 23:23:48 +02:00
# most probable: is exact match in fullname
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
2018-07-30 01:18:40 +02:00
next
2018-06-08 12:06:54 +02:00
}
2018-10-31 12:10:49 +01:00
found <- microorganisms.prevDT [tsn == x_trimmed [i ] , ..property ] [ [1 ] ]
2018-09-27 23:23:48 +02:00
# is a valid TSN
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
2018-08-01 08:03:31 +02:00
next
2018-06-08 12:06:54 +02:00
}
2018-10-31 12:10:49 +01:00
found <- microorganisms.prevDT [mo == toupper ( x_backup [i ] ) , ..property ] [ [1 ] ]
2018-09-27 23:23:48 +02:00
# is a valid mo
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
2018-07-30 01:18:40 +02:00
next
2018-06-08 12:06:54 +02:00
}
2018-12-06 14:36:39 +01:00
found <- microorganisms.prevDT [tolower ( fullname ) == tolower ( x_trimmed_without_group [i ] ) , ..property ] [ [1 ] ]
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
2018-09-27 23:23:48 +02:00
# try any match keeping spaces ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.prevDT [fullname %like% x_withspaces [i ] , ..property ] [ [1 ] ]
2018-09-27 23:23:48 +02:00
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
2018-07-30 01:18:40 +02:00
next
2018-06-08 12:06:54 +02:00
}
2018-09-27 23:23:48 +02:00
# try any match keeping spaces, not ending with $ ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.prevDT [fullname %like% x_withspaces_start [i ] , ..property ] [ [1 ] ]
2018-09-27 23:23:48 +02:00
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
2018-09-24 23:33:29 +02:00
next
}
2018-09-27 23:23:48 +02:00
# try any match diregarding spaces ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.prevDT [fullname %like% x [i ] , ..property ] [ [1 ] ]
2018-09-27 23:23:48 +02:00
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
2018-08-01 09:45:11 +02:00
next
2018-06-08 12:06:54 +02:00
}
2018-09-27 23:23:48 +02:00
2018-10-29 17:26:17 +01:00
# try splitting of characters in the middle and then find ID ----
# only when text length is 6 or lower
# like esco = E. coli, klpn = K. pneumoniae, stau = S. aureus, staaur = S. aureus
if ( nchar ( x_trimmed [i ] ) <= 6 ) {
x_length <- nchar ( x_trimmed [i ] )
2018-11-02 10:27:57 +01:00
x [i ] <- paste0 ( x_trimmed [i ] %>% substr ( 1 , x_length / 2 ) ,
' .* ' ,
x_trimmed [i ] %>% substr ( ( x_length / 2 ) + 1 , x_length ) )
found <- microorganisms.prevDT [fullname %like% paste0 ( ' ^' , x [i ] ) , ..property ] [ [1 ] ]
2018-10-29 17:26:17 +01:00
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
2018-09-05 10:51:46 +02:00
}
2018-06-08 12:06:54 +02:00
2018-11-02 10:27:57 +01:00
# try fullname without start and stop regex, to also find subspecies ----
# like "K. pneu rhino" -> "Klebsiella pneumoniae (rhinoscleromatis)" = KLEPNERH
found <- microorganisms.prevDT [fullname %like% x_withspaces_start [i ] , ..property ] [ [1 ] ]
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
2018-09-27 23:23:48 +02:00
# THEN TRY ALL OTHERS ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.unprevDT [tolower ( fullname ) == tolower ( x_backup [i ] ) , ..property ] [ [1 ] ]
2018-09-27 23:23:48 +02:00
# most probable: is exact match in fullname
2018-09-24 23:33:29 +02:00
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
2018-10-31 12:10:49 +01:00
found <- microorganisms.unprevDT [tolower ( fullname ) == tolower ( x_trimmed [i ] ) , ..property ] [ [1 ] ]
2018-09-27 23:23:48 +02:00
# most probable: is exact match in fullname
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
2018-10-31 12:10:49 +01:00
found <- microorganisms.unprevDT [tsn == x_trimmed [i ] , ..property ] [ [1 ] ]
2018-09-27 23:23:48 +02:00
# is a valid TSN
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
2018-10-31 12:10:49 +01:00
found <- microorganisms.unprevDT [mo == toupper ( x_backup [i ] ) , ..property ] [ [1 ] ]
2018-09-27 23:23:48 +02:00
# is a valid mo
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
2018-09-24 23:33:29 +02:00
}
2018-12-06 14:36:39 +01:00
found <- microorganisms.unprevDT [tolower ( fullname ) == tolower ( x_trimmed_without_group [i ] ) , ..property ] [ [1 ] ]
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
2018-09-27 23:23:48 +02:00
# try any match keeping spaces ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.unprevDT [fullname %like% x_withspaces [i ] , ..property ] [ [1 ] ]
2018-09-27 23:23:48 +02:00
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
# try any match keeping spaces, not ending with $ ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.unprevDT [fullname %like% x_withspaces_start [i ] , ..property ] [ [1 ] ]
2018-09-27 23:23:48 +02:00
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
# try any match diregarding spaces ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.unprevDT [fullname %like% x [i ] , ..property ] [ [1 ] ]
2018-12-06 14:36:39 +01:00
if ( length ( found ) > 0 & nchar ( x_trimmed [i ] ) >= 6 ) {
2018-09-27 23:23:48 +02:00
x [i ] <- found [1L ]
next
}
2018-10-29 17:26:17 +01:00
# try splitting of characters in the middle and then find ID ----
# only when text length is 6 or lower
# like esco = E. coli, klpn = K. pneumoniae, stau = S. aureus, staaur = S. aureus
if ( nchar ( x_trimmed [i ] ) <= 6 ) {
x_length <- nchar ( x_trimmed [i ] )
2018-11-02 10:27:57 +01:00
x [i ] <- paste0 ( x_trimmed [i ] %>% substr ( 1 , x_length / 2 ) ,
' .* ' ,
x_trimmed [i ] %>% substr ( ( x_length / 2 ) + 1 , x_length ) )
found <- microorganisms.unprevDT [fullname %like% paste0 ( ' ^' , x [i ] ) , ..property ] [ [1 ] ]
2018-10-29 17:26:17 +01:00
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
2018-09-27 23:23:48 +02:00
}
2018-09-24 23:33:29 +02:00
2018-11-02 10:27:57 +01:00
# try fullname without start and stop regex, to also find subspecies ----
# like "K. pneu rhino" -> "Klebsiella pneumoniae (rhinoscleromatis)" = KLEPNERH
found <- microorganisms.unprevDT [fullname %like% x_withspaces_start [i ] , ..property ] [ [1 ] ]
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
2018-09-27 23:23:48 +02:00
# MISCELLANEOUS ----
# look for old taxonomic names ----
2018-10-31 12:10:49 +01:00
found <- microorganisms.oldDT [tolower ( name ) == tolower ( x_backup [i ] )
| tsn == x_trimmed [i ]
| name %like% x_withspaces [i ] , ]
2018-09-25 16:44:40 +02:00
if ( NROW ( found ) > 0 ) {
2018-11-09 13:11:54 +01:00
# when property is "ref" (which is the case in mo_ref, mo_authors and mo_year), return the old value, so:
# mo_ref("Chlamydia psittaci) = "Page, 1968" (with warning)
# mo_ref("Chlamydophila psittaci) = "Everett et al., 1999"
if ( property == " ref" ) {
x [i ] <- found [1 , ref ]
} else {
x [i ] <- microorganismsDT [tsn == found [1 , tsn_new ] , ..property ] [ [1 ] ]
}
2018-12-14 10:52:20 +01:00
notes <- c ( notes ,
renamed_note ( name_old = found [1 , name ] ,
name_new = microorganismsDT [tsn == found [1 , tsn_new ] , fullname ] ,
ref_old = found [1 , ref ] ,
ref_new = microorganismsDT [tsn == found [1 , tsn_new ] , ref ] ,
mo = microorganismsDT [tsn == found [1 , tsn_new ] , mo ] ) )
2018-09-25 16:44:40 +02:00
next
}
2018-09-27 23:23:48 +02:00
# check for uncertain results ----
if ( allow_uncertain == TRUE ) {
2018-12-14 10:52:20 +01:00
2018-12-14 11:44:15 +01:00
uncertain_fn <- function ( a.x_backup , b.x_trimmed , c.x_withspaces , d.x_withspaces_start , e.x ) {
2018-12-14 10:52:20 +01:00
# (1) look again for old taxonomic names, now for G. species ----
2018-12-14 11:44:15 +01:00
found <- microorganisms.oldDT [name %like% c.x_withspaces
| name %like% d.x_withspaces_start
| name %like% e.x , ]
if ( NROW ( found ) > 0 & nchar ( b.x_trimmed ) >= 6 ) {
2018-12-14 10:52:20 +01:00
if ( property == " ref" ) {
# when property is "ref" (which is the case in mo_ref, mo_authors and mo_year), return the old value, so:
# mo_ref("Chlamydia psittaci) = "Page, 1968" (with warning)
# mo_ref("Chlamydophila psittaci) = "Everett et al., 1999"
x <- found [1 , ref ]
} else {
x <- microorganismsDT [tsn == found [1 , tsn_new ] , ..property ] [ [1 ] ]
}
warning ( red ( paste0 ( ' UNCERTAIN - "' ,
2018-12-14 11:44:15 +01:00
a.x_backup , ' " -> ' , italic ( found [1 , name ] ) ) ) ,
2018-12-14 10:52:20 +01:00
call. = FALSE , immediate. = FALSE )
notes <<- c ( notes ,
renamed_note ( name_old = found [1 , name ] ,
name_new = microorganismsDT [tsn == found [1 , tsn_new ] , fullname ] ,
ref_old = found [1 , ref ] ,
ref_new = microorganismsDT [tsn == found [1 , tsn_new ] , ref ] ,
mo = microorganismsDT [tsn == found [1 , tsn_new ] , mo ] ) )
return ( x )
2018-11-09 13:11:54 +01:00
}
2018-09-27 23:23:48 +02:00
2018-12-14 10:52:20 +01:00
# (2) strip values between brackets ----
2018-12-14 11:44:15 +01:00
a.x_backup_stripped <- gsub ( " ( [(].*[)])" , " " , a.x_backup )
a.x_backup_stripped <- trimws ( gsub ( " " , " " , a.x_backup_stripped , fixed = TRUE ) )
found <- suppressMessages ( suppressWarnings ( exec_as.mo ( a.x_backup_stripped , clear_options = FALSE , allow_uncertain = FALSE ) ) )
if ( ! is.na ( found ) & nchar ( b.x_trimmed ) >= 6 ) {
2018-12-14 10:52:20 +01:00
found <- microorganismsDT [mo == found , ..property ] [ [1 ] ]
warning ( red ( paste0 ( ' UNCERTAIN - "' ,
2018-12-14 11:44:15 +01:00
a.x_backup , ' " -> ' , italic ( microorganismsDT [mo == found [1L ] , fullname ] [ [1 ] ] ) , " (" , found [1L ] , " )" ) ) ,
2018-12-14 10:52:20 +01:00
call. = FALSE , immediate. = FALSE )
return ( found [1L ] )
}
2018-12-06 14:36:39 +01:00
2018-12-14 10:52:20 +01:00
# (3) try to strip off one element and check the remains ----
2018-12-14 11:44:15 +01:00
x_strip <- a.x_backup %>% strsplit ( " " ) %>% unlist ( )
if ( length ( x_strip ) > 1 & nchar ( b.x_trimmed ) >= 6 ) {
for ( i in 1 : ( length ( x_strip ) - 1 ) ) {
x_strip_collapsed <- paste ( x_strip [1 : ( length ( x_strip ) - i ) ] , collapse = " " )
found <- suppressMessages ( suppressWarnings ( exec_as.mo ( x_strip_collapsed , clear_options = FALSE , allow_uncertain = FALSE ) ) )
if ( ! is.na ( found ) ) {
found <- microorganismsDT [mo == found , ..property ] [ [1 ] ]
warning ( red ( paste0 ( ' UNCERTAIN - "' ,
a.x_backup , ' " -> ' , italic ( microorganismsDT [mo == found [1L ] , fullname ] [ [1 ] ] ) , " (" , found [1L ] , " )" ) ) ,
call. = FALSE , immediate. = FALSE )
return ( found [1L ] )
2018-12-06 14:36:39 +01:00
}
}
}
2018-12-14 11:44:15 +01:00
# didn't found in uncertain results too
return ( NA_character_ )
2018-12-06 14:36:39 +01:00
}
2018-12-14 10:52:20 +01:00
2018-12-14 11:44:15 +01:00
x [i ] <- uncertain_fn ( x_backup [i ] , x_trimmed [i ] , x_withspaces [i ] , x_withspaces_start [i ] , x [i ] )
2018-09-27 23:23:48 +02:00
if ( ! is.na ( x [i ] ) ) {
next
}
2018-06-08 12:06:54 +02:00
}
2018-09-27 23:23:48 +02:00
# not found ----
x [i ] <- NA_character_
failures <- c ( failures , x_backup [i ] )
2018-07-30 00:14:06 +02:00
2018-09-27 23:23:48 +02:00
}
2018-06-08 12:06:54 +02:00
}
2018-07-23 14:14:03 +02:00
failures <- failures [ ! failures %in% c ( NA , NULL , NaN ) ]
if ( length ( failures ) > 0 ) {
2018-12-06 14:36:39 +01:00
options ( mo_failures = sort ( unique ( failures ) ) )
if ( n_distinct ( failures ) > 25 ) {
warning ( n_distinct ( failures ) , " different values could not be coerced to a valid MO code. See mo_failures() to review them." ,
call. = FALSE )
} else {
2018-12-14 11:44:15 +01:00
warning ( red ( paste0 ( " These " , length ( failures ) , " values could not be coerced to a valid MO code: " ,
paste ( ' "' , unique ( failures ) , ' "' , sep = " " , collapse = ' , ' ) ,
" . See mo_failures() to review them." ) ) ,
call. = FALSE ,
immediate. = FALSE )
2018-12-06 14:36:39 +01:00
}
2018-07-23 14:14:03 +02:00
}
2018-08-28 13:51:13 +02:00
2018-09-14 10:31:21 +02:00
# Becker ----
2018-09-01 21:19:46 +02:00
if ( Becker == TRUE | Becker == " all" ) {
# See Source. It's this figure:
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187637/figure/F3/
2018-10-31 12:10:49 +01:00
MOs_staph <- microorganismsDT [genus == " Staphylococcus" ]
2018-09-25 16:44:40 +02:00
setkey ( MOs_staph , species )
CoNS <- MOs_staph [species %in% c ( " arlettae" , " auricularis" , " capitis" ,
" caprae" , " carnosus" , " cohnii" , " condimenti" ,
" devriesei" , " epidermidis" , " equorum" ,
" fleurettii" , " gallinarum" , " haemolyticus" ,
" hominis" , " jettensis" , " kloosii" , " lentus" ,
" lugdunensis" , " massiliensis" , " microti" ,
" muscae" , " nepalensis" , " pasteuri" , " petrasii" ,
" pettenkoferi" , " piscifermentans" , " rostri" ,
" saccharolyticus" , " saprophyticus" , " sciuri" ,
" stepanovicii" , " simulans" , " succinus" ,
2018-09-27 23:23:48 +02:00
" vitulinus" , " warneri" , " xylosus" ) , ..property ] [ [1 ] ]
2018-09-25 16:44:40 +02:00
CoPS <- MOs_staph [species %in% c ( " simiae" , " agnetis" , " chromogenes" ,
" delphini" , " felis" , " lutrae" ,
" hyicus" , " intermedius" ,
" pseudintermedius" , " pseudointermedius" ,
2018-09-27 23:23:48 +02:00
" schleiferi" ) , ..property ] [ [1 ] ]
2018-10-31 12:10:49 +01:00
x [x %in% CoNS ] <- microorganismsDT [mo == ' B_STPHY_CNS' , ..property ] [ [1 ] ] [1L ]
x [x %in% CoPS ] <- microorganismsDT [mo == ' B_STPHY_CPS' , ..property ] [ [1 ] ] [1L ]
2018-09-01 21:19:46 +02:00
if ( Becker == " all" ) {
2018-10-31 12:10:49 +01:00
x [x == microorganismsDT [mo == ' B_STPHY_AUR' , ..property ] [ [1 ] ] [1L ] ] <- microorganismsDT [mo == ' B_STPHY_CPS' , ..property ] [ [1 ] ] [1L ]
2018-09-01 21:19:46 +02:00
}
}
2018-09-14 10:31:21 +02:00
# Lancefield ----
2018-09-04 11:33:30 +02:00
if ( Lancefield == TRUE | Lancefield == " all" ) {
2018-09-27 23:23:48 +02:00
# group A - S. pyogenes
2018-10-31 12:10:49 +01:00
x [x == microorganismsDT [mo == ' B_STRPTC_PYO' , ..property ] [ [1 ] ] [1L ] ] <- microorganismsDT [mo == ' B_STRPTC_GRA' , ..property ] [ [1 ] ] [1L ]
2018-09-27 23:23:48 +02:00
# group B - S. agalactiae
2018-10-31 12:10:49 +01:00
x [x == microorganismsDT [mo == ' B_STRPTC_AGA' , ..property ] [ [1 ] ] [1L ] ] <- microorganismsDT [mo == ' B_STRPTC_GRB' , ..property ] [ [1 ] ] [1L ]
2018-09-01 21:19:46 +02:00
# group C
2018-10-31 12:10:49 +01:00
S_groupC <- microorganismsDT %>% filter ( genus == " Streptococcus" ,
species %in% c ( " equisimilis" , " equi" ,
" zooepidemicus" , " dysgalactiae" ) ) %>%
2018-09-27 23:23:48 +02:00
pull ( property )
2018-10-31 12:10:49 +01:00
x [x %in% S_groupC ] <- microorganismsDT [mo == ' B_STRPTC_GRC' , ..property ] [ [1 ] ] [1L ]
2018-09-04 11:33:30 +02:00
if ( Lancefield == " all" ) {
2018-09-27 23:23:48 +02:00
# all Enterococci
2018-10-31 12:10:49 +01:00
x [x %like% " ^(Enterococcus|B_ENTRC)" ] <- microorganismsDT [mo == ' B_STRPTC_GRD' , ..property ] [ [1 ] ] [1L ]
2018-09-27 23:23:48 +02:00
}
# group F - S. anginosus
2018-10-31 12:10:49 +01:00
x [x == microorganismsDT [mo == ' B_STRPTC_ANG' , ..property ] [ [1 ] ] [1L ] ] <- microorganismsDT [mo == ' B_STRPTC_GRF' , ..property ] [ [1 ] ] [1L ]
2018-09-27 23:23:48 +02:00
# group H - S. sanguinis
2018-10-31 12:10:49 +01:00
x [x == microorganismsDT [mo == ' B_STRPTC_SAN' , ..property ] [ [1 ] ] [1L ] ] <- microorganismsDT [mo == ' B_STRPTC_GRH' , ..property ] [ [1 ] ] [1L ]
2018-09-27 23:23:48 +02:00
# group K - S. salivarius
2018-10-31 12:10:49 +01:00
x [x == microorganismsDT [mo == ' B_STRPTC_SAL' , ..property ] [ [1 ] ] [1L ] ] <- microorganismsDT [mo == ' B_STRPTC_GRK' , ..property ] [ [1 ] ] [1L ]
2018-09-01 21:19:46 +02:00
}
2018-10-19 13:53:31 +02:00
# comply to x, which is also unique and without empty values
x_input_unique_nonempty <- unique ( x_input [ ! is.na ( x_input ) & ! is.null ( x_input ) & ! identical ( x_input , " " ) ] )
2018-10-19 00:17:03 +02:00
2018-08-28 13:51:13 +02:00
# left join the found results to the original input values (x_input)
2018-10-19 13:53:31 +02:00
df_found <- data.frame ( input = as.character ( x_input_unique_nonempty ) ,
found = as.character ( x ) ,
2018-08-28 13:51:13 +02:00
stringsAsFactors = FALSE )
2018-09-27 23:23:48 +02:00
df_input <- data.frame ( input = as.character ( x_input ) ,
2018-08-28 13:51:13 +02:00
stringsAsFactors = FALSE )
2018-09-27 23:23:48 +02:00
x <- df_input %>%
left_join ( df_found ,
by = " input" ) %>%
pull ( found )
if ( property == " mo" ) {
class ( x ) <- " mo"
2018-10-01 16:26:02 +02:00
} else if ( property == " tsn" ) {
2018-09-27 23:23:48 +02:00
x <- as.integer ( x )
}
2018-12-14 10:52:20 +01:00
if ( length ( notes > 0 ) ) {
notes <- sort ( notes )
for ( i in 1 : length ( notes ) ) {
base :: message ( notes [i ] )
}
}
2018-06-08 12:06:54 +02:00
x
}
2018-07-23 14:14:03 +02:00
2018-12-06 16:07:06 +01:00
#' @importFrom crayon blue italic
renamed_note <- function ( name_old , name_new , ref_old = " " , ref_new = " " , mo = " " ) {
2018-10-01 14:44:40 +02:00
if ( ! is.na ( ref_old ) ) {
ref_old <- paste0 ( " (" , ref_old , " )" )
} else {
ref_old <- " "
}
if ( ! is.na ( ref_new ) ) {
ref_new <- paste0 ( " (" , ref_new , " )" )
} else {
ref_new <- " "
}
2018-12-06 16:07:06 +01:00
if ( ! is.na ( mo ) ) {
mo <- paste0 ( " (" , mo , " )" )
} else {
mo <- " "
}
msg <- paste0 ( italic ( name_old ) , ref_old , " was renamed " , italic ( name_new ) , ref_new , mo )
msg <- gsub ( " et al." , italic ( " et al." ) , msg )
2018-12-06 14:36:39 +01:00
msg_plain <- paste0 ( name_old , ref_old , " -> " , name_new , ref_new )
msg_plain <- c ( getOption ( " mo_renamed" , character ( 0 ) ) , msg_plain )
options ( mo_renamed = sort ( msg_plain ) )
2018-12-14 10:52:20 +01:00
return ( blue ( paste ( " Note:" , msg ) ) )
2018-09-25 16:44:40 +02:00
}
2018-08-31 13:36:19 +02:00
#' @exportMethod print.mo
#' @export
#' @noRd
print.mo <- function ( x , ... ) {
cat ( " Class 'mo'\n" )
2018-10-12 16:35:18 +02:00
x_names <- names ( x )
x <- as.character ( x )
names ( x ) <- x_names
print.default ( x , quote = FALSE )
2018-08-31 13:36:19 +02:00
}
2018-07-23 14:14:03 +02:00
2018-12-07 12:04:55 +01:00
#' @exportMethod summary.mo
#' @export
#' @noRd
summary.mo <- function ( object , ... ) {
# unique and top 1-3
x <- object
top_3 <- unname ( top_freq ( freq ( x ) , 3 ) )
c ( " Class" = " mo" ,
" <NA>" = length ( x [is.na ( x ) ] ) ,
" Unique" = dplyr :: n_distinct ( x [ ! is.na ( x ) ] ) ,
" #1" = top_3 [1 ] ,
" #2" = top_3 [2 ] ,
" #3" = top_3 [3 ] )
}
2018-08-31 13:36:19 +02:00
#' @exportMethod as.data.frame.mo
2018-07-23 14:14:03 +02:00
#' @export
2018-08-31 13:36:19 +02:00
#' @noRd
as.data.frame.mo <- function ( x , ... ) {
2018-10-31 12:10:49 +01:00
# same as as.data.frame.character but with removed stringsAsFactors, since it will be class "mo"
2018-08-31 13:36:19 +02:00
nm <- paste ( deparse ( substitute ( x ) , width.cutoff = 500L ) ,
collapse = " " )
if ( ! " nm" %in% names ( list ( ... ) ) ) {
as.data.frame.vector ( x , ... , nm = nm )
} else {
as.data.frame.vector ( x , ... )
}
}
#' @exportMethod pull.mo
#' @export
#' @importFrom dplyr pull
#' @noRd
pull.mo <- function ( .data , ... ) {
pull ( as.data.frame ( .data ) , ... )
2018-07-23 14:14:03 +02:00
}
2018-12-06 14:36:39 +01:00
#' Vector of failed coercion attempts
#'
#' Returns a vector of all failed attempts to coerce values to a valid MO code with \code{\link{as.mo}}.
#' @seealso \code{\link{as.mo}}
#' @export
mo_failures <- function ( ) {
getOption ( " mo_failures" )
}
#' Vector of taxonomic renamed items
#'
#' Returns a vector of all renamed items of the last coercion to valid MO codes with \code{\link{as.mo}}.
#' @seealso \code{\link{as.mo}}
#' @export
mo_renamed <- function ( ) {
getOption ( " mo_renamed" )
}