2018-12-16 22:45:12 +01:00
|
|
|
# ==================================================================== #
|
2023-07-08 17:30:05 +02:00
|
|
|
# TITLE: #
|
2022-10-05 09:12:22 +02:00
|
|
|
# AMR: An R Package for Working with Antimicrobial Resistance Data #
|
2018-12-16 22:45:12 +01:00
|
|
|
# #
|
2023-07-08 17:30:05 +02:00
|
|
|
# SOURCE CODE: #
|
2020-07-08 14:48:06 +02:00
|
|
|
# https://github.com/msberends/AMR #
|
2018-12-16 22:45:12 +01:00
|
|
|
# #
|
2023-07-08 17:30:05 +02:00
|
|
|
# PLEASE CITE THIS SOFTWARE AS: #
|
2022-10-05 09:12:22 +02:00
|
|
|
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
|
|
|
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
|
|
|
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
2023-05-27 10:39:22 +02:00
|
|
|
# https://doi.org/10.18637/jss.v104.i03 #
|
2022-10-05 09:12:22 +02:00
|
|
|
# #
|
2022-12-27 15:16:15 +01:00
|
|
|
# Developed at the University of Groningen and the University Medical #
|
|
|
|
# Center Groningen in The Netherlands, in collaboration with many #
|
|
|
|
# colleagues from around the world, see our website. #
|
2018-12-16 22:45:12 +01:00
|
|
|
# #
|
2019-01-02 23:24:07 +01:00
|
|
|
# This R package is free software; you can freely use and distribute #
|
|
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
|
|
# the Free Software Foundation. #
|
2020-01-05 17:22:09 +01:00
|
|
|
# We created this package for both routine data analysis and academic #
|
|
|
|
# research and it was publicly released in the hope that it will be #
|
|
|
|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
|
2020-10-08 11:16:03 +02:00
|
|
|
# #
|
|
|
|
# Visit our website for the full manual and a complete tutorial about #
|
2021-02-02 23:57:35 +01:00
|
|
|
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
|
2018-12-16 22:45:12 +01:00
|
|
|
# ==================================================================== #
|
|
|
|
|
2023-02-24 19:54:56 +01:00
|
|
|
x <- data.frame(dates = as.Date(c("2021-01-01", "2021-01-02", "2021-01-05", "2021-01-08", "2021-02-21", "2021-02-22", "2021-02-23", "2021-02-24", "2021-03-01", "2021-03-01")))
|
|
|
|
x$absolute <- get_episode(x$dates, episode_days = 7)
|
|
|
|
x$relative <- get_episode(x$dates, case_free_days = 7)
|
|
|
|
expect_equal(x$absolute, c(1, 1, 1, 2, 3, 3, 3, 3, 4, 4))
|
|
|
|
expect_equal(x$relative, c(1, 1, 1, 1, 2, 2, 2, 2, 2, 2))
|
|
|
|
expect_equal(get_episode(as.Date(c("2022-01-01", "2020-01-01")), 365), c(2, 1))
|
|
|
|
expect_equal(get_episode(as.Date(c("2020-01-01", "2022-01-01")), 365), c(1, 2))
|
|
|
|
|
2021-05-15 21:36:22 +02:00
|
|
|
test_df <- rbind(
|
|
|
|
data.frame(
|
|
|
|
date = as.Date(c("2015-01-01", "2015-10-01", "2016-02-04", "2016-12-31", "2017-01-01", "2017-02-01", "2017-02-05", "2020-01-01")),
|
|
|
|
patient_id = "A"
|
|
|
|
),
|
|
|
|
data.frame(
|
|
|
|
date = as.Date(c("2015-01-01", "2016-02-01", "2016-12-31", "2017-01-01", "2017-02-03")),
|
|
|
|
patient_id = "B"
|
2022-08-28 10:31:50 +02:00
|
|
|
)
|
|
|
|
)
|
2018-07-08 22:14:55 +02:00
|
|
|
|
2022-08-28 10:31:50 +02:00
|
|
|
expect_equal(
|
|
|
|
get_episode(test_df$date, 365),
|
|
|
|
c(1, 1, 2, 2, 2, 3, 3, 4, 1, 2, 2, 2, 3)
|
|
|
|
)
|
|
|
|
expect_equal(
|
|
|
|
get_episode(test_df$date[which(test_df$patient_id == "A")], 365),
|
|
|
|
c(1, 1, 2, 2, 2, 2, 3, 4)
|
|
|
|
)
|
|
|
|
expect_equal(
|
|
|
|
get_episode(test_df$date[which(test_df$patient_id == "B")], 365),
|
|
|
|
c(1, 2, 2, 2, 3)
|
|
|
|
)
|
2021-05-15 21:36:22 +02:00
|
|
|
|
2023-02-18 14:56:06 +01:00
|
|
|
if (AMR:::pkg_is_available("dplyr", min_version = "1.0.0", also_load = TRUE)) {
|
2022-08-28 10:31:50 +02:00
|
|
|
expect_identical(
|
|
|
|
test_df %>% group_by(patient_id) %>% mutate(f = is_new_episode(date, 365)) %>% pull(f),
|
|
|
|
c(TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE)
|
|
|
|
)
|
|
|
|
|
2021-05-15 21:36:22 +02:00
|
|
|
suppressMessages(
|
|
|
|
x <- example_isolates %>%
|
|
|
|
mutate(out = first_isolate(., include_unknown = TRUE, method = "episode-based", info = FALSE))
|
|
|
|
)
|
|
|
|
y <- example_isolates %>%
|
2022-08-27 20:49:37 +02:00
|
|
|
group_by(patient, mo) %>%
|
2021-05-15 21:36:22 +02:00
|
|
|
mutate(out = is_new_episode(date, 365))
|
2022-08-28 10:31:50 +02:00
|
|
|
|
2021-05-15 21:36:22 +02:00
|
|
|
expect_identical(which(x$out), which(y$out))
|
|
|
|
}
|