2018-12-22 22:39:34 +01:00
|
|
|
# ==================================================================== #
|
|
|
|
# TITLE #
|
2021-02-02 23:57:35 +01:00
|
|
|
# Antimicrobial Resistance (AMR) Data Analysis for R #
|
2018-12-22 22:39:34 +01:00
|
|
|
# #
|
2019-01-02 23:24:07 +01:00
|
|
|
# SOURCE #
|
2020-07-08 14:48:06 +02:00
|
|
|
# https://github.com/msberends/AMR #
|
2018-12-22 22:39:34 +01:00
|
|
|
# #
|
|
|
|
# LICENCE #
|
2020-12-27 00:30:28 +01:00
|
|
|
# (c) 2018-2021 Berends MS, Luz CF et al. #
|
2020-10-08 11:16:03 +02:00
|
|
|
# Developed at the University of Groningen, the Netherlands, in #
|
|
|
|
# collaboration with non-profit organisations Certe Medical #
|
|
|
|
# Diagnostics & Advice, and University Medical Center Groningen. #
|
2018-12-22 22:39:34 +01:00
|
|
|
# #
|
2019-01-02 23:24:07 +01:00
|
|
|
# This R package is free software; you can freely use and distribute #
|
|
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
|
|
# the Free Software Foundation. #
|
2020-01-05 17:22:09 +01:00
|
|
|
# We created this package for both routine data analysis and academic #
|
|
|
|
# research and it was publicly released in the hope that it will be #
|
|
|
|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
|
2020-10-08 11:16:03 +02:00
|
|
|
# #
|
|
|
|
# Visit our website for the full manual and a complete tutorial about #
|
2021-02-02 23:57:35 +01:00
|
|
|
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
|
2018-12-22 22:39:34 +01:00
|
|
|
# ==================================================================== #
|
|
|
|
|
2019-07-11 16:08:56 +02:00
|
|
|
context("resistance_predict.R")
|
2018-12-22 22:39:34 +01:00
|
|
|
|
|
|
|
test_that("prediction of rsi works", {
|
2020-07-31 10:50:08 +02:00
|
|
|
skip_on_cran()
|
2021-01-18 18:45:43 +01:00
|
|
|
|
2021-05-13 22:44:11 +02:00
|
|
|
if (suppressWarnings(require("dplyr"))) {
|
2021-05-13 19:31:47 +02:00
|
|
|
expect_output(AMX_R <- example_isolates %>%
|
|
|
|
filter(mo == "B_ESCHR_COLI") %>%
|
|
|
|
rsi_predict(col_ab = "AMX",
|
|
|
|
col_date = "date",
|
|
|
|
model = "binomial",
|
|
|
|
minimum = 10,
|
|
|
|
info = TRUE) %>%
|
|
|
|
pull("value"))
|
|
|
|
# AMX resistance will increase according to data set `example_isolates`
|
|
|
|
expect_true(AMX_R[3] < AMX_R[20])
|
|
|
|
}
|
|
|
|
|
|
|
|
expect_output(x <- suppressMessages(resistance_predict(example_isolates,
|
|
|
|
col_ab = "AMX",
|
|
|
|
year_min = 2010,
|
|
|
|
model = "binomial",
|
|
|
|
info = TRUE)))
|
2020-09-19 15:15:57 +02:00
|
|
|
pdf(NULL) # prevent Rplots.pdf being created
|
|
|
|
expect_silent(plot(x))
|
|
|
|
expect_silent(ggplot_rsi_predict(x))
|
2021-05-13 19:31:47 +02:00
|
|
|
expect_silent(ggplot(x))
|
2019-08-27 16:45:42 +02:00
|
|
|
expect_error(ggplot_rsi_predict(example_isolates))
|
2019-01-15 12:45:24 +01:00
|
|
|
|
2021-05-13 19:31:47 +02:00
|
|
|
expect_output(rsi_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"),
|
2018-12-22 22:39:34 +01:00
|
|
|
model = "binomial",
|
2019-05-10 16:44:59 +02:00
|
|
|
col_ab = "AMX",
|
2018-12-22 22:39:34 +01:00
|
|
|
col_date = "date",
|
|
|
|
info = TRUE))
|
2021-05-13 19:31:47 +02:00
|
|
|
expect_output(rsi_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"),
|
2018-12-22 22:39:34 +01:00
|
|
|
model = "loglin",
|
2019-05-10 16:44:59 +02:00
|
|
|
col_ab = "AMX",
|
2018-12-22 22:39:34 +01:00
|
|
|
col_date = "date",
|
|
|
|
info = TRUE))
|
2021-05-13 19:31:47 +02:00
|
|
|
expect_output(rsi_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"),
|
2018-12-22 22:39:34 +01:00
|
|
|
model = "lin",
|
2019-05-10 16:44:59 +02:00
|
|
|
col_ab = "AMX",
|
2018-12-22 22:39:34 +01:00
|
|
|
col_date = "date",
|
|
|
|
info = TRUE))
|
|
|
|
|
2021-05-13 19:31:47 +02:00
|
|
|
expect_error(rsi_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"),
|
2018-12-22 22:39:34 +01:00
|
|
|
model = "INVALID MODEL",
|
2019-05-10 16:44:59 +02:00
|
|
|
col_ab = "AMX",
|
2018-12-22 22:39:34 +01:00
|
|
|
col_date = "date",
|
|
|
|
info = TRUE))
|
2021-05-13 19:31:47 +02:00
|
|
|
expect_error(rsi_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"),
|
2019-08-07 15:37:39 +02:00
|
|
|
model = "binomial",
|
2018-12-22 22:39:34 +01:00
|
|
|
col_ab = "NOT EXISTING COLUMN",
|
|
|
|
col_date = "date",
|
|
|
|
info = TRUE))
|
2021-05-13 19:31:47 +02:00
|
|
|
expect_error(rsi_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"),
|
2019-08-07 15:37:39 +02:00
|
|
|
model = "binomial",
|
2019-05-10 16:44:59 +02:00
|
|
|
col_ab = "AMX",
|
2018-12-22 22:39:34 +01:00
|
|
|
col_date = "NOT EXISTING COLUMN",
|
|
|
|
info = TRUE))
|
2021-05-13 19:31:47 +02:00
|
|
|
expect_error(rsi_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"),
|
2019-08-07 15:37:39 +02:00
|
|
|
col_ab = "AMX",
|
|
|
|
col_date = "NOT EXISTING COLUMN",
|
|
|
|
info = TRUE))
|
2021-05-13 19:31:47 +02:00
|
|
|
expect_error(rsi_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"),
|
2019-08-07 15:37:39 +02:00
|
|
|
col_ab = "AMX",
|
|
|
|
col_date = "date",
|
|
|
|
info = TRUE))
|
2019-05-10 16:44:59 +02:00
|
|
|
# almost all E. coli are MEM S in the Netherlands :)
|
2021-05-13 19:31:47 +02:00
|
|
|
expect_error(resistance_predict(x = subset(example_isolates, mo == "B_ESCHR_COLI"),
|
2019-08-07 15:37:39 +02:00
|
|
|
model = "binomial",
|
2019-05-10 16:44:59 +02:00
|
|
|
col_ab = "MEM",
|
2018-12-22 22:39:34 +01:00
|
|
|
col_date = "date",
|
|
|
|
info = TRUE))
|
|
|
|
})
|