AMR/man/ggplot_rsi.Rd

244 lines
9.0 KiB
Plaintext
Raw Normal View History

2018-08-11 21:30:00 +02:00
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ggplot_rsi.R
\name{ggplot_rsi}
\alias{ggplot_rsi}
\alias{geom_rsi}
\alias{facet_rsi}
\alias{scale_y_percent}
\alias{scale_rsi_colours}
\alias{theme_rsi}
2018-09-16 22:11:17 +02:00
\alias{labels_rsi_count}
\title{AMR Plots with \code{ggplot2}}
2018-08-11 21:30:00 +02:00
\usage{
ggplot_rsi(
data,
position = NULL,
x = "antibiotic",
fill = "interpretation",
facet = NULL,
breaks = seq(0, 1, 0.1),
limits = NULL,
translate_ab = "name",
combine_SI = TRUE,
minimum = 30,
language = get_AMR_locale(),
nrow = NULL,
colours = c(S = "#3CAEA3", SI = "#3CAEA3", I = "#F6D55C", IR = "#ED553B", R =
"#ED553B"),
datalabels = TRUE,
datalabels.size = 2.5,
2020-10-21 13:07:23 +02:00
datalabels.colour = "grey15",
title = NULL,
subtitle = NULL,
caption = NULL,
x.title = "Antimicrobial",
y.title = "Proportion",
...
)
geom_rsi(
position = NULL,
x = c("antibiotic", "interpretation"),
fill = "interpretation",
translate_ab = "name",
minimum = 30,
language = get_AMR_locale(),
combine_SI = TRUE,
...
)
2018-08-11 21:30:00 +02:00
2019-06-13 14:28:46 +02:00
facet_rsi(facet = c("interpretation", "antibiotic"), nrow = NULL)
2018-08-11 21:30:00 +02:00
scale_y_percent(breaks = seq(0, 1, 0.1), limits = NULL)
2018-08-11 21:30:00 +02:00
2021-02-26 12:11:29 +01:00
scale_rsi_colours(..., aesthetics = "fill")
2018-08-11 21:30:00 +02:00
theme_rsi()
2018-09-16 22:11:17 +02:00
labels_rsi_count(
position = NULL,
x = "antibiotic",
translate_ab = "name",
minimum = 30,
language = get_AMR_locale(),
combine_SI = TRUE,
datalabels.size = 3,
2020-10-21 13:07:23 +02:00
datalabels.colour = "grey15"
)
2018-08-11 21:30:00 +02:00
}
\arguments{
\item{data}{a \link{data.frame} with column(s) of class \code{\link{rsi}} (see \code{\link[=as.rsi]{as.rsi()}})}
2018-08-11 21:30:00 +02:00
\item{position}{position adjustment of bars, either \code{"fill"}, \code{"stack"} or \code{"dodge"}}
2018-08-11 21:30:00 +02:00
2019-06-13 14:28:46 +02:00
\item{x}{variable to show on x axis, either \code{"antibiotic"} (default) or \code{"interpretation"} or a grouping variable}
2018-08-11 21:30:00 +02:00
2019-06-13 14:28:46 +02:00
\item{fill}{variable to categorise using the plots legend, either \code{"antibiotic"} (default) or \code{"interpretation"} or a grouping variable}
2019-06-13 14:28:46 +02:00
\item{facet}{variable to split plots by, either \code{"interpretation"} (default) or \code{"antibiotic"} or a grouping variable}
2018-08-13 16:42:37 +02:00
2021-05-12 18:15:03 +02:00
\item{breaks}{a \link{numeric} vector of positions}
2021-05-12 18:15:03 +02:00
\item{limits}{a \link{numeric} vector of length two providing limits of the scale, use \code{NA} to refer to the existing minimum or maximum}
2020-12-17 16:22:25 +01:00
\item{translate_ab}{a column name of the \link{antibiotics} data set to translate the antibiotic abbreviations to, using \code{\link[=ab_property]{ab_property()}}}
2019-05-10 16:44:59 +02:00
\item{combine_SI}{a \link{logical} to indicate whether all values of S and I must be merged into one, so the output only consists of S+I vs. R (susceptible vs. resistant), defaults to \code{TRUE}}
2019-05-13 10:10:16 +02:00
\item{minimum}{the minimum allowed number of available (tested) isolates. Any isolate count lower than \code{minimum} will return \code{NA} with a warning. The default number of \code{30} isolates is advised by the Clinical and Laboratory Standards Institute (CLSI) as best practice, see \emph{Source}.}
\item{language}{language of the returned text, defaults to system language (see \code{\link[=get_AMR_locale]{get_AMR_locale()}}) and can also be set with \code{getOption("AMR_locale")}. Use \code{language = NULL} or \code{language = ""} to prevent translation.}
2018-08-13 16:42:37 +02:00
2018-08-29 16:35:32 +02:00
\item{nrow}{(when using \code{facet}) number of rows}
2021-02-26 12:11:29 +01:00
\item{colours}{a named vactor with colour to be used for filling. The default colours are colour-blind friendly.}
2019-05-31 20:25:57 +02:00
\item{datalabels}{show datalabels using \code{\link[=labels_rsi_count]{labels_rsi_count()}}}
2018-09-16 22:11:17 +02:00
\item{datalabels.size}{size of the datalabels}
\item{datalabels.colour}{colour of the datalabels}
2019-05-31 20:25:57 +02:00
\item{title}{text to show as title of the plot}
\item{subtitle}{text to show as subtitle of the plot}
\item{caption}{text to show as caption of the plot}
\item{x.title}{text to show as x axis description}
\item{y.title}{text to show as y axis description}
2021-02-26 12:11:29 +01:00
\item{...}{other arguments passed on to \code{\link[=geom_rsi]{geom_rsi()}} or, in case of \code{\link[=scale_rsi_colours]{scale_rsi_colours()}}, named values to set colours. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red. See \emph{Examples}.}
2021-02-26 12:11:29 +01:00
\item{aesthetics}{aesthetics to apply the colours to, defaults to "fill" but can also be (a combination of) "alpha", "colour", "fill", "linetype", "shape" or "size"}
2018-08-11 21:30:00 +02:00
}
\description{
Use these functions to create bar plots for AMR data analysis. All functions rely on \link[ggplot2:ggplot]{ggplot2} functions.
2018-08-11 21:30:00 +02:00
}
\details{
2020-12-22 00:51:17 +01:00
At default, the names of antibiotics will be shown on the plots using \code{\link[=ab_name]{ab_name()}}. This can be set with the \code{translate_ab} argument. See \code{\link[=count_df]{count_df()}}.
\subsection{The Functions}{
2018-08-11 21:30:00 +02:00
\code{\link[=geom_rsi]{geom_rsi()}} will take any variable from the data that has an \code{\link{rsi}} class (created with \code{\link[=as.rsi]{as.rsi()}}) using \code{\link[=rsi_df]{rsi_df()}} and will plot bars with the percentage R, I and S. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
2018-08-11 21:30:00 +02:00
\code{\link[=facet_rsi]{facet_rsi()}} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}}.
2018-08-11 21:30:00 +02:00
2020-07-08 14:48:06 +02:00
\code{\link[=scale_y_percent]{scale_y_percent()}} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2:scale_continuous]{ggplot2::scale_y_continuous()}}.
2018-08-11 21:30:00 +02:00
2021-02-26 12:11:29 +01:00
\code{\link[=scale_rsi_colours]{scale_rsi_colours()}} sets colours to the bars (green for S, yellow for I, and red for R). with multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red.
2018-08-11 21:30:00 +02:00
\code{\link[=theme_rsi]{theme_rsi()}} is a [ggplot2 theme][\code{\link[ggplot2:theme]{ggplot2::theme()}} with minimal distraction.
2018-08-11 21:30:00 +02:00
2020-07-08 14:48:06 +02:00
\code{\link[=labels_rsi_count]{labels_rsi_count()}} print datalabels on the bars with percentage and amount of isolates using \code{\link[ggplot2:geom_text]{ggplot2::geom_text()}}.
2018-09-16 22:11:17 +02:00
\code{\link[=ggplot_rsi]{ggplot_rsi()}} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\verb{\%>\%}). See \emph{Examples}.
}
2018-08-11 21:30:00 +02:00
}
\examples{
2021-05-24 09:00:11 +02:00
\donttest{
2022-08-27 20:49:37 +02:00
if (require("ggplot2") && require("dplyr")) {
2022-08-28 10:31:50 +02:00
2020-05-16 21:40:50 +02:00
# get antimicrobial results for drugs against a UTI:
ggplot(example_isolates \%>\% select(AMX, NIT, FOS, TMP, CIP)) +
geom_rsi()
2022-08-27 20:49:37 +02:00
}
if (require("ggplot2") && require("dplyr")) {
2022-08-28 10:31:50 +02:00
2020-05-16 21:40:50 +02:00
# prettify the plot using some additional functions:
df <- example_isolates \%>\% select(AMX, NIT, FOS, TMP, CIP)
ggplot(df) +
geom_rsi() +
scale_y_percent() +
scale_rsi_colours() +
labels_rsi_count() +
theme_rsi()
2022-08-27 20:49:37 +02:00
}
if (require("ggplot2") && require("dplyr")) {
2022-08-28 10:31:50 +02:00
2020-05-16 21:40:50 +02:00
# or better yet, simplify this using the wrapper function - a single command:
example_isolates \%>\%
select(AMX, NIT, FOS, TMP, CIP) \%>\%
ggplot_rsi()
2022-08-27 20:49:37 +02:00
}
if (require("ggplot2") && require("dplyr")) {
2022-08-28 10:31:50 +02:00
2020-05-16 21:40:50 +02:00
# get only proportions and no counts:
example_isolates \%>\%
select(AMX, NIT, FOS, TMP, CIP) \%>\%
ggplot_rsi(datalabels = FALSE)
2022-08-27 20:49:37 +02:00
}
if (require("ggplot2") && require("dplyr")) {
2022-08-28 10:31:50 +02:00
2020-12-22 00:51:17 +01:00
# add other ggplot2 arguments as you like:
2020-05-16 21:40:50 +02:00
example_isolates \%>\%
select(AMX, NIT, FOS, TMP, CIP) \%>\%
2022-08-28 10:31:50 +02:00
ggplot_rsi(
width = 0.5,
colour = "black",
size = 1,
linetype = 2,
alpha = 0.25
)
2022-08-27 20:49:37 +02:00
}
if (require("ggplot2") && require("dplyr")) {
# you can alter the colours with colour names:
2020-05-16 21:40:50 +02:00
example_isolates \%>\%
select(AMX) \%>\%
ggplot_rsi(colours = c(SI = "yellow"))
2022-08-27 20:49:37 +02:00
}
if (require("ggplot2") && require("dplyr")) {
# but you can also use the built-in colour-blind friendly colours for
# your plots, where "S" is green, "I" is yellow and "R" is red:
2022-08-28 10:31:50 +02:00
data.frame(
x = c("Value1", "Value2", "Value3"),
y = c(1, 2, 3),
z = c("Value4", "Value5", "Value6")
) \%>\%
ggplot() +
geom_col(aes(x = x, y = y, fill = z)) +
scale_rsi_colours(Value4 = "S", Value5 = "I", Value6 = "R")
2022-08-27 20:49:37 +02:00
}
if (require("ggplot2") && require("dplyr")) {
2022-08-28 10:31:50 +02:00
2021-05-24 11:01:32 +02:00
# resistance of ciprofloxacine per age group
example_isolates \%>\%
mutate(first_isolate = first_isolate()) \%>\%
2022-08-28 10:31:50 +02:00
filter(
first_isolate == TRUE,
mo == as.mo("Escherichia coli")
) \%>\%
2021-05-24 11:01:32 +02:00
# age_groups() is also a function in this AMR package:
group_by(age_group = age_groups(age)) \%>\%
select(age_group, CIP) \%>\%
2021-05-24 11:01:32 +02:00
ggplot_rsi(x = "age_group")
2022-08-27 20:49:37 +02:00
}
if (require("ggplot2") && require("dplyr")) {
2022-08-28 10:31:50 +02:00
2021-05-24 11:01:32 +02:00
# a shorter version which also adjusts data label colours:
example_isolates \%>\%
select(AMX, NIT, FOS, TMP, CIP) \%>\%
ggplot_rsi(colours = FALSE)
2022-08-27 20:49:37 +02:00
}
if (require("ggplot2") && require("dplyr")) {
2021-05-24 11:01:32 +02:00
# it also supports groups (don't forget to use the group var on `x` or `facet`):
example_isolates \%>\%
2022-08-28 10:31:50 +02:00
filter(mo_is_gram_negative(), ward != "Outpatient") \%>\%
# select only UTI-specific drugs
2022-08-27 20:49:37 +02:00
select(ward, AMX, NIT, FOS, TMP, CIP) \%>\%
group_by(ward) \%>\%
2022-08-28 10:31:50 +02:00
ggplot_rsi(
x = "ward",
facet = "antibiotic",
nrow = 1,
title = "AMR of Anti-UTI Drugs Per Ward",
x.title = "Ward",
datalabels = FALSE
)
2021-05-24 11:01:32 +02:00
}
2018-08-13 16:42:37 +02:00
}
2018-08-11 21:30:00 +02:00
}