2018-08-10 15:01:05 +02:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
2019-01-02 23:24:07 +01:00
# SOURCE #
# https://gitlab.com/msberends/AMR #
2018-08-10 15:01:05 +02:00
# #
# LICENCE #
2019-01-02 23:24:07 +01:00
# (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
2018-08-10 15:01:05 +02:00
# #
2019-01-02 23:24:07 +01:00
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# #
# This R package was created for academic research and was publicly #
# released in the hope that it will be useful, but it comes WITHOUT #
# ANY WARRANTY OR LIABILITY. #
2019-04-05 18:47:39 +02:00
# Visit our website for more info: https://msberends.gitlab.io/AMR. #
2018-08-10 15:01:05 +02:00
# ==================================================================== #
#' Calculate resistance of isolates
#'
2019-03-26 14:24:03 +01:00
#' @description These functions can be used to calculate the (co-)resistance of microbial isolates (i.e. percentage of S, SI, I, IR or R). All functions support quasiquotation with pipes, can be used in \code{dplyr}s \code{\link[dplyr]{summarise}} and support grouped variables, see \emph{Examples}.
2018-08-10 15:01:05 +02:00
#'
#' \code{portion_R} and \code{portion_IR} can be used to calculate resistance, \code{portion_S} and \code{portion_SI} can be used to calculate susceptibility.\cr
2018-08-23 00:40:36 +02:00
#' @param ... one or more vectors (or columns) with antibiotic interpretations. They will be transformed internally with \code{\link{as.rsi}} if needed. Use multiple columns to calculate (the lack of) co-resistance: the probability where one of two drugs have a resistant or susceptible result. See Examples.
2019-03-26 14:24:03 +01:00
#' @param minimum the minimum allowed number of available (tested) isolates. Any isolate count lower than \code{minimum} will return \code{NA} with a warning. The default number of \code{30} isolates is advised by the Clinical and Laboratory Standards Institute (CLSI) as best practice, see Source.
2018-10-16 09:59:31 +02:00
#' @param as_percent a logical to indicate whether the output must be returned as a hundred fold with \% sign (a character). A value of \code{0.123456} will then be returned as \code{"12.3\%"}.
2018-10-19 13:53:31 +02:00
#' @param also_single_tested a logical to indicate whether (in combination therapies) also observations should be included where not all antibiotics were tested, but at least one of the tested antibiotics contains a target interpretation (e.g. S in case of \code{portion_S} and R in case of \code{portion_R}). \strong{This would lead to selection bias in almost all cases.}
2018-08-22 00:02:26 +02:00
#' @param data a \code{data.frame} containing columns with class \code{rsi} (see \code{\link{as.rsi}})
2018-08-13 16:42:37 +02:00
#' @param translate_ab a column name of the \code{\link{antibiotics}} data set to translate the antibiotic abbreviations to, using \code{\link{abname}}. This can be set with \code{\link{getOption}("get_antibiotic_names")}.
2018-10-16 09:59:31 +02:00
#' @param combine_IR a logical to indicate whether all values of I and R must be merged into one, so the output only consists of S vs. IR (susceptible vs. non-susceptible)
2018-08-10 15:01:05 +02:00
#' @details \strong{Remember that you should filter your table to let it contain only first isolates!} Use \code{\link{first_isolate}} to determine them in your data set.
#'
2018-12-14 07:23:25 +01:00
#' These functions are not meant to count isolates, but to calculate the portion of resistance/susceptibility. Use the \code{\link[AMR]{count}} functions to count isolates. \emph{Low counts can infuence the outcome - these \code{portion} functions may camouflage this, since they only return the portion albeit being dependent on the \code{minimum} parameter.}
2018-08-22 00:02:26 +02:00
#'
2018-08-12 22:34:03 +02:00
#' \code{portion_df} takes any variable from \code{data} that has an \code{"rsi"} class (created with \code{\link{as.rsi}}) and calculates the portions R, I and S. The resulting \emph{tidy data} (see Source) \code{data.frame} will have three rows (S/I/R) and a column for each variable with class \code{"rsi"}.
2018-08-11 21:30:00 +02:00
#'
2018-08-10 15:01:05 +02:00
#' The old \code{\link{rsi}} function is still available for backwards compatibility but is deprecated.
#' \if{html}{
2019-03-26 14:24:03 +01:00
# (created with https://www.latex4technics.com/)
2018-08-10 15:01:05 +02:00
#' \cr\cr
#' To calculate the probability (\emph{p}) of susceptibility of one antibiotic, we use this formula:
2019-03-26 14:24:03 +01:00
#' \out{<div style="text-align: center;">}\figure{combi_therapy_2.png}\out{</div>}
2018-08-10 15:01:05 +02:00
#' To calculate the probability (\emph{p}) of susceptibility of more antibiotics (i.e. combination therapy), we need to check whether one of them has a susceptible result (as numerator) and count all cases where all antibiotics were tested (as denominator). \cr
#' \cr
#' For two antibiotics:
2019-03-26 14:24:03 +01:00
#' \out{<div style="text-align: center;">}\figure{combi_therapy_2.png}\out{</div>}
2018-08-10 15:01:05 +02:00
#' \cr
2018-08-23 00:40:36 +02:00
#' For three antibiotics:
2019-03-26 14:24:03 +01:00
#' \out{<div style="text-align: center;">}\figure{combi_therapy_2.png}\out{</div>}
2018-08-23 00:40:36 +02:00
#' \cr
#' And so on.
2018-08-10 15:01:05 +02:00
#' }
2019-03-26 14:24:03 +01:00
#'
2018-08-10 15:01:05 +02:00
#' @source \strong{M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edition}, 2014, \emph{Clinical and Laboratory Standards Institute (CLSI)}. \url{https://clsi.org/standards/products/microbiology/documents/m39/}.
2018-08-12 22:34:03 +02:00
#'
#' Wickham H. \strong{Tidy Data.} The Journal of Statistical Software, vol. 59, 2014. \url{http://vita.had.co.nz/papers/tidy-data.html}
2018-12-14 07:48:12 +01:00
#' @seealso \code{\link[AMR]{count}_*} to count resistant and susceptible isolates.
2018-08-10 15:01:05 +02:00
#' @keywords resistance susceptibility rsi_df rsi antibiotics isolate isolates
#' @return Double or, when \code{as_percent = TRUE}, a character.
#' @rdname portion
#' @name portion
#' @export
2019-01-02 23:24:07 +01:00
#' @inheritSection AMR Read more on our website!
2018-08-10 15:01:05 +02:00
#' @examples
2018-08-12 22:34:03 +02:00
#' # septic_patients is a data set available in the AMR package. It is true, genuine data.
#' ?septic_patients
#'
2018-08-10 15:01:05 +02:00
#' # Calculate resistance
#' portion_R(septic_patients$amox)
#' portion_IR(septic_patients$amox)
#'
#' # Or susceptibility
#' portion_S(septic_patients$amox)
#' portion_SI(septic_patients$amox)
#'
2018-08-23 00:40:36 +02:00
#' # Do the above with pipes:
2018-08-10 15:01:05 +02:00
#' library(dplyr)
2018-08-23 00:40:36 +02:00
#' septic_patients %>% portion_R(amox)
#' septic_patients %>% portion_IR(amox)
#' septic_patients %>% portion_S(amox)
#' septic_patients %>% portion_SI(amox)
#'
2018-08-10 15:01:05 +02:00
#' septic_patients %>%
#' group_by(hospital_id) %>%
#' summarise(p = portion_S(cipr),
#' n = n_rsi(cipr)) # n_rsi works like n_distinct in dplyr
#'
#' septic_patients %>%
#' group_by(hospital_id) %>%
#' summarise(R = portion_R(cipr, as_percent = TRUE),
#' I = portion_I(cipr, as_percent = TRUE),
#' S = portion_S(cipr, as_percent = TRUE),
2019-03-26 14:24:03 +01:00
#' n1 = count_all(cipr), # the actual total; sum of all three
#' n2 = n_rsi(cipr), # same - analogous to n_distinct
#' total = n()) # NOT the number of tested isolates!
2018-08-10 15:01:05 +02:00
#'
#' # Calculate co-resistance between amoxicillin/clav acid and gentamicin,
#' # so we can see that combination therapy does a lot more than mono therapy:
2019-04-05 18:47:39 +02:00
#' septic_patients %>% portion_S(amcl) # S = 71.4%
#' septic_patients %>% count_all(amcl) # n = 1879
2018-08-10 15:01:05 +02:00
#'
2018-08-23 00:40:36 +02:00
#' septic_patients %>% portion_S(gent) # S = 74.0%
2018-10-12 16:35:18 +02:00
#' septic_patients %>% count_all(gent) # n = 1855
2018-08-23 00:40:36 +02:00
#'
2019-04-05 18:47:39 +02:00
#' septic_patients %>% portion_S(amcl, gent) # S = 92.3%
#' septic_patients %>% count_all(amcl, gent) # n = 1798
2018-08-10 15:01:05 +02:00
#'
#'
#' septic_patients %>%
#' group_by(hospital_id) %>%
#' summarise(cipro_p = portion_S(cipr, as_percent = TRUE),
2018-10-12 16:35:18 +02:00
#' cipro_n = count_all(cipr),
2018-08-10 15:01:05 +02:00
#' genta_p = portion_S(gent, as_percent = TRUE),
2018-10-12 16:35:18 +02:00
#' genta_n = count_all(gent),
2018-08-10 15:01:05 +02:00
#' combination_p = portion_S(cipr, gent, as_percent = TRUE),
2018-10-12 16:35:18 +02:00
#' combination_n = count_all(cipr, gent))
2018-08-10 15:01:05 +02:00
#'
2018-08-12 22:34:03 +02:00
#' # Get portions S/I/R immediately of all rsi columns
#' septic_patients %>%
#' select(amox, cipr) %>%
#' portion_df(translate = FALSE)
#'
#' # It also supports grouping variables
#' septic_patients %>%
#' select(hospital_id, amox, cipr) %>%
#' group_by(hospital_id) %>%
#' portion_df(translate = FALSE)
#'
#'
2018-08-10 15:01:05 +02:00
#' \dontrun{
#'
#' # calculate current empiric combination therapy of Helicobacter gastritis:
#' my_table %>%
#' filter(first_isolate == TRUE,
#' genus == "Helicobacter") %>%
#' summarise(p = portion_S(amox, metr), # amoxicillin with metronidazole
2018-10-12 16:35:18 +02:00
#' n = count_all(amox, metr))
2018-08-10 15:01:05 +02:00
#' }
2018-08-23 00:40:36 +02:00
portion_R <- function ( ... ,
2018-08-10 15:01:05 +02:00
minimum = 30 ,
2018-10-19 13:53:31 +02:00
as_percent = FALSE ,
also_single_tested = FALSE ) {
2018-08-23 00:40:36 +02:00
rsi_calc ( ... ,
type = " R" ,
2018-08-10 15:01:05 +02:00
include_I = FALSE ,
minimum = minimum ,
2018-08-22 00:02:26 +02:00
as_percent = as_percent ,
2018-10-19 13:53:31 +02:00
also_single_tested = also_single_tested ,
2018-08-22 00:02:26 +02:00
only_count = FALSE )
2018-08-10 15:01:05 +02:00
}
#' @rdname portion
#' @export
2018-08-23 00:40:36 +02:00
portion_IR <- function ( ... ,
2018-08-10 15:01:05 +02:00
minimum = 30 ,
2018-10-19 13:53:31 +02:00
as_percent = FALSE ,
also_single_tested = FALSE ) {
2018-08-23 00:40:36 +02:00
rsi_calc ( ... ,
type = " R" ,
2018-08-10 15:01:05 +02:00
include_I = TRUE ,
minimum = minimum ,
2018-08-22 00:02:26 +02:00
as_percent = as_percent ,
2018-10-19 13:53:31 +02:00
also_single_tested = also_single_tested ,
2018-08-22 00:02:26 +02:00
only_count = FALSE )
2018-08-10 15:01:05 +02:00
}
#' @rdname portion
#' @export
2018-08-23 00:40:36 +02:00
portion_I <- function ( ... ,
2018-08-10 15:01:05 +02:00
minimum = 30 ,
2018-10-19 13:53:31 +02:00
as_percent = FALSE ,
also_single_tested = FALSE ) {
2018-08-23 00:40:36 +02:00
rsi_calc ( ... ,
type = " I" ,
2018-08-10 15:01:05 +02:00
include_I = FALSE ,
minimum = minimum ,
2018-08-22 00:02:26 +02:00
as_percent = as_percent ,
2018-10-19 13:53:31 +02:00
also_single_tested = also_single_tested ,
2018-08-22 00:02:26 +02:00
only_count = FALSE )
2018-08-10 15:01:05 +02:00
}
#' @rdname portion
#' @export
2018-08-23 00:40:36 +02:00
portion_SI <- function ( ... ,
2018-08-10 15:01:05 +02:00
minimum = 30 ,
2018-10-19 13:53:31 +02:00
as_percent = FALSE ,
also_single_tested = FALSE ) {
2018-08-23 00:40:36 +02:00
rsi_calc ( ... ,
type = " S" ,
2018-08-10 15:01:05 +02:00
include_I = TRUE ,
minimum = minimum ,
2018-08-22 00:02:26 +02:00
as_percent = as_percent ,
2018-10-19 13:53:31 +02:00
also_single_tested = also_single_tested ,
2018-08-22 00:02:26 +02:00
only_count = FALSE )
2018-08-10 15:01:05 +02:00
}
#' @rdname portion
#' @export
2018-08-23 00:40:36 +02:00
portion_S <- function ( ... ,
2018-08-10 15:01:05 +02:00
minimum = 30 ,
2018-10-19 13:53:31 +02:00
as_percent = FALSE ,
also_single_tested = FALSE ) {
2018-08-23 00:40:36 +02:00
rsi_calc ( ... ,
type = " S" ,
2018-08-10 15:01:05 +02:00
include_I = FALSE ,
minimum = minimum ,
2018-08-22 00:02:26 +02:00
as_percent = as_percent ,
2018-10-19 13:53:31 +02:00
also_single_tested = also_single_tested ,
2018-08-22 00:02:26 +02:00
only_count = FALSE )
2018-08-10 15:01:05 +02:00
}
2018-08-12 17:44:06 +02:00
#' @rdname portion
2018-08-22 00:02:26 +02:00
#' @importFrom dplyr %>% select_if bind_rows summarise_if mutate group_vars select everything
2018-08-12 17:44:06 +02:00
#' @export
2018-08-22 00:02:26 +02:00
portion_df <- function ( data ,
translate_ab = getOption ( " get_antibiotic_names" , " official" ) ,
minimum = 30 ,
2018-10-16 09:59:31 +02:00
as_percent = FALSE ,
combine_IR = FALSE ) {
2018-08-22 00:02:26 +02:00
2018-09-16 22:11:17 +02:00
if ( ! " data.frame" %in% class ( data ) ) {
stop ( " `portion_df` must be called on a data.frame" )
}
2018-08-22 00:02:26 +02:00
if ( data %>% select_if ( is.rsi ) %>% ncol ( ) == 0 ) {
stop ( " No columns with class 'rsi' found. See ?as.rsi." )
}
2018-08-13 16:42:37 +02:00
if ( as.character ( translate_ab ) == " TRUE" ) {
translate_ab <- " official"
}
options ( get_antibiotic_names = translate_ab )
2018-08-12 22:34:03 +02:00
resS <- summarise_if ( .tbl = data ,
.predicate = is.rsi ,
2018-08-22 00:02:26 +02:00
.funs = portion_S ,
minimum = minimum ,
as_percent = as_percent ) %>%
2018-08-12 22:34:03 +02:00
mutate ( Interpretation = " S" ) %>%
select ( Interpretation , everything ( ) )
2018-10-16 09:59:31 +02:00
if ( combine_IR == FALSE ) {
resI <- summarise_if ( .tbl = data ,
.predicate = is.rsi ,
.funs = portion_I ,
minimum = minimum ,
as_percent = as_percent ) %>%
mutate ( Interpretation = " I" ) %>%
select ( Interpretation , everything ( ) )
2018-08-12 22:34:03 +02:00
2018-10-16 09:59:31 +02:00
resR <- summarise_if ( .tbl = data ,
.predicate = is.rsi ,
.funs = portion_R ,
minimum = minimum ,
as_percent = as_percent ) %>%
mutate ( Interpretation = " R" ) %>%
select ( Interpretation , everything ( ) )
2018-08-12 22:34:03 +02:00
2018-10-16 09:59:31 +02:00
data.groups <- group_vars ( data )
2018-08-12 17:44:06 +02:00
2018-10-16 09:59:31 +02:00
res <- bind_rows ( resS , resI , resR ) %>%
mutate ( Interpretation = factor ( Interpretation , levels = c ( " R" , " I" , " S" ) , ordered = TRUE ) ) %>%
tidyr :: gather ( Antibiotic , Value , - Interpretation , - data.groups )
} else {
resIR <- summarise_if ( .tbl = data ,
.predicate = is.rsi ,
.funs = portion_IR ,
minimum = minimum ,
as_percent = as_percent ) %>%
mutate ( Interpretation = " IR" ) %>%
select ( Interpretation , everything ( ) )
data.groups <- group_vars ( data )
res <- bind_rows ( resS , resIR ) %>%
mutate ( Interpretation = factor ( Interpretation , levels = c ( " IR" , " S" ) , ordered = TRUE ) ) %>%
tidyr :: gather ( Antibiotic , Value , - Interpretation , - data.groups )
}
2018-08-13 16:42:37 +02:00
if ( ! translate_ab == FALSE ) {
if ( ! tolower ( translate_ab ) %in% tolower ( colnames ( AMR :: antibiotics ) ) ) {
stop ( " Parameter `translate_ab` does not occur in the `antibiotics` data set." , call. = FALSE )
}
res <- res %>% mutate ( Antibiotic = abname ( Antibiotic , from = " guess" , to = translate_ab ) )
2018-08-12 17:44:06 +02:00
}
2018-08-13 16:42:37 +02:00
2018-08-12 17:44:06 +02:00
res
}
2018-08-25 22:01:14 +02:00
#' Calculate resistance of isolates
#'
#' This function is deprecated. Use the \code{\link{portion}} functions instead.
#' @inheritParams portion
#' @param ab1,ab2 vector (or column) with antibiotic interpretations. It will be transformed internally with \code{\link{as.rsi}} if needed.
#' @param interpretation antimicrobial interpretation to check for
#' @param ... deprecated parameters to support usage on older versions
#' @importFrom dplyr tibble case_when
#' @export
rsi <- function ( ab1 ,
ab2 = NULL ,
interpretation = " IR" ,
minimum = 30 ,
as_percent = FALSE ,
... ) {
2018-10-12 16:35:18 +02:00
.Deprecated ( new = paste0 ( " portion_" , interpretation ) )
2018-08-25 22:01:14 +02:00
if ( all ( is.null ( ab2 ) ) ) {
df <- tibble ( ab1 = ab1 )
} else {
df <- tibble ( ab1 = ab1 ,
ab2 = ab2 )
}
2018-10-12 16:35:18 +02:00
if ( ! interpretation %in% c ( " S" , " SI" , " IS" , " I" , " RI" , " IR" , " R" ) ) {
stop ( " invalid interpretation" )
}
2018-08-25 22:01:14 +02:00
result <- case_when (
interpretation == " S" ~ portion_S ( df , minimum = minimum , as_percent = FALSE ) ,
interpretation %in% c ( " SI" , " IS" ) ~ portion_SI ( df , minimum = minimum , as_percent = FALSE ) ,
interpretation == " I" ~ portion_I ( df , minimum = minimum , as_percent = FALSE ) ,
interpretation %in% c ( " RI" , " IR" ) ~ portion_IR ( df , minimum = minimum , as_percent = FALSE ) ,
2018-10-12 16:35:18 +02:00
interpretation == " R" ~ portion_R ( df , minimum = minimum , as_percent = FALSE ) )
2018-08-25 22:01:14 +02:00
if ( as_percent == TRUE ) {
percent ( result , force_zero = TRUE )
} else {
result
}
}