mirror of
				https://github.com/msberends/AMR.git
				synced 2025-10-31 07:28:17 +01:00 
			
		
		
		
	(v3.0.0.9022) postpone new features - we like a clearly focussed bugfix release first
This commit is contained in:
		| @@ -40,3 +40,4 @@ | ||||
| ^CRAN-SUBMISSION$ | ||||
| ^PythonPackage$ | ||||
| ^README\.Rmd$ | ||||
| \.no_include$ | ||||
|   | ||||
							
								
								
									
										14
									
								
								.github/workflows/check-old-tinytest.yaml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										14
									
								
								.github/workflows/check-old-tinytest.yaml
									
									
									
									
										vendored
									
									
								
							| @@ -49,13 +49,13 @@ jobs: | ||||
|           # Test all old versions of R >= 3.0, we support them all! | ||||
|           # For these old versions, dependencies and vignettes will not be checked. | ||||
|           # For recent R versions, see check-recent.yaml (r-lib and tidyverse support the latest 5 major R releases). | ||||
|           - {os: ubuntu-latest, r: '3.6', allowfail: true} | ||||
|           # - {os: windows-latest, r: '3.5', allowfail: true} # always fails, horrible with UTF-8 | ||||
|           - {os: ubuntu-latest, r: '3.4', allowfail: true} | ||||
|           - {os: ubuntu-latest, r: '3.3', allowfail: true} | ||||
|           - {os: ubuntu-latest, r: '3.2', allowfail: true} | ||||
|           - {os: ubuntu-latest, r: '3.1', allowfail: true} | ||||
|           - {os: ubuntu-latest, r: '3.0', allowfail: true} | ||||
|           - {os: ubuntu-latest, r: '3.6', allowfail: false} | ||||
|           # - {os: windows-latest, r: '3.5', allowfail: false} # always fails, horrible with UTF-8 | ||||
|           # - {os: ubuntu-latest, r: '3.4', allowfail: false}  # 3.1-3.4 now always fails with Error in grep(warn_re, lines, invert = TRUE, value = TRUE) attempt to set index 46/46 in SET_STRING_ELT | ||||
|           # - {os: ubuntu-latest, r: '3.3', allowfail: false} | ||||
|           # - {os: ubuntu-latest, r: '3.2', allowfail: false} | ||||
|           # - {os: ubuntu-latest, r: '3.1', allowfail: false} | ||||
|           - {os: ubuntu-latest, r: '3.0', allowfail: false} | ||||
|  | ||||
|     env: | ||||
|       R_REMOTES_NO_ERRORS_FROM_WARNINGS: true | ||||
|   | ||||
							
								
								
									
										7
									
								
								.github/workflows/publish-to-pypi.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										7
									
								
								.github/workflows/publish-to-pypi.yml
									
									
									
									
										vendored
									
									
								
							| @@ -39,7 +39,7 @@ jobs: | ||||
|     runs-on: ubuntu-latest | ||||
|      | ||||
|     env: | ||||
|       PYPI_PAT: ${{ secrets.PYPI_PAT }} | ||||
|       GH_REPO_SCOPE: ${{ secrets.GH_REPO_SCOPE }} | ||||
|      | ||||
|     steps: | ||||
|       - name: Checkout code | ||||
| @@ -78,6 +78,7 @@ jobs: | ||||
|           cd PythonPackage/AMR | ||||
|           python -m twine upload --repository-url https://test.pypi.org/legacy/ dist/* | ||||
|  | ||||
|       # TODO - Support Miniconda and Anaconda too | ||||
|       # - name: Set up Miniconda | ||||
|       #   continue-on-error: true | ||||
|       #   uses: conda-incubator/setup-miniconda@v2 | ||||
| @@ -117,7 +118,7 @@ jobs: | ||||
|           rm -rf PythonPackage | ||||
|  | ||||
|           git init | ||||
|           git remote add origin https://$PYPI_PAT@github.com/msberends/AMR | ||||
|           git remote add origin https://$GH_REPO_SCOPE@github.com/msberends/AMR | ||||
|           git checkout --orphan python-wrapper | ||||
|           git config user.name "github-actions[bot]" | ||||
|           git config user.email "github-actions[bot]@users.noreply.github.com" | ||||
| @@ -125,4 +126,4 @@ jobs: | ||||
|           git rm -rf . || true | ||||
|           git add . | ||||
|           git commit -m "Python wrapper update" | ||||
|           git push https://$PYPI_PAT@github.com/msberends/AMR.git python-wrapper --force | ||||
|           git push https://$GH_REPO_SCOPE@github.com/msberends/AMR.git python-wrapper --force | ||||
|   | ||||
| @@ -39,7 +39,7 @@ jobs: | ||||
|     runs-on: ubuntu-latest | ||||
|      | ||||
|     env: | ||||
|       PYPI_PAT: ${{ secrets.PYPI_PAT }} | ||||
|       GH_REPO_SCOPE: ${{ secrets.GH_REPO_SCOPE }} | ||||
|      | ||||
|     steps: | ||||
|       - name: Checkout code | ||||
| @@ -63,4 +63,4 @@ jobs: | ||||
|           git config user.email "github-actions[bot]@users.noreply.github.com" | ||||
|           git add latest_training_data.txt | ||||
|           git commit -m "GPT training data update" | ||||
|           git push https://$PYPI_PAT@github.com/msberends/amr-for-r-assistant.git main --force | ||||
|           git push https://$GH_REPO_SCOPE@github.com/msberends/amr-for-r-assistant.git main --force | ||||
|   | ||||
							
								
								
									
										75
									
								
								.github/workflows/todo-tracker.yml
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										75
									
								
								.github/workflows/todo-tracker.yml
									
									
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,75 @@ | ||||
| # ==================================================================== # | ||||
| # TITLE:                                                               # | ||||
| # AMR: An R Package for Working with Antimicrobial Resistance Data     # | ||||
| #                                                                      # | ||||
| # SOURCE CODE:                                                         # | ||||
| # https://github.com/msberends/AMR                                     # | ||||
| #                                                                      # | ||||
| # PLEASE CITE THIS SOFTWARE AS:                                        # | ||||
| # Berends MS, Luz CF, Friedrich AW, et al. (2022).                     # | ||||
| # AMR: An R Package for Working with Antimicrobial Resistance Data.    # | ||||
| # Journal of Statistical Software, 104(3), 1-31.                       # | ||||
| # https://doi.org/10.18637/jss.v104.i03                                # | ||||
| #                                                                      # | ||||
| # Developed at the University of Groningen and the University Medical  # | ||||
| # Center Groningen in The Netherlands, in collaboration with many      # | ||||
| # colleagues from around the world, see our website.                   #  | ||||
| #                                                                      # | ||||
| # This R package is free software; you can freely use and distribute   # | ||||
| # it for both personal and commercial purposes under the terms of the  # | ||||
| # GNU General Public License version 2.0 (GNU GPL-2), as published by  # | ||||
| # the Free Software Foundation.                                        # | ||||
| # We created this package for both routine data analysis and academic  # | ||||
| # research and it was publicly released in the hope that it will be    # | ||||
| # useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY.              # | ||||
| #                                                                      # | ||||
| # Visit our website for the full manual and a complete tutorial about  # | ||||
| # how to conduct AMR data analysis: https://amr-for-r.org              # | ||||
| # ==================================================================== # | ||||
|  | ||||
| on: | ||||
|   push: | ||||
|     # only on main | ||||
|     branches: "main" | ||||
|  | ||||
| name: Update TODO Tracker | ||||
|  | ||||
| jobs: | ||||
|   update-todo: | ||||
|     runs-on: ubuntu-latest | ||||
|  | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|  | ||||
|       - name: Generate TODO list from R/ | ||||
|         run: | | ||||
|           echo "## TODO Report" > todo.md | ||||
|           echo "" >> todo.md | ||||
|           echo "_This issue is automatically updated on each push to `main`._" >> todo.md | ||||
|           echo "" >> todo.md | ||||
|           todos=$(find R/ -type f ! -name "sysdata.rda" -exec grep -nH "TODO" {} + || true) | ||||
|           if [ -z "$todos" ]; then | ||||
|             echo "✅ No TODOs found." >> todo.md | ||||
|           else | ||||
|             echo "$todos" | awk -F: ' | ||||
|               { | ||||
|                 file = $1 | ||||
|                 line = $2 | ||||
|                 text = substr($0, index($0,$3)) | ||||
|                 if (file != last_file) { | ||||
|                   if (last_file != "") print "" | ||||
|                   print "### " file | ||||
|                   last_file = file | ||||
|                 } | ||||
|                 printf "L%s: %s\n", line, text | ||||
|               } | ||||
|             ' >> todo.md | ||||
|           fi | ||||
|  | ||||
|       - name: Update GitHub issue | ||||
|         uses: peter-evans/create-or-update-comment@v4 | ||||
|         with: | ||||
|           token: ${{ secrets.GH_REPO_SCOPE }} | ||||
|           issue-number: 231 | ||||
|           body-file: todo.md | ||||
|           edit-mode: replace | ||||
| @@ -1,5 +1,5 @@ | ||||
| Package: AMR | ||||
| Version: 3.0.0.9021 | ||||
| Version: 3.0.0.9022 | ||||
| Date: 2025-09-03 | ||||
| Title: Antimicrobial Resistance Data Analysis | ||||
| Description: Functions to simplify and standardise antimicrobial resistance (AMR) | ||||
|   | ||||
							
								
								
									
										14
									
								
								NAMESPACE
									
									
									
									
									
								
							
							
						
						
									
										14
									
								
								NAMESPACE
									
									
									
									
									
								
							| @@ -106,8 +106,6 @@ S3method(print,mo_uncertainties) | ||||
| S3method(print,pca) | ||||
| S3method(print,sir) | ||||
| S3method(print,sir_log) | ||||
| S3method(print,step_mic_log2) | ||||
| S3method(print,step_sir_numeric) | ||||
| S3method(quantile,mic) | ||||
| S3method(rep,ab) | ||||
| S3method(rep,av) | ||||
| @@ -161,10 +159,6 @@ export(administrable_per_os) | ||||
| export(age) | ||||
| export(age_groups) | ||||
| export(all_antimicrobials) | ||||
| export(all_mic) | ||||
| export(all_mic_predictors) | ||||
| export(all_sir) | ||||
| export(all_sir_predictors) | ||||
| export(aminoglycosides) | ||||
| export(aminopenicillins) | ||||
| export(amr_class) | ||||
| @@ -358,8 +352,6 @@ export(sir_df) | ||||
| export(sir_interpretation_history) | ||||
| export(sir_predict) | ||||
| export(skewness) | ||||
| export(step_mic_log2) | ||||
| export(step_sir_numeric) | ||||
| export(streptogramins) | ||||
| export(sulfonamides) | ||||
| export(susceptibility) | ||||
| @@ -396,12 +388,6 @@ if(getRversion() >= "3.0.0") S3method(pillar::type_sum, av) | ||||
| if(getRversion() >= "3.0.0") S3method(pillar::type_sum, mic) | ||||
| if(getRversion() >= "3.0.0") S3method(pillar::type_sum, mo) | ||||
| if(getRversion() >= "3.0.0") S3method(pillar::type_sum, sir) | ||||
| if(getRversion() >= "3.0.0") S3method(recipes::bake, step_mic_log2) | ||||
| if(getRversion() >= "3.0.0") S3method(recipes::bake, step_sir_numeric) | ||||
| if(getRversion() >= "3.0.0") S3method(recipes::prep, step_mic_log2) | ||||
| if(getRversion() >= "3.0.0") S3method(recipes::prep, step_sir_numeric) | ||||
| if(getRversion() >= "3.0.0") S3method(recipes::tidy, step_mic_log2) | ||||
| if(getRversion() >= "3.0.0") S3method(recipes::tidy, step_sir_numeric) | ||||
| if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, disk) | ||||
| if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, mic) | ||||
| if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, mo) | ||||
|   | ||||
							
								
								
									
										11
									
								
								NEWS.md
									
									
									
									
									
								
							
							
						
						
									
										11
									
								
								NEWS.md
									
									
									
									
									
								
							| @@ -1,11 +1,6 @@ | ||||
| # AMR 3.0.0.9021 | ||||
| # AMR 3.0.0.9022 | ||||
|  | ||||
| This is primarily a bugfix release, though we added one nice feature too. | ||||
|  | ||||
| ### New | ||||
| * Integration with the **tidymodels** framework to allow seamless use of MIC and SIR data in modelling pipelines via `recipes` | ||||
|   - `step_mic_log2()` to transform `<mic>` columns with log2, and `step_sir_numeric()` to convert `<sir>` columns to numeric | ||||
|   - New `tidyselect` helpers: `all_mic()`, `all_mic_predictors()`, `all_sir()`, `all_sir_predictors()` | ||||
| This is a bugfix release following the release of v3.0.0 in June 2025. | ||||
|  | ||||
| ### Changed | ||||
| * Fixed a bug in `antibiogram()` for when no antimicrobials are set | ||||
| @@ -16,7 +11,7 @@ This is primarily a bugfix release, though we added one nice feature too. | ||||
| * Fixed a bug in `as.sir()` to pick right breakpoint when `uti = FALSE` (#216) | ||||
| * Fixed a bug in `ggplot_sir()` when using `combine_SI = FALSE` (#213) | ||||
| * Fixed a bug the `antimicrobials` data set to remove statins (#229) | ||||
| * Fixed a bug in `mdro()` to make sure all genes specified in arguments are acknowledges | ||||
| * Fixed a bug in `mdro()` to make sure all genes specified in arguments are acknowledged | ||||
| * Fixed ATC J01CR05 to map to piperacillin/tazobactam rather than piperacillin/sulbactam (#230) | ||||
| * Fixed all plotting to contain a separate colour for SDD (susceptible dose-dependent) (#223) | ||||
| * Fixed some specific Dutch translations for antimicrobials | ||||
|   | ||||
| @@ -233,6 +233,7 @@ globalVariables(c( | ||||
|   "uti_index", | ||||
|   "value", | ||||
|   "varname", | ||||
|   "where", | ||||
|   "x", | ||||
|   "xvar", | ||||
|   "y", | ||||
|   | ||||
							
								
								
									
										22
									
								
								R/data.R
									
									
									
									
									
								
							
							
						
						
									
										22
									
								
								R/data.R
									
									
									
									
									
								
							| @@ -362,14 +362,14 @@ | ||||
| #' dosage | ||||
| "dosage" | ||||
|  | ||||
| #' Data Set with `r format(nrow(esbl_isolates), big.mark = " ")` ESBL Isolates | ||||
| #' | ||||
| #' A data set containing `r format(nrow(esbl_isolates), big.mark = " ")` microbial isolates with MIC values of common antibiotics and a binary `esbl` column for extended-spectrum beta-lactamase (ESBL) production. This data set contains randomised fictitious data but reflects reality and can be used to practise AMR-related machine learning, e.g., classification modelling with [tidymodels](https://amr-for-r.org/articles/AMR_with_tidymodels.html). | ||||
| #' @format A [tibble][tibble::tibble] with `r format(nrow(esbl_isolates), big.mark = " ")` observations and `r ncol(esbl_isolates)` variables: | ||||
| #' - `esbl`\cr Logical indicator if the isolate is ESBL-producing | ||||
| #' - `genus`\cr Genus of the microorganism | ||||
| #' - `AMC:COL`\cr MIC values for 17 antimicrobial agents, transformed to class [`mic`] (see [as.mic()]) | ||||
| #' @details See our [tidymodels integration][amr-tidymodels] for an example using this data set. | ||||
| #' @examples | ||||
| #' esbl_isolates | ||||
| "esbl_isolates" | ||||
| # TODO #' Data Set with `r format(nrow(esbl_isolates), big.mark = " ")` ESBL Isolates | ||||
| # TODO #' | ||||
| # TODO #' A data set containing `r format(nrow(esbl_isolates), big.mark = " ")` microbial isolates with MIC values of common antibiotics and a binary `esbl` column for extended-spectrum beta-lactamase (ESBL) production. This data set contains randomised fictitious data but reflects reality and can be used to practise AMR-related machine learning, e.g., classification modelling with [tidymodels](https://amr-for-r.org/articles/AMR_with_tidymodels.html). | ||||
| # TODO #' @format A [tibble][tibble::tibble] with `r format(nrow(esbl_isolates), big.mark = " ")` observations and `r ncol(esbl_isolates)` variables: | ||||
| # TODO #' - `esbl`\cr Logical indicator if the isolate is ESBL-producing | ||||
| # TODO #' - `genus`\cr Genus of the microorganism | ||||
| # TODO #' - `AMC:COL`\cr MIC values for 17 antimicrobial agents, transformed to class [`mic`] (see [as.mic()]) | ||||
| # TODO #' @details See our [tidymodels integration][amr-tidymodels] for an example using this data set. | ||||
| # TODO #' @examples | ||||
| # TODO #' esbl_isolates | ||||
| # TODO "esbl_isolates" | ||||
|   | ||||
| @@ -1,125 +0,0 @@ | ||||
| % Generated by roxygen2: do not edit by hand | ||||
| % Please edit documentation in R/tidymodels.R | ||||
| \name{amr-tidymodels} | ||||
| \alias{amr-tidymodels} | ||||
| \alias{all_mic} | ||||
| \alias{all_mic_predictors} | ||||
| \alias{all_sir} | ||||
| \alias{all_sir_predictors} | ||||
| \alias{step_mic_log2} | ||||
| \alias{step_sir_numeric} | ||||
| \title{AMR Extensions for Tidymodels} | ||||
| \usage{ | ||||
| all_mic() | ||||
|  | ||||
| all_mic_predictors() | ||||
|  | ||||
| all_sir() | ||||
|  | ||||
| all_sir_predictors() | ||||
|  | ||||
| step_mic_log2(recipe, ..., role = NA, trained = FALSE, columns = NULL, | ||||
|   skip = FALSE, id = recipes::rand_id("mic_log2")) | ||||
|  | ||||
| step_sir_numeric(recipe, ..., role = NA, trained = FALSE, columns = NULL, | ||||
|   skip = FALSE, id = recipes::rand_id("sir_numeric")) | ||||
| } | ||||
| \arguments{ | ||||
| \item{recipe}{A recipe object. The step will be added to the sequence of | ||||
| operations for this recipe.} | ||||
|  | ||||
| \item{...}{One or more selector functions to choose variables for this step. | ||||
| See \code{\link[recipes:selections]{selections()}} for more details.} | ||||
|  | ||||
| \item{role}{Not used by this step since no new variables are created.} | ||||
|  | ||||
| \item{trained}{A logical to indicate if the quantities for preprocessing have | ||||
| been estimated.} | ||||
|  | ||||
| \item{skip}{A logical. Should the step be skipped when the recipe is baked by | ||||
| \code{\link[recipes:bake]{bake()}}? While all operations are baked when \code{\link[recipes:prep]{prep()}} is run, some | ||||
| operations may not be able to be conducted on new data (e.g. processing the | ||||
| outcome variable(s)). Care should be taken when using \code{skip = TRUE} as it | ||||
| may affect the computations for subsequent operations.} | ||||
|  | ||||
| \item{id}{A character string that is unique to this step to identify it.} | ||||
| } | ||||
| \description{ | ||||
| This family of functions allows using AMR-specific data types such as \verb{<mic>} and \verb{<sir>} inside \code{tidymodels} pipelines. | ||||
| } | ||||
| \details{ | ||||
| You can read more in our online \href{https://amr-for-r.org/articles/AMR_with_tidymodels.html}{AMR with tidymodels introduction}. | ||||
|  | ||||
| Tidyselect helpers include: | ||||
| \itemize{ | ||||
| \item \code{\link[=all_mic]{all_mic()}} and \code{\link[=all_mic_predictors]{all_mic_predictors()}} to select \verb{<mic>} columns | ||||
| \item \code{\link[=all_sir]{all_sir()}} and \code{\link[=all_sir_predictors]{all_sir_predictors()}} to select \verb{<sir>} columns | ||||
| } | ||||
|  | ||||
| Pre-processing pipeline steps include: | ||||
| \itemize{ | ||||
| \item \code{\link[=step_mic_log2]{step_mic_log2()}} to convert MIC columns to numeric (via \code{as.numeric()}) and apply a log2 transform, to be used with \code{\link[=all_mic_predictors]{all_mic_predictors()}} | ||||
| \item \code{\link[=step_sir_numeric]{step_sir_numeric()}} to convert SIR columns to numeric (via \code{as.numeric()}), to be used with \code{\link[=all_sir_predictors]{all_sir_predictors()}}: \code{"S"} = 1, \code{"I"}/\code{"SDD"} = 2, \code{"R"} = 3. All other values are rendered \code{NA}. Keep this in mind for further processing, especially if the model does not allow for \code{NA} values. | ||||
| } | ||||
|  | ||||
| These steps integrate with \code{recipes::recipe()} and work like standard preprocessing steps. They are useful for preparing data for modelling, especially with classification models. | ||||
| } | ||||
| \examples{ | ||||
| if (require("tidymodels")) { | ||||
|  | ||||
|   # The below approach formed the basis for this paper: DOI 10.3389/fmicb.2025.1582703 | ||||
|   # Presence of ESBL genes was predicted based on raw MIC values. | ||||
|  | ||||
|  | ||||
|   # example data set in the AMR package | ||||
|   esbl_isolates | ||||
|  | ||||
|   # Prepare a binary outcome and convert to ordered factor | ||||
|   data <- esbl_isolates \%>\% | ||||
|     mutate(esbl = factor(esbl, levels = c(FALSE, TRUE), ordered = TRUE)) | ||||
|  | ||||
|   # Split into training and testing sets | ||||
|   split <- initial_split(data) | ||||
|   training_data <- training(split) | ||||
|   testing_data <- testing(split) | ||||
|  | ||||
|   # Create and prep a recipe with MIC log2 transformation | ||||
|   mic_recipe <- recipe(esbl ~ ., data = training_data) \%>\% | ||||
|  | ||||
|     # Optionally remove non-predictive variables | ||||
|     remove_role(genus, old_role = "predictor") \%>\% | ||||
|  | ||||
|     # Apply the log2 transformation to all MIC predictors | ||||
|     step_mic_log2(all_mic_predictors()) \%>\% | ||||
|  | ||||
|     # And apply the preparation steps | ||||
|     prep() | ||||
|  | ||||
|   # View prepped recipe | ||||
|   mic_recipe | ||||
|  | ||||
|   # Apply the recipe to training and testing data | ||||
|   out_training <- bake(mic_recipe, new_data = NULL) | ||||
|   out_testing <- bake(mic_recipe, new_data = testing_data) | ||||
|  | ||||
|   # Fit a logistic regression model | ||||
|   fitted <- logistic_reg(mode = "classification") \%>\% | ||||
|     set_engine("glm") \%>\% | ||||
|     fit(esbl ~ ., data = out_training) | ||||
|  | ||||
|   # Generate predictions on the test set | ||||
|   predictions <- predict(fitted, out_testing) \%>\% | ||||
|     bind_cols(out_testing) | ||||
|  | ||||
|   # Evaluate predictions using standard classification metrics | ||||
|   our_metrics <- metric_set(accuracy, kap, ppv, npv) | ||||
|   metrics <- our_metrics(predictions, truth = esbl, estimate = .pred_class) | ||||
|  | ||||
|   # Show performance | ||||
|   metrics | ||||
| } | ||||
| } | ||||
| \seealso{ | ||||
| \code{\link[recipes:recipe]{recipes::recipe()}}, \code{\link[=as.mic]{as.mic()}}, \code{\link[=as.sir]{as.sir()}} | ||||
| } | ||||
| \keyword{internal} | ||||
| @@ -1,27 +0,0 @@ | ||||
| % Generated by roxygen2: do not edit by hand | ||||
| % Please edit documentation in R/data.R | ||||
| \docType{data} | ||||
| \name{esbl_isolates} | ||||
| \alias{esbl_isolates} | ||||
| \title{Data Set with 500 ESBL Isolates} | ||||
| \format{ | ||||
| A \link[tibble:tibble]{tibble} with 500 observations and 19 variables: | ||||
| \itemize{ | ||||
| \item \code{esbl}\cr Logical indicator if the isolate is ESBL-producing | ||||
| \item \code{genus}\cr Genus of the microorganism | ||||
| \item \code{AMC:COL}\cr MIC values for 17 antimicrobial agents, transformed to class \code{\link{mic}} (see \code{\link[=as.mic]{as.mic()}}) | ||||
| } | ||||
| } | ||||
| \usage{ | ||||
| esbl_isolates | ||||
| } | ||||
| \description{ | ||||
| A data set containing 500 microbial isolates with MIC values of common antibiotics and a binary \code{esbl} column for extended-spectrum beta-lactamase (ESBL) production. This data set contains randomised fictitious data but reflects reality and can be used to practise AMR-related machine learning, e.g., classification modelling with \href{https://amr-for-r.org/articles/AMR_with_tidymodels.html}{tidymodels}. | ||||
| } | ||||
| \details{ | ||||
| See our \link[=amr-tidymodels]{tidymodels integration} for an example using this data set. | ||||
| } | ||||
| \examples{ | ||||
| esbl_isolates | ||||
| } | ||||
| \keyword{datasets} | ||||
		Reference in New Issue
	
	Block a user