1
0
mirror of https://github.com/msberends/AMR.git synced 2025-09-04 20:09:38 +02:00

(v3.0.0.9022) postpone new features - we like a clearly focussed bugfix release first

This commit is contained in:
2025-09-03 15:39:44 +02:00
parent 0744c6feee
commit 3ba1b8a10a
14 changed files with 105 additions and 198 deletions

View File

@@ -40,3 +40,4 @@
^CRAN-SUBMISSION$
^PythonPackage$
^README\.Rmd$
\.no_include$

View File

@@ -49,13 +49,13 @@ jobs:
# Test all old versions of R >= 3.0, we support them all!
# For these old versions, dependencies and vignettes will not be checked.
# For recent R versions, see check-recent.yaml (r-lib and tidyverse support the latest 5 major R releases).
- {os: ubuntu-latest, r: '3.6', allowfail: true}
# - {os: windows-latest, r: '3.5', allowfail: true} # always fails, horrible with UTF-8
- {os: ubuntu-latest, r: '3.4', allowfail: true}
- {os: ubuntu-latest, r: '3.3', allowfail: true}
- {os: ubuntu-latest, r: '3.2', allowfail: true}
- {os: ubuntu-latest, r: '3.1', allowfail: true}
- {os: ubuntu-latest, r: '3.0', allowfail: true}
- {os: ubuntu-latest, r: '3.6', allowfail: false}
# - {os: windows-latest, r: '3.5', allowfail: false} # always fails, horrible with UTF-8
# - {os: ubuntu-latest, r: '3.4', allowfail: false} # 3.1-3.4 now always fails with Error in grep(warn_re, lines, invert = TRUE, value = TRUE) attempt to set index 46/46 in SET_STRING_ELT
# - {os: ubuntu-latest, r: '3.3', allowfail: false}
# - {os: ubuntu-latest, r: '3.2', allowfail: false}
# - {os: ubuntu-latest, r: '3.1', allowfail: false}
- {os: ubuntu-latest, r: '3.0', allowfail: false}
env:
R_REMOTES_NO_ERRORS_FROM_WARNINGS: true

View File

@@ -39,7 +39,7 @@ jobs:
runs-on: ubuntu-latest
env:
PYPI_PAT: ${{ secrets.PYPI_PAT }}
GH_REPO_SCOPE: ${{ secrets.GH_REPO_SCOPE }}
steps:
- name: Checkout code
@@ -78,6 +78,7 @@ jobs:
cd PythonPackage/AMR
python -m twine upload --repository-url https://test.pypi.org/legacy/ dist/*
# TODO - Support Miniconda and Anaconda too
# - name: Set up Miniconda
# continue-on-error: true
# uses: conda-incubator/setup-miniconda@v2
@@ -117,7 +118,7 @@ jobs:
rm -rf PythonPackage
git init
git remote add origin https://$PYPI_PAT@github.com/msberends/AMR
git remote add origin https://$GH_REPO_SCOPE@github.com/msberends/AMR
git checkout --orphan python-wrapper
git config user.name "github-actions[bot]"
git config user.email "github-actions[bot]@users.noreply.github.com"
@@ -125,4 +126,4 @@ jobs:
git rm -rf . || true
git add .
git commit -m "Python wrapper update"
git push https://$PYPI_PAT@github.com/msberends/AMR.git python-wrapper --force
git push https://$GH_REPO_SCOPE@github.com/msberends/AMR.git python-wrapper --force

View File

@@ -39,7 +39,7 @@ jobs:
runs-on: ubuntu-latest
env:
PYPI_PAT: ${{ secrets.PYPI_PAT }}
GH_REPO_SCOPE: ${{ secrets.GH_REPO_SCOPE }}
steps:
- name: Checkout code
@@ -63,4 +63,4 @@ jobs:
git config user.email "github-actions[bot]@users.noreply.github.com"
git add latest_training_data.txt
git commit -m "GPT training data update"
git push https://$PYPI_PAT@github.com/msberends/amr-for-r-assistant.git main --force
git push https://$GH_REPO_SCOPE@github.com/msberends/amr-for-r-assistant.git main --force

75
.github/workflows/todo-tracker.yml vendored Normal file
View File

@@ -0,0 +1,75 @@
# ==================================================================== #
# TITLE: #
# AMR: An R Package for Working with Antimicrobial Resistance Data #
# #
# SOURCE CODE: #
# https://github.com/msberends/AMR #
# #
# PLEASE CITE THIS SOFTWARE AS: #
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
# https://doi.org/10.18637/jss.v104.i03 #
# #
# Developed at the University of Groningen and the University Medical #
# Center Groningen in The Netherlands, in collaboration with many #
# colleagues from around the world, see our website. #
# #
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
# #
# Visit our website for the full manual and a complete tutorial about #
# how to conduct AMR data analysis: https://amr-for-r.org #
# ==================================================================== #
on:
push:
# only on main
branches: "main"
name: Update TODO Tracker
jobs:
update-todo:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Generate TODO list from R/
run: |
echo "## TODO Report" > todo.md
echo "" >> todo.md
echo "_This issue is automatically updated on each push to `main`._" >> todo.md
echo "" >> todo.md
todos=$(find R/ -type f ! -name "sysdata.rda" -exec grep -nH "TODO" {} + || true)
if [ -z "$todos" ]; then
echo "✅ No TODOs found." >> todo.md
else
echo "$todos" | awk -F: '
{
file = $1
line = $2
text = substr($0, index($0,$3))
if (file != last_file) {
if (last_file != "") print ""
print "### " file
last_file = file
}
printf "L%s: %s\n", line, text
}
' >> todo.md
fi
- name: Update GitHub issue
uses: peter-evans/create-or-update-comment@v4
with:
token: ${{ secrets.GH_REPO_SCOPE }}
issue-number: 231
body-file: todo.md
edit-mode: replace

View File

@@ -1,5 +1,5 @@
Package: AMR
Version: 3.0.0.9021
Version: 3.0.0.9022
Date: 2025-09-03
Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR)

View File

@@ -106,8 +106,6 @@ S3method(print,mo_uncertainties)
S3method(print,pca)
S3method(print,sir)
S3method(print,sir_log)
S3method(print,step_mic_log2)
S3method(print,step_sir_numeric)
S3method(quantile,mic)
S3method(rep,ab)
S3method(rep,av)
@@ -161,10 +159,6 @@ export(administrable_per_os)
export(age)
export(age_groups)
export(all_antimicrobials)
export(all_mic)
export(all_mic_predictors)
export(all_sir)
export(all_sir_predictors)
export(aminoglycosides)
export(aminopenicillins)
export(amr_class)
@@ -358,8 +352,6 @@ export(sir_df)
export(sir_interpretation_history)
export(sir_predict)
export(skewness)
export(step_mic_log2)
export(step_sir_numeric)
export(streptogramins)
export(sulfonamides)
export(susceptibility)
@@ -396,12 +388,6 @@ if(getRversion() >= "3.0.0") S3method(pillar::type_sum, av)
if(getRversion() >= "3.0.0") S3method(pillar::type_sum, mic)
if(getRversion() >= "3.0.0") S3method(pillar::type_sum, mo)
if(getRversion() >= "3.0.0") S3method(pillar::type_sum, sir)
if(getRversion() >= "3.0.0") S3method(recipes::bake, step_mic_log2)
if(getRversion() >= "3.0.0") S3method(recipes::bake, step_sir_numeric)
if(getRversion() >= "3.0.0") S3method(recipes::prep, step_mic_log2)
if(getRversion() >= "3.0.0") S3method(recipes::prep, step_sir_numeric)
if(getRversion() >= "3.0.0") S3method(recipes::tidy, step_mic_log2)
if(getRversion() >= "3.0.0") S3method(recipes::tidy, step_sir_numeric)
if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, disk)
if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, mic)
if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, mo)

11
NEWS.md
View File

@@ -1,11 +1,6 @@
# AMR 3.0.0.9021
# AMR 3.0.0.9022
This is primarily a bugfix release, though we added one nice feature too.
### New
* Integration with the **tidymodels** framework to allow seamless use of MIC and SIR data in modelling pipelines via `recipes`
- `step_mic_log2()` to transform `<mic>` columns with log2, and `step_sir_numeric()` to convert `<sir>` columns to numeric
- New `tidyselect` helpers: `all_mic()`, `all_mic_predictors()`, `all_sir()`, `all_sir_predictors()`
This is a bugfix release following the release of v3.0.0 in June 2025.
### Changed
* Fixed a bug in `antibiogram()` for when no antimicrobials are set
@@ -16,7 +11,7 @@ This is primarily a bugfix release, though we added one nice feature too.
* Fixed a bug in `as.sir()` to pick right breakpoint when `uti = FALSE` (#216)
* Fixed a bug in `ggplot_sir()` when using `combine_SI = FALSE` (#213)
* Fixed a bug the `antimicrobials` data set to remove statins (#229)
* Fixed a bug in `mdro()` to make sure all genes specified in arguments are acknowledges
* Fixed a bug in `mdro()` to make sure all genes specified in arguments are acknowledged
* Fixed ATC J01CR05 to map to piperacillin/tazobactam rather than piperacillin/sulbactam (#230)
* Fixed all plotting to contain a separate colour for SDD (susceptible dose-dependent) (#223)
* Fixed some specific Dutch translations for antimicrobials

View File

@@ -233,6 +233,7 @@ globalVariables(c(
"uti_index",
"value",
"varname",
"where",
"x",
"xvar",
"y",

View File

@@ -362,14 +362,14 @@
#' dosage
"dosage"
#' Data Set with `r format(nrow(esbl_isolates), big.mark = " ")` ESBL Isolates
#'
#' A data set containing `r format(nrow(esbl_isolates), big.mark = " ")` microbial isolates with MIC values of common antibiotics and a binary `esbl` column for extended-spectrum beta-lactamase (ESBL) production. This data set contains randomised fictitious data but reflects reality and can be used to practise AMR-related machine learning, e.g., classification modelling with [tidymodels](https://amr-for-r.org/articles/AMR_with_tidymodels.html).
#' @format A [tibble][tibble::tibble] with `r format(nrow(esbl_isolates), big.mark = " ")` observations and `r ncol(esbl_isolates)` variables:
#' - `esbl`\cr Logical indicator if the isolate is ESBL-producing
#' - `genus`\cr Genus of the microorganism
#' - `AMC:COL`\cr MIC values for 17 antimicrobial agents, transformed to class [`mic`] (see [as.mic()])
#' @details See our [tidymodels integration][amr-tidymodels] for an example using this data set.
#' @examples
#' esbl_isolates
"esbl_isolates"
# TODO #' Data Set with `r format(nrow(esbl_isolates), big.mark = " ")` ESBL Isolates
# TODO #'
# TODO #' A data set containing `r format(nrow(esbl_isolates), big.mark = " ")` microbial isolates with MIC values of common antibiotics and a binary `esbl` column for extended-spectrum beta-lactamase (ESBL) production. This data set contains randomised fictitious data but reflects reality and can be used to practise AMR-related machine learning, e.g., classification modelling with [tidymodels](https://amr-for-r.org/articles/AMR_with_tidymodels.html).
# TODO #' @format A [tibble][tibble::tibble] with `r format(nrow(esbl_isolates), big.mark = " ")` observations and `r ncol(esbl_isolates)` variables:
# TODO #' - `esbl`\cr Logical indicator if the isolate is ESBL-producing
# TODO #' - `genus`\cr Genus of the microorganism
# TODO #' - `AMC:COL`\cr MIC values for 17 antimicrobial agents, transformed to class [`mic`] (see [as.mic()])
# TODO #' @details See our [tidymodels integration][amr-tidymodels] for an example using this data set.
# TODO #' @examples
# TODO #' esbl_isolates
# TODO "esbl_isolates"

View File

@@ -1,125 +0,0 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/tidymodels.R
\name{amr-tidymodels}
\alias{amr-tidymodels}
\alias{all_mic}
\alias{all_mic_predictors}
\alias{all_sir}
\alias{all_sir_predictors}
\alias{step_mic_log2}
\alias{step_sir_numeric}
\title{AMR Extensions for Tidymodels}
\usage{
all_mic()
all_mic_predictors()
all_sir()
all_sir_predictors()
step_mic_log2(recipe, ..., role = NA, trained = FALSE, columns = NULL,
skip = FALSE, id = recipes::rand_id("mic_log2"))
step_sir_numeric(recipe, ..., role = NA, trained = FALSE, columns = NULL,
skip = FALSE, id = recipes::rand_id("sir_numeric"))
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the sequence of
operations for this recipe.}
\item{...}{One or more selector functions to choose variables for this step.
See \code{\link[recipes:selections]{selections()}} for more details.}
\item{role}{Not used by this step since no new variables are created.}
\item{trained}{A logical to indicate if the quantities for preprocessing have
been estimated.}
\item{skip}{A logical. Should the step be skipped when the recipe is baked by
\code{\link[recipes:bake]{bake()}}? While all operations are baked when \code{\link[recipes:prep]{prep()}} is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using \code{skip = TRUE} as it
may affect the computations for subsequent operations.}
\item{id}{A character string that is unique to this step to identify it.}
}
\description{
This family of functions allows using AMR-specific data types such as \verb{<mic>} and \verb{<sir>} inside \code{tidymodels} pipelines.
}
\details{
You can read more in our online \href{https://amr-for-r.org/articles/AMR_with_tidymodels.html}{AMR with tidymodels introduction}.
Tidyselect helpers include:
\itemize{
\item \code{\link[=all_mic]{all_mic()}} and \code{\link[=all_mic_predictors]{all_mic_predictors()}} to select \verb{<mic>} columns
\item \code{\link[=all_sir]{all_sir()}} and \code{\link[=all_sir_predictors]{all_sir_predictors()}} to select \verb{<sir>} columns
}
Pre-processing pipeline steps include:
\itemize{
\item \code{\link[=step_mic_log2]{step_mic_log2()}} to convert MIC columns to numeric (via \code{as.numeric()}) and apply a log2 transform, to be used with \code{\link[=all_mic_predictors]{all_mic_predictors()}}
\item \code{\link[=step_sir_numeric]{step_sir_numeric()}} to convert SIR columns to numeric (via \code{as.numeric()}), to be used with \code{\link[=all_sir_predictors]{all_sir_predictors()}}: \code{"S"} = 1, \code{"I"}/\code{"SDD"} = 2, \code{"R"} = 3. All other values are rendered \code{NA}. Keep this in mind for further processing, especially if the model does not allow for \code{NA} values.
}
These steps integrate with \code{recipes::recipe()} and work like standard preprocessing steps. They are useful for preparing data for modelling, especially with classification models.
}
\examples{
if (require("tidymodels")) {
# The below approach formed the basis for this paper: DOI 10.3389/fmicb.2025.1582703
# Presence of ESBL genes was predicted based on raw MIC values.
# example data set in the AMR package
esbl_isolates
# Prepare a binary outcome and convert to ordered factor
data <- esbl_isolates \%>\%
mutate(esbl = factor(esbl, levels = c(FALSE, TRUE), ordered = TRUE))
# Split into training and testing sets
split <- initial_split(data)
training_data <- training(split)
testing_data <- testing(split)
# Create and prep a recipe with MIC log2 transformation
mic_recipe <- recipe(esbl ~ ., data = training_data) \%>\%
# Optionally remove non-predictive variables
remove_role(genus, old_role = "predictor") \%>\%
# Apply the log2 transformation to all MIC predictors
step_mic_log2(all_mic_predictors()) \%>\%
# And apply the preparation steps
prep()
# View prepped recipe
mic_recipe
# Apply the recipe to training and testing data
out_training <- bake(mic_recipe, new_data = NULL)
out_testing <- bake(mic_recipe, new_data = testing_data)
# Fit a logistic regression model
fitted <- logistic_reg(mode = "classification") \%>\%
set_engine("glm") \%>\%
fit(esbl ~ ., data = out_training)
# Generate predictions on the test set
predictions <- predict(fitted, out_testing) \%>\%
bind_cols(out_testing)
# Evaluate predictions using standard classification metrics
our_metrics <- metric_set(accuracy, kap, ppv, npv)
metrics <- our_metrics(predictions, truth = esbl, estimate = .pred_class)
# Show performance
metrics
}
}
\seealso{
\code{\link[recipes:recipe]{recipes::recipe()}}, \code{\link[=as.mic]{as.mic()}}, \code{\link[=as.sir]{as.sir()}}
}
\keyword{internal}

View File

@@ -1,27 +0,0 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/data.R
\docType{data}
\name{esbl_isolates}
\alias{esbl_isolates}
\title{Data Set with 500 ESBL Isolates}
\format{
A \link[tibble:tibble]{tibble} with 500 observations and 19 variables:
\itemize{
\item \code{esbl}\cr Logical indicator if the isolate is ESBL-producing
\item \code{genus}\cr Genus of the microorganism
\item \code{AMC:COL}\cr MIC values for 17 antimicrobial agents, transformed to class \code{\link{mic}} (see \code{\link[=as.mic]{as.mic()}})
}
}
\usage{
esbl_isolates
}
\description{
A data set containing 500 microbial isolates with MIC values of common antibiotics and a binary \code{esbl} column for extended-spectrum beta-lactamase (ESBL) production. This data set contains randomised fictitious data but reflects reality and can be used to practise AMR-related machine learning, e.g., classification modelling with \href{https://amr-for-r.org/articles/AMR_with_tidymodels.html}{tidymodels}.
}
\details{
See our \link[=amr-tidymodels]{tidymodels integration} for an example using this data set.
}
\examples{
esbl_isolates
}
\keyword{datasets}