1
0
mirror of https://github.com/msberends/AMR.git synced 2025-12-17 03:40:22 +01:00

Built site for AMR@3.0.1.9004: 225c73f

This commit is contained in:
github-actions
2025-12-15 12:32:31 +00:00
parent 141fc468f8
commit 7c8d0f82f9
84 changed files with 283 additions and 231 deletions

View File

@@ -3,7 +3,7 @@
**Note:** values on this page will change with every website update
since they are based on randomly created values and the page was written
in [R Markdown](https://rmarkdown.rstudio.com/). However, the
methodology remains unchanged. This page was generated on 24 November
methodology remains unchanged. This page was generated on 15 December
2025.
## Introduction
@@ -52,9 +52,9 @@ structure of your data generally look like this:
| date | patient_id | mo | AMX | CIP |
|:----------:|:----------:|:----------------:|:---:|:---:|
| 2025-11-24 | abcd | Escherichia coli | S | S |
| 2025-11-24 | abcd | Escherichia coli | S | R |
| 2025-11-24 | efgh | Escherichia coli | R | S |
| 2025-12-15 | abcd | Escherichia coli | S | S |
| 2025-12-15 | abcd | Escherichia coli | S | R |
| 2025-12-15 | efgh | Escherichia coli | R | S |
### Needed R packages
@@ -322,7 +322,7 @@ our_data <- our_data %>%
#> Using column 'patient_id' as input for `col_patient_id`.
#> Basing inclusion on all antimicrobial results, using a points threshold
#> of 2
#> => Found 2,724 'phenotype-based' first isolates (90.8% of total where a
#> => Found 2,730 'phenotype-based' first isolates (91.0% of total where a
#> microbial ID was available)
```
@@ -342,11 +342,11 @@ our_data_1st <- our_data %>%
filter_first_isolate()
```
So we end up with 2 724 isolates for analysis. Now our data looks like:
So we end up with 2 730 isolates for analysis. Now our data looks like:
``` r
our_data_1st
#> # A tibble: 2,724 × 9
#> # A tibble: 2,730 × 9
#> patient_id hospital date bacteria AMX AMC CIP GEN first
#> <chr> <chr> <date> <mo> <sir> <sir> <sir> <sir> <lgl>
#> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S TRUE
@@ -359,7 +359,7 @@ our_data_1st
#> 8 J3 A 2019-06-19 B_ESCHR_COLI S S S S TRUE
#> 9 G6 A 2015-04-27 B_STPHY_AURS S S S S TRUE
#> 10 P4 A 2011-06-21 B_ESCHR_COLI S S S S TRUE
#> # 2,714 more rows
#> # 2,720 more rows
```
Time for the analysis.
@@ -373,29 +373,29 @@ and `sir` classes that we now have in our data set:
``` r
summary(our_data_1st)
#> patient_id hospital date
#> Length:2724 Length:2724 Min. :2011-01-01
#> Class :character Class :character 1st Qu.:2013-04-07
#> Mode :character Mode :character Median :2015-06-03
#> Length:2730 Length:2730 Min. :2011-01-01
#> Class :character Class :character 1st Qu.:2013-04-06
#> Mode :character Mode :character Median :2015-06-04
#> Mean :2015-06-09
#> 3rd Qu.:2017-08-11
#> 3rd Qu.:2017-08-14
#> Max. :2019-12-27
#> bacteria AMX AMC
#> Class :mo Class:sir Class:sir
#> <NA> :0 %S :41.6% (n=1133) %S :52.6% (n=1432)
#> <NA> :0 %S :40.1% (n=1071) %S :51.1% (n=1354)
#> Unique:4 %SDD : 0.0% (n=0) %SDD : 0.0% (n=0)
#> #1 :B_ESCHR_COLI %I :16.4% (n=446) %I :12.2% (n=333)
#> #2 :B_STPHY_AURS %R :42.0% (n=1145) %R :35.2% (n=959)
#> #1 :B_ESCHR_COLI %I :17.0% (n=453) %I :12.7% (n=335)
#> #2 :B_STPHY_AURS %R :42.9% (n=1147) %R :36.2% (n=959)
#> #3 :B_STRPT_PNMN %NI : 0.0% (n=0) %NI : 0.0% (n=0)
#> CIP GEN first
#> Class:sir Class:sir Mode:logical
#> %S :52.5% (n=1431) %S :61.0% (n=1661) TRUE:2724
#> %S :52.2% (n=1426) %S :60.7% (n=1656) TRUE:2730
#> %SDD : 0.0% (n=0) %SDD : 0.0% (n=0)
#> %I : 6.5% (n=176) %I : 3.0% (n=82)
#> %R :41.0% (n=1117) %R :36.0% (n=981)
#> %I : 6.5% (n=178) %I : 3.0% (n=83)
#> %R :41.2% (n=1126) %R :36.3% (n=991)
#> %NI : 0.0% (n=0) %NI : 0.0% (n=0)
glimpse(our_data_1st)
#> Rows: 2,724
#> Rows: 2,730
#> Columns: 9
#> $ patient_id <chr> "J3", "R7", "P3", "P10", "B7", "W3", "M3", "J3", "G6", "P4"…
#> $ hospital <chr> "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",…
@@ -410,7 +410,7 @@ glimpse(our_data_1st)
# number of unique values per column:
sapply(our_data_1st, n_distinct)
#> patient_id hospital date bacteria AMX AMC CIP
#> 260 3 1854 4 3 3 3
#> 260 3 1854 4 4 4 3
#> GEN first
#> 3 1
```
@@ -437,9 +437,9 @@ our_data_1st %>%
#> # A tibble: 4 × 2
#> `mo_name(bacteria)` n
#> <chr> <int>
#> 1 Escherichia coli 1321
#> 2 Staphylococcus aureus 682
#> 3 Streptococcus pneumoniae 402
#> 1 Escherichia coli 1326
#> 2 Staphylococcus aureus 684
#> 3 Streptococcus pneumoniae 401
#> 4 Klebsiella pneumoniae 319
```
@@ -453,7 +453,7 @@ in:
our_data_1st %>%
select(date, aminoglycosides())
#> For `aminoglycosides()` using column 'GEN' (gentamicin)
#> # A tibble: 2,724 × 2
#> # A tibble: 2,730 × 2
#> date GEN
#> <date> <sir>
#> 1 2012-11-21 S
@@ -466,13 +466,13 @@ our_data_1st %>%
#> 8 2019-06-19 S
#> 9 2015-04-27 S
#> 10 2011-06-21 S
#> # 2,714 more rows
#> # 2,720 more rows
our_data_1st %>%
select(bacteria, betalactams())
#> For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC'
#> (amoxicillin/clavulanic acid)
#> # A tibble: 2,724 × 3
#> # A tibble: 2,730 × 3
#> bacteria AMX AMC
#> <mo> <sir> <sir>
#> 1 B_ESCHR_COLI R I
@@ -485,11 +485,11 @@ our_data_1st %>%
#> 8 B_ESCHR_COLI S S
#> 9 B_STPHY_AURS S S
#> 10 B_ESCHR_COLI S S
#> # 2,714 more rows
#> # 2,720 more rows
our_data_1st %>%
select(bacteria, where(is.sir))
#> # A tibble: 2,724 × 5
#> # A tibble: 2,730 × 5
#> bacteria AMX AMC CIP GEN
#> <mo> <sir> <sir> <sir> <sir>
#> 1 B_ESCHR_COLI R I S S
@@ -502,13 +502,13 @@ our_data_1st %>%
#> 8 B_ESCHR_COLI S S S S
#> 9 B_STPHY_AURS S S S S
#> 10 B_ESCHR_COLI S S S S
#> # 2,714 more rows
#> # 2,720 more rows
# filtering using AB selectors is also possible:
our_data_1st %>%
filter(any(aminoglycosides() == "R"))
#> For `aminoglycosides()` using column 'GEN' (gentamicin)
#> # A tibble: 981 × 9
#> # A tibble: 991 × 9
#> patient_id hospital date bacteria AMX AMC CIP GEN first
#> <chr> <chr> <date> <mo> <sir> <sir> <sir> <sir> <lgl>
#> 1 J5 A 2017-12-25 B_STRPT_PNMN R S S R TRUE
@@ -521,13 +521,13 @@ our_data_1st %>%
#> 8 P5 A 2019-03-09 B_STPHY_AURS S S S R TRUE
#> 9 Q8 A 2019-08-10 B_STPHY_AURS S S S R TRUE
#> 10 K5 A 2013-03-15 B_STRPT_PNMN S S S R TRUE
#> # 971 more rows
#> # 981 more rows
our_data_1st %>%
filter(all(betalactams() == "R"))
#> For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC'
#> (amoxicillin/clavulanic acid)
#> # A tibble: 462 × 9
#> # A tibble: 461 × 9
#> patient_id hospital date bacteria AMX AMC CIP GEN first
#> <chr> <chr> <date> <mo> <sir> <sir> <sir> <sir> <lgl>
#> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE
@@ -540,13 +540,13 @@ our_data_1st %>%
#> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE
#> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE
#> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE
#> # 452 more rows
#> # 451 more rows
# even works in base R (since R 3.0):
our_data_1st[all(betalactams() == "R"), ]
#> For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC'
#> (amoxicillin/clavulanic acid)
#> # A tibble: 462 × 9
#> # A tibble: 461 × 9
#> patient_id hospital date bacteria AMX AMC CIP GEN first
#> <chr> <chr> <date> <mo> <sir> <sir> <sir> <sir> <lgl>
#> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE
@@ -559,7 +559,7 @@ our_data_1st[all(betalactams() == "R"), ]
#> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE
#> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE
#> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE
#> # 452 more rows
#> # 451 more rows
```
### Generate antibiograms
@@ -843,7 +843,7 @@ These functions can be used on their own:
``` r
our_data_1st %>% resistance(AMX)
#> [1] 0.4203377
#> [1] 0.4294272
```
Or can be used in conjunction with
@@ -858,8 +858,8 @@ our_data_1st %>%
#> # A tibble: 3 × 2
#> hospital amoxicillin
#> <chr> <dbl>
#> 1 A 0.340
#> 2 B 0.551
#> 1 A 0.341
#> 2 B 0.586
#> 3 C 0.370
```