1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-08 21:22:01 +02:00

6 Commits
v3.0.0 ... main

30 changed files with 817 additions and 117 deletions

View File

@ -42,7 +42,7 @@ body:
multiple: false
options:
- ''
- Latest CRAN version (2.1.1)
- One of the latest GitHub versions (2.1.1.9xxx)
- Latest CRAN version (3.0.0)
- One of the latest GitHub versions (3.0.0.9xxx)
validations:
required: true

View File

@ -1,6 +1,6 @@
Package: AMR
Version: 3.0.0
Date: 2025-06-01
Version: 3.0.0.9004
Date: 2025-06-13
Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by
@ -51,6 +51,8 @@ Suggests:
pillar,
progress,
readxl,
recipes,
rlang,
rmarkdown,
rstudioapi,
rvest,

View File

@ -106,6 +106,8 @@ S3method(print,mo_uncertainties)
S3method(print,pca)
S3method(print,sir)
S3method(print,sir_log)
S3method(print,step_mic_log2)
S3method(print,step_sir_numeric)
S3method(quantile,mic)
S3method(rep,ab)
S3method(rep,av)
@ -159,6 +161,10 @@ export(administrable_per_os)
export(age)
export(age_groups)
export(all_antimicrobials)
export(all_mic)
export(all_mic_predictors)
export(all_sir)
export(all_sir_predictors)
export(aminoglycosides)
export(aminopenicillins)
export(amr_class)
@ -352,6 +358,8 @@ export(sir_df)
export(sir_interpretation_history)
export(sir_predict)
export(skewness)
export(step_mic_log2)
export(step_sir_numeric)
export(streptogramins)
export(sulfonamides)
export(susceptibility)
@ -388,6 +396,12 @@ if(getRversion() >= "3.0.0") S3method(pillar::type_sum, av)
if(getRversion() >= "3.0.0") S3method(pillar::type_sum, mic)
if(getRversion() >= "3.0.0") S3method(pillar::type_sum, mo)
if(getRversion() >= "3.0.0") S3method(pillar::type_sum, sir)
if(getRversion() >= "3.0.0") S3method(recipes::bake, step_mic_log2)
if(getRversion() >= "3.0.0") S3method(recipes::bake, step_sir_numeric)
if(getRversion() >= "3.0.0") S3method(recipes::prep, step_mic_log2)
if(getRversion() >= "3.0.0") S3method(recipes::prep, step_sir_numeric)
if(getRversion() >= "3.0.0") S3method(recipes::tidy, step_mic_log2)
if(getRversion() >= "3.0.0") S3method(recipes::tidy, step_sir_numeric)
if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, disk)
if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, mic)
if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, mo)

18
NEWS.md
View File

@ -1,3 +1,19 @@
# AMR 3.0.0.9004
### New
* Integration with the **tidymodels** framework to allow seamless use of MIC and SIR data in modelling pipelines via `recipes`
- `step_mic_log2()` to transform `<mic>` columns with log2, and `step_sir_numeric()` to convert `<sir>` columns to numeric
- `tidyselect` helpers: `all_mic()`, `all_mic_predictors()`, `all_sir()`, `all_sir_predictors()`
- Enables seamless use of MIC and SIR data in modelling pipelines via `recipes`
### Changed
* Fixed a bug in `antibiogram()` for when no antimicrobials are set
* Fixed a bug in `as.ab()` for antimicrobial codes with a number in it if they are preceded by a space
* Fixed a bug in `eucast_rules()` for using specific custom rules
* Fixed some specific Dutch translations for antimicrobials
* Updated `random_mic()` and `random_disk()` to set skewedness of the distribution and allow multiple microorganisms
# AMR 3.0.0
This package now supports not only tools for AMR data analysis in clinical settings, but also for veterinary and environmental microbiology. This was made possible through a collaboration with the [University of Prince Edward Island's Atlantic Veterinary College](https://www.upei.ca/avc), Canada. To celebrate this great improvement of the package, we also updated the package logo to reflect this change.
@ -122,7 +138,7 @@ This package now supports not only tools for AMR data analysis in clinical setti
## Older Versions
This changelog only contains changes from AMR v3.0 (March 2025) and later.
This changelog only contains changes from AMR v3.0 (June 2025) and later.
* For prior v2 versions, please see [our v2 archive](https://github.com/msberends/AMR/blob/v2.1.1/NEWS.md).
* For prior v1 versions, please see [our v1 archive](https://github.com/msberends/AMR/blob/v1.8.2/NEWS.md).

View File

@ -1244,7 +1244,9 @@ try_colour <- function(..., before, after, collapse = " ") {
}
}
is_dark <- function() {
if (is.null(AMR_env$is_dark_theme)) {
AMR_env$current_theme <- tryCatch(getExportedValue("getThemeInfo", ns = asNamespace("rstudioapi"))()$editor, error = function(e) NULL)
if (!identical(AMR_env$current_theme, AMR_env$former_theme) || is.null(AMR_env$is_dark_theme)) {
AMR_env$former_theme <- AMR_env$current_theme
AMR_env$is_dark_theme <- !has_colour() || tryCatch(isTRUE(getExportedValue("getThemeInfo", ns = asNamespace("rstudioapi"))()$dark), error = function(e) FALSE)
}
isTRUE(AMR_env$is_dark_theme)

4
R/ab.R
View File

@ -655,7 +655,9 @@ generalise_antibiotic_name <- function(x) {
x <- trimws(gsub(" +", " ", x, perl = TRUE))
# remove last couple of words if they numbers or units
x <- gsub("( ([0-9]{3,}|U?M?C?G|L))+$", "", x, perl = TRUE)
# move HIGH to end
# remove whitespace prior to numbers if preceded by A-Z
x <- gsub("([A-Z]+) +([0-9]+)", "\\1\\2", x, perl = TRUE)
# move HIGH to the end
x <- trimws(gsub("(.*) HIGH(.*)", "\\1\\2 HIGH", x, perl = TRUE))
x
}

View File

@ -208,7 +208,7 @@ age_groups <- function(x, split_at = c(12, 25, 55, 75), na.rm = FALSE) {
split_at <- c(0, split_at)
}
split_at <- split_at[!is.na(split_at)]
stop_if(length(split_at) == 1, "invalid value for `split_at`") # only 0 is available
stop_if(length(split_at) == 1, "invalid value for `split_at`.") # only 0 is available
# turn input values to 'split_at' indices
y <- x

View File

@ -40,6 +40,7 @@
#' - A combination of the above, using `c()`, e.g.:
#' - `c(aminoglycosides(), "AMP", "AMC")`
#' - `c(aminoglycosides(), carbapenems())`
#' - Column indices using numbers
#' - Combination therapy, indicated by using `"+"`, with or without [antimicrobial selectors][antimicrobial_selectors], e.g.:
#' - `"cipro + genta"`
#' - `"TZP+TOB"`
@ -452,7 +453,7 @@ antibiogram.default <- function(x,
deprecation_warning("antibiotics", "antimicrobials", fn = "antibiogram", is_argument = TRUE)
antimicrobials <- list(...)$antibiotics
}
meet_criteria(antimicrobials, allow_class = "character", allow_NA = FALSE, allow_NULL = FALSE)
meet_criteria(antimicrobials, allow_class = c("character", "numeric", "integer"), allow_NA = FALSE, allow_NULL = FALSE)
if (!is.function(mo_transform)) {
meet_criteria(mo_transform, allow_class = "character", has_length = 1, is_in = c("name", "shortname", "gramstain", colnames(AMR::microorganisms)), allow_NULL = TRUE, allow_NA = TRUE)
}
@ -1194,12 +1195,13 @@ retrieve_wisca_parameters <- function(wisca_model, ...) {
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(pillar::tbl_sum, antibiogram)
tbl_sum.antibiogram <- function(x, ...) {
dims <- paste(format(NROW(x), big.mark = ","), AMR_env$cross_icon, format(NCOL(x), big.mark = ","))
names(dims) <- "An Antibiogram"
if (isTRUE(attributes(x)$wisca)) {
names(dims) <- paste0("An Antibiogram (WISCA / ", attributes(x)$conf_interval * 100, "% CI)")
dims <- c(dims, Type = paste0("WISCA with ", attributes(x)$conf_interval * 100, "% CI"))
} else if (isTRUE(attributes(x)$formatting_type >= 13)) {
names(dims) <- paste0("An Antibiogram (non-WISCA / ", attributes(x)$conf_interval * 100, "% CI)")
dims <- c(dims, Type = paste0("Non-WISCA with ", attributes(x)$conf_interval * 100, "% CI"))
} else {
names(dims) <- paste0("An Antibiogram (non-WISCA)")
dims <- c(dims, Type = paste0("Non-WISCA without CI"))
}
dims
}

View File

@ -361,3 +361,15 @@
#' @examples
#' dosage
"dosage"
#' Data Set with `r format(nrow(esbl_isolates), big.mark = " ")` ESBL Isolates
#'
#' A data set containing `r format(nrow(esbl_isolates), big.mark = " ")` microbial isolates with MIC values of common antibiotics and a binary `esbl` column for extended-spectrum beta-lactamase (ESBL) production. This data set contains randomised fictitious data but reflects reality and can be used to practise AMR-related machine learning, e.g., classification modelling with [tidymodels](https://amr-for-r.org/articles/AMR_with_tidymodels.html).
#' @format A [tibble][tibble::tibble] with `r format(nrow(esbl_isolates), big.mark = " ")` observations and `r ncol(esbl_isolates)` variables:
#' - `esbl`\cr Logical indicator if the isolate is ESBL-producing
#' - `genus`\cr Genus of the microorganism
#' - `AMC:COL`\cr MIC values for 17 antimicrobial agents, transformed to class [`mic`] (see [as.mic()])
#' @details See our [tidymodels integration][amr-tidymodels] for an example using this data set.
#' @examples
#' esbl_isolates
"esbl_isolates"

View File

@ -442,7 +442,7 @@ eucast_rules <- function(x,
# big speed gain! only analyse unique rows:
pm_distinct(`.rowid`, .keep_all = TRUE) %pm>%
as.data.frame(stringsAsFactors = FALSE)
x[, col_mo] <- as.mo(as.character(x[, col_mo, drop = TRUE]), info = info)
x[, col_mo] <- as.mo(as.character(x[, col_mo, drop = TRUE]), info = FALSE)
# rename col_mo to prevent interference with joined columns
colnames(x)[colnames(x) == col_mo] <- ".col_mo"
col_mo <- ".col_mo"
@ -450,13 +450,20 @@ eucast_rules <- function(x,
x <- left_join_microorganisms(x, by = col_mo, suffix = c("_oldcols", ""))
x$gramstain <- mo_gramstain(x[, col_mo, drop = TRUE], language = NULL, info = FALSE)
x$genus_species <- trimws(paste(x$genus, x$species))
if (isTRUE(info) && NROW(x) > 10000) {
message_(" OK.", add_fn = list(font_green, font_bold), as_note = FALSE)
if (isTRUE(info) && NROW(x.bak) > 10000) {
message_("OK.", add_fn = list(font_green, font_bold), as_note = FALSE)
}
n_added <- 0
n_changed <- 0
rule_current <- ""
rule_group_current <- ""
rule_group_previous <- ""
rule_next <- ""
rule_previous <- ""
rule_text <- ""
# >>> Apply Other rules: enzyme inhibitors <<< ------------------------------------------
if (any(c("all", "other") %in% rules)) {
if (isTRUE(info)) {
@ -617,31 +624,16 @@ eucast_rules <- function(x,
eucast_rules_df <- eucast_rules_df %pm>%
rbind_AMR(eucast_rules_df_total %pm>%
subset(reference.rule_group %like% "breakpoint" & reference.version == version_breakpoints))
# eucast_rules_df <- subset(
# eucast_rules_df,
# reference.rule_group %unlike% "breakpoint" |
# (reference.rule_group %like% "breakpoint" & reference.version == version_breakpoints)
# )
}
if (any(c("all", "expected_phenotypes") %in% rules)) {
eucast_rules_df <- eucast_rules_df %pm>%
rbind_AMR(eucast_rules_df_total %pm>%
subset(reference.rule_group %like% "expected" & reference.version == version_expected_phenotypes))
# eucast_rules_df <- subset(
# eucast_rules_df,
# reference.rule_group %unlike% "expected" |
# (reference.rule_group %like% "expected" & reference.version == version_expected_phenotypes)
# )
}
if (any(c("all", "expert") %in% rules)) {
eucast_rules_df <- eucast_rules_df %pm>%
rbind_AMR(eucast_rules_df_total %pm>%
subset(reference.rule_group %like% "expert" & reference.version == version_expertrules))
# eucast_rules_df <- subset(
# eucast_rules_df,
# reference.rule_group %unlike% "expert" |
# (reference.rule_group %like% "expert" & reference.version == version_expertrules)
# )
}
## filter out AmpC de-repressed cephalosporin-resistant mutants ----
# no need to filter on version number here - the rules contain these version number, so are inherently filtered
@ -664,6 +656,9 @@ eucast_rules <- function(x,
# we only hints on remaining rows in `eucast_rules_df`
screening_abx <- as.character(AMR::antimicrobials$ab[which(AMR::antimicrobials$ab %like% "-S$")])
screening_abx <- screening_abx[screening_abx %in% unique(unlist(strsplit(EUCAST_RULES_DF$and_these_antibiotics[!is.na(EUCAST_RULES_DF$and_these_antibiotics)], ", *")))]
if (isTRUE(info)) {
cat("\n")
}
for (ab_s in screening_abx) {
ab <- gsub("-S$", "", ab_s)
if (ab %in% names(cols_ab) && !ab_s %in% names(cols_ab)) {
@ -894,7 +889,9 @@ eucast_rules <- function(x,
}
for (i in seq_len(length(custom_rules))) {
rule <- custom_rules[[i]]
rows <- which(eval(parse(text = rule$query), envir = x))
rows <- tryCatch(which(eval(parse(text = rule$query), envir = x)),
error = function(e) stop_(paste0(conditionMessage(e), font_red(" (check available data and compare with the custom rules set)")), call = FALSE)
)
cols <- as.character(rule$result_group)
cols <- c(
cols[cols %in% colnames(x)], # direct column names
@ -908,9 +905,8 @@ eucast_rules <- function(x,
get_antibiotic_names(cols)
)
if (isTRUE(info)) {
# print rule
cat(italicise_taxonomy(
word_wrap(format_custom_query_rule(rule$query, colours = FALSE),
word_wrap(rule_text,
width = getOption("width") - 30,
extra_indent = 6
),

View File

@ -432,11 +432,17 @@ pillar_shaft.mic <- function(x, ...) {
}
crude_numbers <- as.double(x)
operators <- gsub("[^<=>]+", "", as.character(x))
# colourise operators
operators[!is.na(operators) & operators != ""] <- font_silver(operators[!is.na(operators) & operators != ""], collapse = NULL)
out <- trimws(paste0(operators, trimws(format(crude_numbers))))
out[is.na(x)] <- font_na(NA)
# make trailing zeroes less visible
out[out %like% "[.]"] <- gsub("([.]?0+)$", font_silver("\\1"), out[out %like% "[.]"], perl = TRUE)
if (is_dark()) {
fn <- font_silver
} else {
fn <- font_white
}
out[out %like% "[.]"] <- gsub("([.]?0+)$", fn("\\1"), out[out %like% "[.]"], perl = TRUE)
create_pillar_column(out, align = "right", width = max(nchar(font_stripstyle(out))))
}

View File

@ -31,13 +31,17 @@
#'
#' These functions can be used for generating random MIC values and disk diffusion diameters, for AMR data analysis practice. By providing a microorganism and antimicrobial drug, the generated results will reflect reality as much as possible.
#' @param size Desired size of the returned vector. If used in a [data.frame] call or `dplyr` verb, will get the current (group) size if left blank.
#' @param mo Any [character] that can be coerced to a valid microorganism code with [as.mo()].
#' @param mo Any [character] that can be coerced to a valid microorganism code with [as.mo()]. Can be the same length as `size`.
#' @param ab Any [character] that can be coerced to a valid antimicrobial drug code with [as.ab()].
#' @param prob_SIR A vector of length 3: the probabilities for "S" (1st value), "I" (2nd value) and "R" (3rd value).
#' @param skew Direction of skew for MIC or disk values, either `"right"` or `"left"`. A left-skewed distribution has the majority of the data on the right.
#' @param severity Skew severity; higher values will increase the skewedness. Default is `2`; use `0` to prevent skewedness.
#' @param ... Ignored, only in place to allow future extensions.
#' @details The base \R function [sample()] is used for generating values.
#'
#' Generated values are based on the EUCAST `r max(as.integer(gsub("[^0-9]", "", subset(clinical_breakpoints, guideline %like% "EUCAST")$guideline)))` guideline as implemented in the [clinical_breakpoints] data set. To create specific generated values per bug or drug, set the `mo` and/or `ab` argument.
#' @details
#' Internally, MIC and disk zone values are sampled based on clinical breakpoints defined in the [clinical_breakpoints] data set. To create specific generated values per bug or drug, set the `mo` and/or `ab` argument. The MICs are sampled on a log2 scale and disks linearly, using weighted probabilities. The weights are based on the `skew` and `severity` arguments:
#' * `skew = "right"` places more emphasis on lower MIC or higher disk values.
#' * `skew = "left"` places more emphasis on higher MIC or lower disk values.
#' * `severity` controls the exponential bias applied.
#' @return class `mic` for [random_mic()] (see [as.mic()]) and class `disk` for [random_disk()] (see [as.disk()])
#' @name random
#' @rdname random
@ -47,8 +51,13 @@
#' random_disk(25)
#' random_sir(25)
#'
#' # add more skewedness, make more realistic by setting a bug and/or drug:
#' disks <- random_disk(100, severity = 2, mo = "Escherichia coli", ab = "CIP")
#' plot(disks)
#' # `plot()` and `ggplot2::autoplot()` allow for coloured bars if `mo` and `ab` are set
#' plot(disks, mo = "Escherichia coli", ab = "CIP", guideline = "CLSI 2025")
#'
#' \donttest{
#' # make the random generation more realistic by setting a bug and/or drug:
#' random_mic(25, "Klebsiella pneumoniae") # range 0.0625-64
#' random_mic(25, "Klebsiella pneumoniae", "meropenem") # range 0.0625-16
#' random_mic(25, "Streptococcus pneumoniae", "meropenem") # range 0.0625-4
@ -57,26 +66,61 @@
#' random_disk(25, "Klebsiella pneumoniae", "ampicillin") # range 11-17
#' random_disk(25, "Streptococcus pneumoniae", "ampicillin") # range 12-27
#' }
random_mic <- function(size = NULL, mo = NULL, ab = NULL, ...) {
random_mic <- function(size = NULL, mo = NULL, ab = NULL, skew = "right", severity = 1, ...) {
meet_criteria(size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE, allow_NULL = TRUE)
meet_criteria(mo, allow_class = "character", has_length = 1, allow_NULL = TRUE)
meet_criteria(mo, allow_class = "character", has_length = c(1, size), allow_NULL = TRUE)
meet_criteria(ab, allow_class = "character", has_length = 1, allow_NULL = TRUE)
meet_criteria(skew, allow_class = "character", is_in = c("right", "left"), has_length = 1)
meet_criteria(severity, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE)
if (is.null(size)) {
size <- NROW(get_current_data(arg_name = "size", call = -3))
}
random_exec("MIC", size = size, mo = mo, ab = ab)
if (length(mo) > 1) {
out <- rep(NA_mic_, length(size))
p <- progress_ticker(n = length(unique(mo)), n_min = 10, title = "Generating random MIC values")
for (mo_ in unique(mo)) {
p$tick()
out[which(mo == mo_)] <- random_exec("MIC", size = sum(mo == mo_), mo = mo_, ab = ab, skew = skew, severity = severity)
}
out <- as.mic(out, keep_operators = "none")
if (stats::runif(1) > 0.5 && length(unique(out)) > 1) {
out[out == min(out)] <- paste0("<=", out[out == min(out)])
}
if (stats::runif(1) > 0.5 && length(unique(out)) > 1) {
out[out == max(out) & out %unlike% "<="] <- paste0(">=", out[out == max(out) & out %unlike% "<="])
}
return(out)
} else {
random_exec("MIC", size = size, mo = mo, ab = ab, skew = skew, severity = severity)
}
}
#' @rdname random
#' @export
random_disk <- function(size = NULL, mo = NULL, ab = NULL, ...) {
random_disk <- function(size = NULL, mo = NULL, ab = NULL, skew = "left", severity = 1, ...) {
meet_criteria(size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE, allow_NULL = TRUE)
meet_criteria(mo, allow_class = "character", has_length = 1, allow_NULL = TRUE)
meet_criteria(mo, allow_class = "character", has_length = c(1, size), allow_NULL = TRUE)
meet_criteria(ab, allow_class = "character", has_length = 1, allow_NULL = TRUE)
meet_criteria(skew, allow_class = "character", is_in = c("right", "left"), has_length = 1)
meet_criteria(severity, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE)
if (is.null(size)) {
size <- NROW(get_current_data(arg_name = "size", call = -3))
}
random_exec("DISK", size = size, mo = mo, ab = ab)
if (length(mo) > 1) {
out <- rep(NA_mic_, length(size))
p <- progress_ticker(n = length(unique(mo)), n_min = 10, title = "Generating random MIC values")
for (mo_ in unique(mo)) {
p$tick()
out[which(mo == mo_)] <- random_exec("DISK", size = sum(mo == mo_), mo = mo_, ab = ab, skew = skew, severity = severity)
}
out <- as.disk(out)
return(out)
} else {
random_exec("DISK", size = size, mo = mo, ab = ab, skew = skew, severity = severity)
}
}
#' @rdname random
@ -90,78 +134,60 @@ random_sir <- function(size = NULL, prob_SIR = c(0.33, 0.33, 0.33), ...) {
sample(as.sir(c("S", "I", "R")), size = size, replace = TRUE, prob = prob_SIR)
}
random_exec <- function(method_type, size, mo = NULL, ab = NULL) {
df <- AMR::clinical_breakpoints %pm>%
pm_filter(guideline %like% "EUCAST") %pm>%
pm_arrange(pm_desc(guideline)) %pm>%
subset(guideline == max(guideline) &
method == method_type &
type == "human")
random_exec <- function(method_type, size, mo = NULL, ab = NULL, skew = "right", severity = 1) {
df <- AMR::clinical_breakpoints %pm>% subset(method == method_type & type == "human")
if (!is.null(mo)) {
mo_coerced <- as.mo(mo)
mo_include <- c(
mo_coerced,
as.mo(mo_genus(mo_coerced)),
as.mo(mo_family(mo_coerced)),
as.mo(mo_order(mo_coerced))
)
df_new <- df %pm>%
subset(mo %in% mo_include)
if (nrow(df_new) > 0) {
df <- df_new
} else {
warning_("in `random_", tolower(method_type), "()`: no rows found that match mo '", mo, "', ignoring argument `mo`")
}
mo_coerced <- as.mo(mo, info = FALSE)
mo_include <- c(mo_coerced, as.mo(mo_genus(mo_coerced)), as.mo(mo_family(mo_coerced)), as.mo(mo_order(mo_coerced)))
df_new <- df %pm>% subset(mo %in% mo_include)
if (nrow(df_new) > 0) df <- df_new
}
if (!is.null(ab)) {
ab_coerced <- as.ab(ab)
df_new <- df %pm>%
subset(ab %in% ab_coerced)
if (nrow(df_new) > 0) {
df <- df_new
} else {
warning_("in `random_", tolower(method_type), "()`: no rows found that match ab '", ab, "' (", ab_name(ab_coerced, tolower = TRUE, language = NULL), "), ignoring argument `ab`")
}
df_new <- df %pm>% subset(ab %in% ab_coerced)
if (nrow(df_new) > 0) df <- df_new
}
if (method_type == "MIC") {
# set range
mic_range <- c(0.001, 0.002, 0.005, 0.010, 0.025, 0.0625, 0.125, 0.250, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256)
lowest_mic <- min(df$breakpoint_S, na.rm = TRUE)
lowest_mic <- log2(lowest_mic) + sample(c(-3:2), 1)
lowest_mic <- 2^lowest_mic
highest_mic <- max(df$breakpoint_R, na.rm = TRUE)
highest_mic <- log2(highest_mic) + sample(c(-3:1), 1)
highest_mic <- max(lowest_mic * 2, 2^highest_mic)
# get highest/lowest +/- random 1 to 3 higher factors of two
max_range <- mic_range[min(
length(mic_range),
which(mic_range == max(df$breakpoint_R[!is.na(df$breakpoint_R)], na.rm = TRUE)) + sample(c(1:3), 1)
)]
min_range <- mic_range[max(
1,
which(mic_range == min(df$breakpoint_S, na.rm = TRUE)) - sample(c(1:3), 1)
)]
mic_range_new <- mic_range[mic_range <= max_range & mic_range >= min_range]
if (length(mic_range_new) == 0) {
mic_range_new <- mic_range
}
out <- as.mic(sample(mic_range_new, size = size, replace = TRUE))
# 50% chance that lowest will get <= and highest will get >=
out <- skewed_values(COMMON_MIC_VALUES, size = size, min = lowest_mic, max = highest_mic, skew = skew, severity = severity)
if (stats::runif(1) > 0.5 && length(unique(out)) > 1) {
out[out == min(out)] <- paste0("<=", out[out == min(out)])
}
if (stats::runif(1) > 0.5 && length(unique(out)) > 1) {
out[out == max(out)] <- paste0(">=", out[out == max(out)])
out[out == max(out) & out %unlike% "<="] <- paste0(">=", out[out == max(out) & out %unlike% "<="])
}
return(out)
return(as.mic(out))
} else if (method_type == "DISK") {
set_range <- seq(
from = as.integer(min(df$breakpoint_R[!is.na(df$breakpoint_R)], na.rm = TRUE) / 1.25),
to = as.integer(max(df$breakpoint_S, na.rm = TRUE) * 1.25),
disk_range <- seq(
from = floor(min(df$breakpoint_R[!is.na(df$breakpoint_R)], na.rm = TRUE) / 1.25),
to = ceiling(max(df$breakpoint_S[df$breakpoint_S != 50], na.rm = TRUE) * 1.25),
by = 1
)
out <- sample(set_range, size = size, replace = TRUE)
out[out < 6] <- sample(c(6:10), length(out[out < 6]), replace = TRUE)
out[out > 50] <- sample(c(40:50), length(out[out > 50]), replace = TRUE)
disk_range <- disk_range[disk_range >= 6 & disk_range <= 50]
out <- skewed_values(disk_range, size = size, min = min(disk_range), max = max(disk_range), skew = skew, severity = severity)
return(as.disk(out))
}
}
skewed_values <- function(values, size, min, max, skew = c("right", "left"), severity = 1) {
skew <- match.arg(skew)
range_vals <- values[values >= min & values <= max]
if (length(range_vals) < 2) range_vals <- values
ranks <- seq_along(range_vals)
weights <- switch(skew,
right = rev(ranks)^severity,
left = ranks^severity
)
weights <- weights / sum(weights)
sample(range_vals, size = size, replace = TRUE, prob = weights)
}

View File

@ -159,7 +159,7 @@
#'
#' The function [is.sir()] detects if the input contains class `sir`. If the input is a [data.frame] or [list], it iterates over all columns/items and returns a [logical] vector.
#'
#' The base R function [as.double()] can be used to retrieve quantitative values from a `sir` object: `"S"` = 1, `"I"`/`"SDD"` = 2, `"R"` = 3. All other values are rendered `NA` . **Note:** Do not use `as.integer()`, since that (because of how R works internally) will return the factor level indices, and not these aforementioned quantitative values.
#' The base R function [as.double()] can be used to retrieve quantitative values from a `sir` object: `"S"` = 1, `"I"`/`"SDD"` = 2, `"R"` = 3. All other values are rendered `NA`. **Note:** Do not use `as.integer()`, since that (because of how R works internally) will return the factor level indices, and not these aforementioned quantitative values.
#'
#' The function [is_sir_eligible()] returns `TRUE` when a column contains at most 5% potentially invalid antimicrobial interpretations, and `FALSE` otherwise. The threshold of 5% can be set with the `threshold` argument. If the input is a [data.frame], it iterates over all columns and returns a [logical] vector.
#' @section Interpretation of SIR:

Binary file not shown.

262
R/tidymodels.R Normal file
View File

@ -0,0 +1,262 @@
#' AMR Extensions for Tidymodels
#'
#' This family of functions allows using AMR-specific data types such as `<mic>` and `<sir>` inside `tidymodels` pipelines.
#' @inheritParams recipes::step_center
#' @details
#' You can read more in our online [AMR with tidymodels introduction](https://amr-for-r.org/articles/AMR_with_tidymodels.html).
#'
#' Tidyselect helpers include:
#' - [all_mic()] and [all_mic_predictors()] to select `<mic>` columns
#' - [all_sir()] and [all_sir_predictors()] to select `<sir>` columns
#'
#' Pre-processing pipeline steps include:
#' - [step_mic_log2()] to convert MIC columns to numeric (via `as.numeric()`) and apply a log2 transform, to be used with [all_mic_predictors()]
#' - [step_sir_numeric()] to convert SIR columns to numeric (via `as.numeric()`), to be used with [all_sir_predictors()]: `"S"` = 1, `"I"`/`"SDD"` = 2, `"R"` = 3. All other values are rendered `NA`. Keep this in mind for further processing, especially if the model does not allow for `NA` values.
#'
#' These steps integrate with `recipes::recipe()` and work like standard preprocessing steps. They are useful for preparing data for modelling, especially with classification models.
#' @seealso [recipes::recipe()], [as.mic()], [as.sir()]
#' @name amr-tidymodels
#' @keywords internal
#' @export
#' @examples
#' library(tidymodels)
#'
#' # The below approach formed the basis for this paper: DOI 10.3389/fmicb.2025.1582703
#' # Presence of ESBL genes was predicted based on raw MIC values.
#'
#'
#' # example data set in the AMR package
#' esbl_isolates
#'
#' # Prepare a binary outcome and convert to ordered factor
#' data <- esbl_isolates %>%
#' mutate(esbl = factor(esbl, levels = c(FALSE, TRUE), ordered = TRUE))
#'
#' # Split into training and testing sets
#' split <- initial_split(data)
#' training_data <- training(split)
#' testing_data <- testing(split)
#'
#' # Create and prep a recipe with MIC log2 transformation
#' mic_recipe <- recipe(esbl ~ ., data = training_data) %>%
#' # Optionally remove non-predictive variables
#' remove_role(genus, old_role = "predictor") %>%
#' # Apply the log2 transformation to all MIC predictors
#' step_mic_log2(all_mic_predictors()) %>%
#' prep()
#'
#' # View prepped recipe
#' mic_recipe
#'
#' # Apply the recipe to training and testing data
#' out_training <- bake(mic_recipe, new_data = NULL)
#' out_testing <- bake(mic_recipe, new_data = testing_data)
#'
#' # Fit a logistic regression model
#' fitted <- logistic_reg(mode = "classification") %>%
#' set_engine("glm") %>%
#' fit(esbl ~ ., data = out_training)
#'
#' # Generate predictions on the test set
#' predictions <- predict(fitted, out_testing) %>%
#' bind_cols(out_testing)
#'
#' # Evaluate predictions using standard classification metrics
#' our_metrics <- metric_set(accuracy, kap, ppv, npv)
#' metrics <- our_metrics(predictions, truth = esbl, estimate = .pred_class)
#'
#' # Show performance:
#' # - negative predictive value (NPV) of ~98%
#' # - positive predictive value (PPV) of ~94%
#' metrics
all_mic <- function() {
x <- tidymodels_amr_select(levels(NA_mic_))
names(x)
}
#' @rdname amr-tidymodels
#' @export
all_mic_predictors <- function() {
x <- tidymodels_amr_select(levels(NA_mic_))
intersect(x, recipes::has_role("predictor"))
}
#' @rdname amr-tidymodels
#' @export
all_sir <- function() {
x <- tidymodels_amr_select(levels(NA_sir_))
names(x)
}
#' @rdname amr-tidymodels
#' @export
all_sir_predictors <- function() {
x <- tidymodels_amr_select(levels(NA_sir_))
intersect(x, recipes::has_role("predictor"))
}
#' @rdname amr-tidymodels
#' @export
step_mic_log2 <- function(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = recipes::rand_id("mic_log2")) {
recipes::add_step(
recipe,
step_mic_log2_new(
terms = rlang::enquos(...),
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
)
}
step_mic_log2_new <- function(terms, role, trained, columns, skip, id) {
recipes::step(
subclass = "mic_log2",
terms = terms,
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::prep, step_mic_log2)
prep.step_mic_log2 <- function(x, training, info = NULL, ...) {
col_names <- recipes::recipes_eval_select(x$terms, training, info)
recipes::check_type(training[, col_names], types = "ordered")
step_mic_log2_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
skip = x$skip,
id = x$id
)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::bake, step_mic_log2)
bake.step_mic_log2 <- function(object, new_data, ...) {
recipes::check_new_data(object$columns, object, new_data)
for (col in object$columns) {
new_data[[col]] <- log2(as.numeric(as.mic(new_data[[col]])))
}
new_data
}
#' @export
print.step_mic_log2 <- function(x, width = max(20, options()$width - 35), ...) {
title <- "Log2 transformation of MIC columns"
recipes::print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::tidy, step_mic_log2)
tidy.step_mic_log2 <- function(x, ...) {
if (recipes::is_trained(x)) {
res <- tibble::tibble(terms = x$columns)
} else {
res <- tibble::tibble(terms = recipes::sel2char(x$terms))
}
res$id <- x$id
res
}
#' @rdname amr-tidymodels
#' @export
step_sir_numeric <- function(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = recipes::rand_id("sir_numeric")) {
recipes::add_step(
recipe,
step_sir_numeric_new(
terms = rlang::enquos(...),
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
)
}
step_sir_numeric_new <- function(terms, role, trained, columns, skip, id) {
recipes::step(
subclass = "sir_numeric",
terms = terms,
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::prep, step_sir_numeric)
prep.step_sir_numeric <- function(x, training, info = NULL, ...) {
col_names <- recipes::recipes_eval_select(x$terms, training, info)
recipes::check_type(training[, col_names], types = "ordered")
step_sir_numeric_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
skip = x$skip,
id = x$id
)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::bake, step_sir_numeric)
bake.step_sir_numeric <- function(object, new_data, ...) {
recipes::check_new_data(object$columns, object, new_data)
for (col in object$columns) {
new_data[[col]] <- as.numeric(as.sir(new_data[[col]]))
}
new_data
}
#' @export
print.step_sir_numeric <- function(x, width = max(20, options()$width - 35), ...) {
title <- "Numeric transformation of SIR columns"
recipes::print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::tidy, step_sir_numeric)
tidy.step_sir_numeric <- function(x, ...) {
if (recipes::is_trained(x)) {
res <- tibble::tibble(terms = x$columns)
} else {
res <- tibble::tibble(terms = recipes::sel2char(x$terms))
}
res$id <- x$id
res
}
tidymodels_amr_select <- function(check_vector) {
df <- get_current_data()
ind <- which(
vapply(
FUN.VALUE = logical(1),
df,
function(x) all(x %in% c(check_vector, NA), na.rm = TRUE) & any(x %in% check_vector),
USE.NAMES = TRUE
),
useNames = TRUE
)
ind
}

View File

@ -258,6 +258,11 @@ translate_into_language <- function(from,
return(from)
}
if (only_affect_ab_names == TRUE) {
df_trans$pattern[df_trans$regular_expr == TRUE] <- paste0(df_trans$pattern[df_trans$regular_expr == TRUE], "$")
df_trans$pattern[df_trans$regular_expr == TRUE] <- gsub("$$", "$", df_trans$pattern[df_trans$regular_expr == TRUE], fixed = TRUE)
}
lapply(
# starting with longest pattern, since more general translations are shorter, such as 'Group'
order(nchar(df_trans$pattern), decreasing = TRUE),

View File

@ -234,6 +234,7 @@ reference:
- "`antimicrobials`"
- "`clinical_breakpoints`"
- "`example_isolates`"
- "`esbl_isolates`"
- "`microorganisms.codes`"
- "`microorganisms.groups`"
- "`intrinsic_resistant`"

View File

@ -663,7 +663,9 @@ if (files_changed()) {
}
# Update index.md and README.md -------------------------------------------
if (files_changed("man/microorganisms.Rd") ||
if (files_changed("README.Rmd") ||
files_changed("index.Rmd") ||
files_changed("man/microorganisms.Rd") ||
files_changed("man/antimicrobials.Rd") ||
files_changed("man/clinical_breakpoints.Rd") ||
files_changed("man/antibiogram.Rd") ||

BIN
data/esbl_isolates.rda Normal file

Binary file not shown.

View File

@ -28,8 +28,8 @@ AMR:::reset_all_thrown_messages()
> Now available for Python too! [Click here](./articles/AMR_for_Python.html) to read more.
<div style="display: flex; font-size: 0.8em;">
<p style="text-align:left; width: 50%;"><small><a href="https://amr-for-r.org/">https://amr-for-r.org</a></small></p>
<p style="text-align:right; width: 50%;"><small><a href="https://doi.org/10.18637/jss.v104.i03" target="_blank">https://doi.org/10.18637/jss.v104.i03</a></small></p>
<p style="text-align:left; width: 50%;"><small><a href="https://amr-for-r.org/">amr-for-r.org</a></small></p>
<p style="text-align:right; width: 50%;"><small><a href="https://doi.org/10.18637/jss.v104.i03" target="_blank">doi.org/10.18637/jss.v104.i03</a></small></p>
</div>
<a href="./reference/clinical_breakpoints.html#response-from-clsi-and-eucast"><img src="./endorsement_clsi_eucast.jpg" class="endorse_img" align="right" height="120" /></a>

122
man/amr-tidymodels.Rd Normal file
View File

@ -0,0 +1,122 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/tidymodels.R
\name{amr-tidymodels}
\alias{amr-tidymodels}
\alias{all_mic}
\alias{all_mic_predictors}
\alias{all_sir}
\alias{all_sir_predictors}
\alias{step_mic_log2}
\alias{step_sir_numeric}
\title{AMR Extensions for Tidymodels}
\usage{
all_mic()
all_mic_predictors()
all_sir()
all_sir_predictors()
step_mic_log2(recipe, ..., role = NA, trained = FALSE, columns = NULL,
skip = FALSE, id = recipes::rand_id("mic_log2"))
step_sir_numeric(recipe, ..., role = NA, trained = FALSE, columns = NULL,
skip = FALSE, id = recipes::rand_id("sir_numeric"))
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the sequence of
operations for this recipe.}
\item{...}{One or more selector functions to choose variables for this step.
See \code{\link[recipes:selections]{selections()}} for more details.}
\item{role}{Not used by this step since no new variables are created.}
\item{trained}{A logical to indicate if the quantities for preprocessing have
been estimated.}
\item{skip}{A logical. Should the step be skipped when the recipe is baked by
\code{\link[recipes:bake]{bake()}}? While all operations are baked when \code{\link[recipes:prep]{prep()}} is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using \code{skip = TRUE} as it
may affect the computations for subsequent operations.}
\item{id}{A character string that is unique to this step to identify it.}
}
\description{
This family of functions allows using AMR-specific data types such as \verb{<mic>} and \verb{<sir>} inside \code{tidymodels} pipelines.
}
\details{
You can read more in our online \href{https://amr-for-r.org/articles/AMR_with_tidymodels.html}{AMR with tidymodels introduction}.
Tidyselect helpers include:
\itemize{
\item \code{\link[=all_mic]{all_mic()}} and \code{\link[=all_mic_predictors]{all_mic_predictors()}} to select \verb{<mic>} columns
\item \code{\link[=all_sir]{all_sir()}} and \code{\link[=all_sir_predictors]{all_sir_predictors()}} to select \verb{<sir>} columns
}
Pre-processing pipeline steps include:
\itemize{
\item \code{\link[=step_mic_log2]{step_mic_log2()}} to convert MIC columns to numeric (via \code{as.numeric()}) and apply a log2 transform, to be used with \code{\link[=all_mic_predictors]{all_mic_predictors()}}
\item \code{\link[=step_sir_numeric]{step_sir_numeric()}} to convert SIR columns to numeric (via \code{as.numeric()}), to be used with \code{\link[=all_sir_predictors]{all_sir_predictors()}}: \code{"S"} = 1, \code{"I"}/\code{"SDD"} = 2, \code{"R"} = 3. All other values are rendered \code{NA}. Keep this in mind for further processing, especially if the model does not allow for \code{NA} values.
}
These steps integrate with \code{recipes::recipe()} and work like standard preprocessing steps. They are useful for preparing data for modelling, especially with classification models.
}
\examples{
library(tidymodels)
# The below approach formed the basis for this paper: DOI 10.3389/fmicb.2025.1582703
# Presence of ESBL genes was predicted based on raw MIC values.
# example data set in the AMR package
esbl_isolates
# Prepare a binary outcome and convert to ordered factor
data <- esbl_isolates \%>\%
mutate(esbl = factor(esbl, levels = c(FALSE, TRUE), ordered = TRUE))
# Split into training and testing sets
split <- initial_split(data)
training_data <- training(split)
testing_data <- testing(split)
# Create and prep a recipe with MIC log2 transformation
mic_recipe <- recipe(esbl ~ ., data = training_data) \%>\%
# Optionally remove non-predictive variables
remove_role(genus, old_role = "predictor") \%>\%
# Apply the log2 transformation to all MIC predictors
step_mic_log2(all_mic_predictors()) \%>\%
prep()
# View prepped recipe
mic_recipe
# Apply the recipe to training and testing data
out_training <- bake(mic_recipe, new_data = NULL)
out_testing <- bake(mic_recipe, new_data = testing_data)
# Fit a logistic regression model
fitted <- logistic_reg(mode = "classification") \%>\%
set_engine("glm") \%>\%
fit(esbl ~ ., data = out_training)
# Generate predictions on the test set
predictions <- predict(fitted, out_testing) \%>\%
bind_cols(out_testing)
# Evaluate predictions using standard classification metrics
our_metrics <- metric_set(accuracy, kap, ppv, npv)
metrics <- our_metrics(predictions, truth = esbl, estimate = .pred_class)
# Show performance:
# - negative predictive value (NPV) of ~98\%
# - positive predictive value (PPV) of ~94\%
metrics
}
\seealso{
\code{\link[recipes:recipe]{recipes::recipe()}}, \code{\link[=as.mic]{as.mic()}}, \code{\link[=as.sir]{as.sir()}}
}
\keyword{internal}

View File

@ -56,6 +56,7 @@ retrieve_wisca_parameters(wisca_model, ...)
\item \code{c(aminoglycosides(), "AMP", "AMC")}
\item \code{c(aminoglycosides(), carbapenems())}
}
\item Column indices using numbers
\item Combination therapy, indicated by using \code{"+"}, with or without \link[=antimicrobial_selectors]{antimicrobial selectors}, e.g.:
\itemize{
\item \code{"cipro + genta"}

View File

@ -247,7 +247,7 @@ To determine which isolates are multi-drug resistant, be sure to run \code{\link
The function \code{\link[=is.sir]{is.sir()}} detects if the input contains class \code{sir}. If the input is a \link{data.frame} or \link{list}, it iterates over all columns/items and returns a \link{logical} vector.
The base R function \code{\link[=as.double]{as.double()}} can be used to retrieve quantitative values from a \code{sir} object: \code{"S"} = 1, \code{"I"}/\code{"SDD"} = 2, \code{"R"} = 3. All other values are rendered \code{NA} . \strong{Note:} Do not use \code{as.integer()}, since that (because of how R works internally) will return the factor level indices, and not these aforementioned quantitative values.
The base R function \code{\link[=as.double]{as.double()}} can be used to retrieve quantitative values from a \code{sir} object: \code{"S"} = 1, \code{"I"}/\code{"SDD"} = 2, \code{"R"} = 3. All other values are rendered \code{NA}. \strong{Note:} Do not use \code{as.integer()}, since that (because of how R works internally) will return the factor level indices, and not these aforementioned quantitative values.
The function \code{\link[=is_sir_eligible]{is_sir_eligible()}} returns \code{TRUE} when a column contains at most 5\% potentially invalid antimicrobial interpretations, and \code{FALSE} otherwise. The threshold of 5\% can be set with the \code{threshold} argument. If the input is a \link{data.frame}, it iterates over all columns and returns a \link{logical} vector.
}

27
man/esbl_isolates.Rd Normal file
View File

@ -0,0 +1,27 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/data.R
\docType{data}
\name{esbl_isolates}
\alias{esbl_isolates}
\title{Data Set with 500 ESBL Isolates}
\format{
A \link[tibble:tibble]{tibble} with 500 observations and 19 variables:
\itemize{
\item \code{esbl}\cr Logical indicator if the isolate is ESBL-producing
\item \code{genus}\cr Genus of the microorganism
\item \code{AMC:COL}\cr MIC values for 17 antimicrobial agents, transformed to class \code{\link{mic}} (see \code{\link[=as.mic]{as.mic()}})
}
}
\usage{
esbl_isolates
}
\description{
A data set containing 500 microbial isolates with MIC values of common antibiotics and a binary \code{esbl} column for extended-spectrum beta-lactamase (ESBL) production. This data set contains randomised fictitious data but reflects reality and can be used to practise AMR-related machine learning, e.g., classification modelling with \href{https://amr-for-r.org/articles/AMR_with_tidymodels.html}{tidymodels}.
}
\details{
See our \link[=amr-tidymodels]{tidymodels integration} for an example using this data set.
}
\examples{
esbl_isolates
}
\keyword{datasets}

View File

@ -7,19 +7,25 @@
\alias{random_sir}
\title{Random MIC Values/Disk Zones/SIR Generation}
\usage{
random_mic(size = NULL, mo = NULL, ab = NULL, ...)
random_mic(size = NULL, mo = NULL, ab = NULL, skew = "right",
severity = 1, ...)
random_disk(size = NULL, mo = NULL, ab = NULL, ...)
random_disk(size = NULL, mo = NULL, ab = NULL, skew = "left",
severity = 1, ...)
random_sir(size = NULL, prob_SIR = c(0.33, 0.33, 0.33), ...)
}
\arguments{
\item{size}{Desired size of the returned vector. If used in a \link{data.frame} call or \code{dplyr} verb, will get the current (group) size if left blank.}
\item{mo}{Any \link{character} that can be coerced to a valid microorganism code with \code{\link[=as.mo]{as.mo()}}.}
\item{mo}{Any \link{character} that can be coerced to a valid microorganism code with \code{\link[=as.mo]{as.mo()}}. Can be the same length as \code{size}.}
\item{ab}{Any \link{character} that can be coerced to a valid antimicrobial drug code with \code{\link[=as.ab]{as.ab()}}.}
\item{skew}{Direction of skew for MIC or disk values, either \code{"right"} or \code{"left"}. A left-skewed distribution has the majority of the data on the right.}
\item{severity}{Skew severity; higher values will increase the skewedness. Default is \code{2}; use \code{0} to prevent skewedness.}
\item{...}{Ignored, only in place to allow future extensions.}
\item{prob_SIR}{A vector of length 3: the probabilities for "S" (1st value), "I" (2nd value) and "R" (3rd value).}
@ -31,17 +37,25 @@ class \code{mic} for \code{\link[=random_mic]{random_mic()}} (see \code{\link[=a
These functions can be used for generating random MIC values and disk diffusion diameters, for AMR data analysis practice. By providing a microorganism and antimicrobial drug, the generated results will reflect reality as much as possible.
}
\details{
The base \R function \code{\link[=sample]{sample()}} is used for generating values.
Generated values are based on the EUCAST 2025 guideline as implemented in the \link{clinical_breakpoints} data set. To create specific generated values per bug or drug, set the \code{mo} and/or \code{ab} argument.
Internally, MIC and disk zone values are sampled based on clinical breakpoints defined in the \link{clinical_breakpoints} data set. To create specific generated values per bug or drug, set the \code{mo} and/or \code{ab} argument. The MICs are sampled on a log2 scale and disks linearly, using weighted probabilities. The weights are based on the \code{skew} and \code{severity} arguments:
\itemize{
\item \code{skew = "right"} places more emphasis on lower MIC or higher disk values.
\item \code{skew = "left"} places more emphasis on higher MIC or lower disk values.
\item \code{severity} controls the exponential bias applied.
}
}
\examples{
random_mic(25)
random_disk(25)
random_sir(25)
# add more skewedness, make more realistic by setting a bug and/or drug:
disks <- random_disk(100, severity = 2, mo = "Escherichia coli", ab = "CIP")
plot(disks)
# `plot()` and `ggplot2::autoplot()` allow for coloured bars if `mo` and `ab` are set
plot(disks, mo = "Escherichia coli", ab = "CIP", guideline = "CLSI 2025")
\donttest{
# make the random generation more realistic by setting a bug and/or drug:
random_mic(25, "Klebsiella pneumoniae") # range 0.0625-64
random_mic(25, "Klebsiella pneumoniae", "meropenem") # range 0.0625-16
random_mic(25, "Streptococcus pneumoniae", "meropenem") # range 0.0625-4

View File

@ -41,7 +41,7 @@
--bs-success: var(--amr-green-dark) !important;
--bs-light: var(--amr-green-light) !important;
/* --bs-light was this: #128f76a6; that's success with 60% alpha */
/* --bs-light was this: #128f76a6; that's bs-success with 60% alpha */
--bs-info: var(--amr-green-middle) !important;
--bs-link-color: var(--amr-green-dark) !important;
--bs-link-color-rgb: var(--amr-green-dark-rgb) !important;
@ -104,6 +104,16 @@ body.amr-for-python * {
.navbar .algolia-autocomplete .aa-dropdown-menu {
background-color: var(--amr-green-dark) !important;
}
.version-main {
font-weight: bold;
color: var(--bs-navbar-brand-color);
}
.version-build {
font-weight: normal;
opacity: 0.75;
font-size: 0.85em;
}
input[type="search"] {
color: var(--bs-tertiary-bg) !important;
background-color: var(--amr-green-light) !important;
@ -149,6 +159,7 @@ this shows on top of every sidebar to the right
margin-top: 10px;
border: 2px dashed var(--amr-green-dark);
text-align: center;
background: var(--bs-body-bg);
}
.amr-gpt-assistant * {
width: 90%;

View File

@ -29,10 +29,22 @@
# ==================================================================== #
*/
$(document).ready(function() {
$(function () {
// add GPT assistant info
$('aside').prepend('<div class="amr-gpt-assistant"><a target="_blank" href="https://chat.amr-for-r.org"><img src="https://amr-for-r.org/AMRforRGPT.svg"></a></div>');
// split version number in navbar into main version and build number
$('.nav-text').each(function () {
const $el = $(this);
const text = $.trim($el.text());
const lastDotIndex = text.lastIndexOf('.');
if (lastDotIndex > -1) {
const main = text.substring(0, lastDotIndex);
const build = text.substring(lastDotIndex);
$el.html(`<span class="version-main">${main}</span><span class="version-build">${build}</span>`);
}
});
// replace 'Developers' with 'Maintainers' on the main page, and "Contributors" on the Authors page
$(".developers h2").text("Maintainers");
$(".template-citation-authors h1:nth(0)").text("Contributors and Citation");

View File

@ -127,6 +127,24 @@ test_that("test-zzz.R", {
"type_sum" = "pillar",
# readxl
"read_excel" = "readxl",
# recipes
"add_step" = "recipes",
"bake" = "recipes",
"check_new_data" = "recipes",
"check_type" = "recipes",
"has_role" = "recipes",
"is_trained" = "recipes",
"prep" = "recipes",
"print_step" = "recipes",
"rand_id" = "recipes",
"recipe" = "recipes",
"recipes_eval_select" = "recipes",
"sel2char" = "recipes",
"step" = "recipes",
"step_center" = "recipes",
"tidy" = "recipes",
# rlang
"enquos" = "rlang",
# rmarkdown
"html_vignette" = "rmarkdown",
# skimr

View File

@ -26,7 +26,14 @@ knitr::opts_chunk$set(
Antimicrobial resistance (AMR) is a global health crisis, and understanding resistance patterns is crucial for managing effective treatments. The `AMR` R package provides robust tools for analysing AMR data, including convenient antimicrobial selector functions like `aminoglycosides()` and `betalactams()`.
In this post, we will explore how to use the `tidymodels` framework to predict resistance patterns in the `example_isolates` dataset in two examples.
In this post, we will explore how to use the `tidymodels` framework to predict resistance patterns in the `example_isolates` dataset in two examples.
This post contains the following examples:
1. Using Antimicrobial Selectors
2. Predicting ESBL Presence Using Raw MICs
3. Predicting AMR Over Time
## Example 1: Using Antimicrobial Selectors
@ -208,10 +215,150 @@ This workflow is extensible to other antimicrobial classes and resistance patter
---
## Example 2: Predicting ESBL Presence Using Raw MICs
## Example 2: Predicting AMR Over Time
In this second example, we demonstrate how to use `<mic>` columns directly in `tidymodels` workflows using AMR-specific recipe steps. This includes a transformation to `log2` scale using `step_mic_log2()`, which prepares MIC values for use in classification models.
In this second example, we aim to predict antimicrobial resistance (AMR) trends over time using `tidymodels`. We will model resistance to three antibiotics (amoxicillin `AMX`, amoxicillin-clavulanic acid `AMC`, and ciprofloxacin `CIP`), based on historical data grouped by year and hospital ward.
This approach and idea formed the basis for the publication [DOI: 10.3389/fmicb.2025.1582703](https://doi.org/10.3389/fmicb.2025.1582703) to model the presence of extended-spectrum beta-lactamases (ESBL).
### **Objective**
Our goal is to:
1. Use raw MIC values to predict whether a bacterial isolate produces ESBL.
2. Apply AMR-aware preprocessing in a `tidymodels` recipe.
3. Train a classification model and evaluate its predictive performance.
### **Data Preparation**
We use the `esbl_isolates` dataset that comes with the AMR package.
```{r}
# Load required libraries
library(AMR)
library(tidymodels)
# View the esbl_isolates data set
esbl_isolates
# Prepare a binary outcome and convert to ordered factor
data <- esbl_isolates %>%
mutate(esbl = factor(esbl, levels = c(FALSE, TRUE), ordered = TRUE))
```
**Explanation:**
- `esbl_isolates`: Contains MIC test results and ESBL status for each isolate.
- `mutate(esbl = ...)`: Converts the target column to an ordered factor for classification.
### **Defining the Workflow**
#### 1. Preprocessing with a Recipe
We use our `step_mic_log2()` function to log2-transform MIC values, ensuring that MICs are numeric and properly scaled. All MIC predictors can easily and agnostically selected using the new `all_mic_predictors()`:
```{r}
# Split into training and testing sets
set.seed(123)
split <- initial_split(data)
training_data <- training(split)
testing_data <- testing(split)
# Define the recipe
mic_recipe <- recipe(esbl ~ ., data = training_data) %>%
remove_role(genus, old_role = "predictor") %>% # Remove non-informative variable
step_mic_log2(all_mic_predictors()) #%>% # Log2 transform all MIC predictors
# prep()
mic_recipe
```
**Explanation:**
- `remove_role()`: Removes irrelevant variables like genus.
- `step_mic_log2()`: Applies `log2(as.numeric(...))` to all MIC predictors in one go.
- `prep()`: Finalises the recipe based on training data.
#### 2. Specifying the Model
We use a simple logistic regression to model ESBL presence, though recent models such as xgboost ([link to `parsnip` manual](https://parsnip.tidymodels.org/reference/details_boost_tree_xgboost.html)) could be much more precise.
```{r}
# Define the model
model <- logistic_reg(mode = "classification") %>%
set_engine("glm")
model
```
**Explanation:**
- `logistic_reg()`: Specifies a binary classification model.
- `set_engine("glm")`: Uses the base R GLM engine.
#### 3. Building the Workflow
```{r}
# Create workflow
workflow_model <- workflow() %>%
add_recipe(mic_recipe) %>%
add_model(model)
workflow_model
```
### **Training and Evaluating the Model**
```{r}
# Fit the model
fitted <- fit(workflow_model, training_data)
# Generate predictions
predictions <- predict(fitted, testing_data) %>%
bind_cols(testing_data)
# Evaluate model performance
our_metrics <- metric_set(accuracy, kap, ppv, npv)
metrics <- our_metrics(predictions, truth = esbl, estimate = .pred_class)
metrics
```
**Explanation:**
- `fit()`: Trains the model on the processed training data.
- `predict()`: Produces predictions for unseen test data.
- `metric_set()`: Allows evaluating multiple classification metrics.
It appears we can predict ESBL gene presence with a positive predictive value (PPV) of `r round(metrics$.estimate[3], 3) * 100`% and a negative predictive value (NPV) of `r round(metrics$.estimate[4], 3) * 100` using a simplistic logistic regression model.
### **Visualising Predictions**
We can visualise predictions by comparing predicted and actual ESBL status.
```{r}
library(ggplot2)
ggplot(predictions, aes(x = esbl, fill = .pred_class)) +
geom_bar(position = "stack") +
labs(title = "Predicted vs Actual ESBL Status",
x = "Actual ESBL",
y = "Count") +
theme_minimal()
```
### **Conclusion**
In this example, we showcased how the new `AMR`-specific recipe steps simplify working with `<mic>` columns in `tidymodels`. The `step_mic_log2()` transformation converts ordered MICs to log2-transformed numerics, improving compatibility with classification models.
This pipeline enables realistic, reproducible, and interpretable modelling of antimicrobial resistance data.
---
## Example 3: Predicting AMR Over Time
In this third example, we aim to predict antimicrobial resistance (AMR) trends over time using `tidymodels`. We will model resistance to three antibiotics (amoxicillin `AMX`, amoxicillin-clavulanic acid `AMC`, and ciprofloxacin `CIP`), based on historical data grouped by year and hospital ward.
### **Objective**

View File

@ -28,7 +28,7 @@ Note: to keep the package size as small as possible, we only include this vignet
The `AMR` package is a peer-reviewed, [free and open-source](https://amr-for-r.org/#copyright) R package with [zero dependencies](https://en.wikipedia.org/wiki/Dependency_hell) to simplify the analysis and prediction of Antimicrobial Resistance (AMR) and to work with microbial and antimicrobial data and properties, by using evidence-based methods. **Our aim is to provide a standard** for clean and reproducible AMR data analysis, that can therefore empower epidemiological analyses to continuously enable surveillance and treatment evaluation in any setting. We are a team of [many different researchers](https://amr-for-r.org/authors.html) from around the globe to make this a successful and durable project!
This work was published in the Journal of Statistical Software (Volume 104(3); \doi{10.18637/jss.v104.i03}) and formed the basis of two PhD theses (\doi{10.33612/diss.177417131} and \doi{10.33612/diss.192486375}).
This work was published in the Journal of Statistical Software (Volume 104(3); [DOI 10.18637/jss.v104.i03](https://doi.org/10.18637/jss.v104.i03)) and formed the basis of two PhD theses ([DOI 10.33612/diss.177417131](https://doi.org/10.33612/diss.177417131) and [DOI 10.33612/diss.192486375](https://doi.org/10.33612/diss.192486375)).
After installing this package, R knows [**`r AMR:::format_included_data_number(AMR::microorganisms)` distinct microbial species**](https://amr-for-r.org/reference/microorganisms.html) (updated June 2024) and all [**`r AMR:::format_included_data_number(NROW(AMR::antimicrobials) + NROW(AMR::antivirals))` antimicrobial and antiviral drugs**](https://amr-for-r.org/reference/antimicrobials.html) by name and code (including ATC, EARS-Net, ASIARS-Net, PubChem, LOINC and SNOMED CT), and knows all about valid SIR and MIC values. The integral clinical breakpoint guidelines from CLSI `r min(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, grepl("CLSI", guideline))$guideline)))`-`r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, grepl("CLSI", guideline))$guideline)))` and EUCAST `r min(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, grepl("EUCAST", guideline))$guideline)))`-`r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, grepl("EUCAST", guideline))$guideline)))` are included, even with epidemiological cut-off (ECOFF) values. It supports and can read any data format, including WHONET data. This package works on Windows, macOS and Linux with all versions of R since R-3.0 (April 2013). **It was designed to work in any setting, including those with very limited resources**. It was created for both routine data analysis and academic research at the Faculty of Medical Sciences of the [University of Groningen](https://www.rug.nl) and the [University Medical Center Groningen](https://www.umcg.nl).