mirror of
https://github.com/msberends/AMR.git
synced 2025-12-16 21:40:19 +01:00
952 lines
44 KiB
Markdown
952 lines
44 KiB
Markdown
# Conduct AMR data analysis
|
||
|
||
**Note:** values on this page will change with every website update
|
||
since they are based on randomly created values and the page was written
|
||
in [R Markdown](https://rmarkdown.rstudio.com/). However, the
|
||
methodology remains unchanged. This page was generated on 15 December
|
||
2025.
|
||
|
||
## Introduction
|
||
|
||
Conducting AMR data analysis unfortunately requires in-depth knowledge
|
||
from different scientific fields, which makes it hard to do right. At
|
||
least, it requires:
|
||
|
||
- Good questions (always start with those!) and reliable data
|
||
- A thorough understanding of (clinical) epidemiology, to understand the
|
||
clinical and epidemiological relevance and possible bias of results
|
||
- A thorough understanding of (clinical) microbiology/infectious
|
||
diseases, to understand which microorganisms are causal to which
|
||
infections and the implications of pharmaceutical treatment, as well
|
||
as understanding intrinsic and acquired microbial resistance
|
||
- Experience with data analysis with microbiological tests and their
|
||
results, to understand the determination and limitations of MIC values
|
||
and their interpretations to SIR values
|
||
- Availability of the biological taxonomy of microorganisms and probably
|
||
normalisation factors for pharmaceuticals, such as defined daily doses
|
||
(DDD)
|
||
- Available (inter-)national guidelines, and profound methods to apply
|
||
them
|
||
|
||
Of course, we cannot instantly provide you with knowledge and
|
||
experience. But with this `AMR` package, we aimed at providing (1) tools
|
||
to simplify antimicrobial resistance data cleaning, transformation and
|
||
analysis, (2) methods to easily incorporate international guidelines and
|
||
(3) scientifically reliable reference data, including the requirements
|
||
mentioned above.
|
||
|
||
The `AMR` package enables standardised and reproducible AMR data
|
||
analysis, with the application of evidence-based rules, determination of
|
||
first isolates, translation of various codes for microorganisms and
|
||
antimicrobial agents, determination of (multi-drug) resistant
|
||
microorganisms, and calculation of antimicrobial resistance, prevalence
|
||
and future trends.
|
||
|
||
## Preparation
|
||
|
||
For this tutorial, we will create fake demonstration data to work with.
|
||
|
||
You can skip to [Cleaning the data](#cleaning-the-data) if you already
|
||
have your own data ready. If you start your analysis, try to make the
|
||
structure of your data generally look like this:
|
||
|
||
| date | patient_id | mo | AMX | CIP |
|
||
|:----------:|:----------:|:----------------:|:---:|:---:|
|
||
| 2025-12-15 | abcd | Escherichia coli | S | S |
|
||
| 2025-12-15 | abcd | Escherichia coli | S | R |
|
||
| 2025-12-15 | efgh | Escherichia coli | R | S |
|
||
|
||
### Needed R packages
|
||
|
||
As with many uses in R, we need some additional packages for AMR data
|
||
analysis. Our package works closely together with the [tidyverse
|
||
packages](https://www.tidyverse.org)
|
||
[`dplyr`](https://dplyr.tidyverse.org/) and
|
||
[`ggplot2`](https://ggplot2.tidyverse.org) by RStudio. The tidyverse
|
||
tremendously improves the way we conduct data science - it allows for a
|
||
very natural way of writing syntaxes and creating beautiful plots in R.
|
||
|
||
We will also use the `cleaner` package, that can be used for cleaning
|
||
data and creating frequency tables.
|
||
|
||
``` r
|
||
library(dplyr)
|
||
library(ggplot2)
|
||
library(AMR)
|
||
|
||
# (if not yet installed, install with:)
|
||
# install.packages(c("dplyr", "ggplot2", "AMR"))
|
||
```
|
||
|
||
The `AMR` package contains a data set `example_isolates_unclean`, which
|
||
might look data that users have extracted from their laboratory systems:
|
||
|
||
``` r
|
||
example_isolates_unclean
|
||
#> # A tibble: 3,000 × 8
|
||
#> patient_id hospital date bacteria AMX AMC CIP GEN
|
||
#> <chr> <chr> <date> <chr> <chr> <chr> <chr> <chr>
|
||
#> 1 J3 A 2012-11-21 E. coli R I S S
|
||
#> 2 R7 A 2018-04-03 K. pneumoniae R I S S
|
||
#> 3 P3 A 2014-09-19 E. coli R S S S
|
||
#> 4 P10 A 2015-12-10 E. coli S I S S
|
||
#> 5 B7 A 2015-03-02 E. coli S S S S
|
||
#> 6 W3 A 2018-03-31 S. aureus R S R S
|
||
#> 7 J8 A 2016-06-14 E. coli R S S S
|
||
#> 8 M3 A 2015-10-25 E. coli R S S S
|
||
#> 9 J3 A 2019-06-19 E. coli S S S S
|
||
#> 10 G6 A 2015-04-27 S. aureus S S S S
|
||
#> # ℹ 2,990 more rows
|
||
|
||
# we will use 'our_data' as the data set name for this tutorial
|
||
our_data <- example_isolates_unclean
|
||
```
|
||
|
||
For AMR data analysis, we would like the microorganism column to contain
|
||
valid, up-to-date taxonomy, and the antibiotic columns to be cleaned as
|
||
SIR values as well.
|
||
|
||
### Taxonomy of microorganisms
|
||
|
||
With [`as.mo()`](https://amr-for-r.org/reference/as.mo.md), users can
|
||
transform arbitrary microorganism names or codes to current taxonomy.
|
||
The `AMR` package contains up-to-date taxonomic data. To be specific,
|
||
currently included data were retrieved on 24 Jun 2024.
|
||
|
||
The codes of the AMR packages that come from
|
||
[`as.mo()`](https://amr-for-r.org/reference/as.mo.md) are short, but
|
||
still human readable. More importantly,
|
||
[`as.mo()`](https://amr-for-r.org/reference/as.mo.md) supports all kinds
|
||
of input:
|
||
|
||
``` r
|
||
as.mo("Klebsiella pneumoniae")
|
||
#> Class 'mo'
|
||
#> [1] B_KLBSL_PNMN
|
||
as.mo("K. pneumoniae")
|
||
#> Class 'mo'
|
||
#> [1] B_KLBSL_PNMN
|
||
as.mo("KLEPNE")
|
||
#> Class 'mo'
|
||
#> [1] B_KLBSL_PNMN
|
||
as.mo("KLPN")
|
||
#> Class 'mo'
|
||
#> [1] B_KLBSL_PNMN
|
||
```
|
||
|
||
The first character in above codes denote their taxonomic kingdom, such
|
||
as Bacteria (B), Fungi (F), and Protozoa (P).
|
||
|
||
The `AMR` package also contain functions to directly retrieve taxonomic
|
||
properties, such as the name, genus, species, family, order, and even
|
||
Gram-stain. They all start with `mo_` and they use
|
||
[`as.mo()`](https://amr-for-r.org/reference/as.mo.md) internally, so
|
||
that still any arbitrary user input can be used:
|
||
|
||
``` r
|
||
mo_family("K. pneumoniae")
|
||
#> [1] "Enterobacteriaceae"
|
||
mo_genus("K. pneumoniae")
|
||
#> [1] "Klebsiella"
|
||
mo_species("K. pneumoniae")
|
||
#> [1] "pneumoniae"
|
||
|
||
mo_gramstain("Klebsiella pneumoniae")
|
||
#> [1] "Gram-negative"
|
||
|
||
mo_ref("K. pneumoniae")
|
||
#> [1] "Trevisan, 1887"
|
||
|
||
mo_snomed("K. pneumoniae")
|
||
#> [[1]]
|
||
#> [1] "1098101000112102" "446870005" "1098201000112108" "409801009"
|
||
#> [5] "56415008" "714315002" "713926009"
|
||
```
|
||
|
||
Now we can thus clean our data:
|
||
|
||
``` r
|
||
our_data$bacteria <- as.mo(our_data$bacteria, info = TRUE)
|
||
#> ℹ Retrieved values from the `microorganisms.codes` data set for "ESCCOL",
|
||
#> "KLEPNE", "STAAUR", and "STRPNE".
|
||
#> ℹ Microorganism translation was uncertain for four microorganisms. Run
|
||
#> `mo_uncertainties()` to review these uncertainties, or use
|
||
#> `add_custom_microorganisms()` to add custom entries.
|
||
```
|
||
|
||
Apparently, there was some uncertainty about the translation to
|
||
taxonomic codes. Let’s check this:
|
||
|
||
``` r
|
||
mo_uncertainties()
|
||
#> Matching scores are based on the resemblance between the input and the full
|
||
#> taxonomic name, and the pathogenicity in humans. See `?mo_matching_score`.
|
||
#> Colour keys: 0.000-0.549 0.550-0.649 0.650-0.749 0.750-1.000
|
||
#>
|
||
#> --------------------------------------------------------------------------------
|
||
#> "E. coli" -> Escherichia coli (B_ESCHR_COLI, 0.688)
|
||
#> Also matched: Enterococcus crotali (0.650), Escherichia coli coli
|
||
#> (0.643), Escherichia coli expressing (0.611), Enterobacter cowanii
|
||
#> (0.600), Enterococcus columbae (0.595), Enterococcus camelliae (0.591),
|
||
#> Enterococcus casseliflavus (0.577), Enterobacter cloacae cloacae
|
||
#> (0.571), Enterobacter cloacae complex (0.571), and Enterobacter cloacae
|
||
#> dissolvens (0.565)
|
||
#> --------------------------------------------------------------------------------
|
||
#> "K. pneumoniae" -> Klebsiella pneumoniae (B_KLBSL_PNMN, 0.786)
|
||
#> Also matched: Klebsiella pneumoniae complex (0.707), Klebsiella
|
||
#> pneumoniae ozaenae (0.707), Klebsiella pneumoniae pneumoniae (0.688),
|
||
#> Klebsiella pneumoniae rhinoscleromatis (0.658), Klebsiella pasteurii
|
||
#> (0.500), Klebsiella planticola (0.500), Kingella potus (0.400),
|
||
#> Kluyveromyces pseudotropicale (0.386), Kluyveromyces pseudotropicalis
|
||
#> (0.363), and Kosakonia pseudosacchari (0.361)
|
||
#> --------------------------------------------------------------------------------
|
||
#> "S. aureus" -> Staphylococcus aureus (B_STPHY_AURS, 0.690)
|
||
#> Also matched: Staphylococcus aureus aureus (0.643), Staphylococcus
|
||
#> argenteus (0.625), Staphylococcus aureus anaerobius (0.625),
|
||
#> Staphylococcus auricularis (0.615), Salmonella Aurelianis (0.595),
|
||
#> Salmonella Aarhus (0.588), Salmonella Amounderness (0.587),
|
||
#> Staphylococcus argensis (0.587), Streptococcus australis (0.587), and
|
||
#> Salmonella choleraesuis arizonae (0.562)
|
||
#> --------------------------------------------------------------------------------
|
||
#> "S. pneumoniae" -> Streptococcus pneumoniae (B_STRPT_PNMN, 0.750)
|
||
#> Also matched: Streptococcus pseudopneumoniae (0.700), Streptococcus
|
||
#> phocae salmonis (0.552), Serratia proteamaculans quinovora (0.545),
|
||
#> Streptococcus pseudoporcinus (0.536), Staphylococcus piscifermentans
|
||
#> (0.533), Staphylococcus pseudintermedius (0.532), Serratia
|
||
#> proteamaculans proteamaculans (0.526), Streptococcus gallolyticus
|
||
#> pasteurianus (0.526), Salmonella Portanigra (0.524), and Streptococcus
|
||
#> periodonticum (0.519)
|
||
#>
|
||
#> Only the first 10 other matches of each record are shown. Run
|
||
#> `print(mo_uncertainties(), n = ...)` to view more entries, or save
|
||
#> `mo_uncertainties()` to an object.
|
||
```
|
||
|
||
That’s all good.
|
||
|
||
### Antibiotic results
|
||
|
||
The column with antibiotic test results must also be cleaned. The `AMR`
|
||
package comes with three new data types to work with such test results:
|
||
`mic` for minimal inhibitory concentrations (MIC), `disk` for disk
|
||
diffusion diameters, and `sir` for SIR data that have been interpreted
|
||
already. This package can also determine SIR values based on MIC or disk
|
||
diffusion values, read more about that on the
|
||
[`as.sir()`](https://amr-for-r.org/reference/as.sir.md) page.
|
||
|
||
For now, we will just clean the SIR columns in our data using dplyr:
|
||
|
||
``` r
|
||
# method 1, be explicit about the columns:
|
||
our_data <- our_data %>%
|
||
mutate_at(vars(AMX:GEN), as.sir)
|
||
|
||
# method 2, let the AMR package determine the eligible columns
|
||
our_data <- our_data %>%
|
||
mutate_if(is_sir_eligible, as.sir)
|
||
|
||
# result:
|
||
our_data
|
||
#> # A tibble: 3,000 × 8
|
||
#> patient_id hospital date bacteria AMX AMC CIP GEN
|
||
#> <chr> <chr> <date> <mo> <sir> <sir> <sir> <sir>
|
||
#> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S
|
||
#> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S
|
||
#> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S
|
||
#> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S
|
||
#> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S
|
||
#> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S
|
||
#> 7 J8 A 2016-06-14 B_ESCHR_COLI R S S S
|
||
#> 8 M3 A 2015-10-25 B_ESCHR_COLI R S S S
|
||
#> 9 J3 A 2019-06-19 B_ESCHR_COLI S S S S
|
||
#> 10 G6 A 2015-04-27 B_STPHY_AURS S S S S
|
||
#> # ℹ 2,990 more rows
|
||
```
|
||
|
||
This is basically it for the cleaning, time to start the data inclusion.
|
||
|
||
### First isolates
|
||
|
||
We need to know which isolates we can *actually* use for analysis
|
||
without repetition bias.
|
||
|
||
To conduct an analysis of antimicrobial resistance, you must [only
|
||
include the first isolate of every patient per
|
||
episode](https:/pubmed.ncbi.nlm.nih.gov/17304462/) (Hindler *et al.*,
|
||
Clin Infect Dis. 2007). If you would not do this, you could easily get
|
||
an overestimate or underestimate of the resistance of an antibiotic.
|
||
Imagine that a patient was admitted with an MRSA and that it was found
|
||
in 5 different blood cultures the following weeks (yes, some countries
|
||
like the Netherlands have these blood drawing policies). The resistance
|
||
percentage of oxacillin of all isolates would be overestimated, because
|
||
you included this MRSA more than once. It would clearly be [selection
|
||
bias](https://en.wikipedia.org/wiki/Selection_bias).
|
||
|
||
The Clinical and Laboratory Standards Institute (CLSI) appoints this as
|
||
follows:
|
||
|
||
> *(…) When preparing a cumulative antibiogram to guide clinical
|
||
> decisions about empirical antimicrobial therapy of initial infections,
|
||
> **only the first isolate of a given species per patient, per analysis
|
||
> period (eg, one year) should be included, irrespective of body site,
|
||
> antimicrobial susceptibility profile, or other phenotypical
|
||
> characteristics (eg, biotype)**. The first isolate is easily
|
||
> identified, and cumulative antimicrobial susceptibility test data
|
||
> prepared using the first isolate are generally comparable to
|
||
> cumulative antimicrobial susceptibility test data calculated by other
|
||
> methods, providing duplicate isolates are excluded.*
|
||
> [M39-A4 Analysis and Presentation of Cumulative Antimicrobial
|
||
> Susceptibility Test Data, 4th Edition. CLSI, 2014. Chapter
|
||
> 6.4](https://clsi.org/standards/products/microbiology/documents/m39/)
|
||
|
||
This `AMR` package includes this methodology with the
|
||
[`first_isolate()`](https://amr-for-r.org/reference/first_isolate.md)
|
||
function and is able to apply the four different methods as defined by
|
||
[Hindler *et al.* in
|
||
2007](https://academic.oup.com/cid/article/44/6/867/364325):
|
||
phenotype-based, episode-based, patient-based, isolate-based. The right
|
||
method depends on your goals and analysis, but the default
|
||
phenotype-based method is in any case the method to properly correct for
|
||
most duplicate isolates. Read more about the methods on the
|
||
[`first_isolate()`](https://amr-for-r.org/reference/first_isolate.md)
|
||
page.
|
||
|
||
The outcome of the function can easily be added to our data:
|
||
|
||
``` r
|
||
our_data <- our_data %>%
|
||
mutate(first = first_isolate(info = TRUE))
|
||
#> ℹ Determining first isolates using an episode length of 365 days
|
||
#> ℹ Using column 'bacteria' as input for `col_mo`.
|
||
#> ℹ Using column 'date' as input for `col_date`.
|
||
#> ℹ Using column 'patient_id' as input for `col_patient_id`.
|
||
#> ℹ Basing inclusion on all antimicrobial results, using a points threshold
|
||
#> of 2
|
||
#> => Found 2,730 'phenotype-based' first isolates (91.0% of total where a
|
||
#> microbial ID was available)
|
||
```
|
||
|
||
So only 91% is suitable for resistance analysis! We can now filter on it
|
||
with the [`filter()`](https://dplyr.tidyverse.org/reference/filter.html)
|
||
function, also from the `dplyr` package:
|
||
|
||
``` r
|
||
our_data_1st <- our_data %>%
|
||
filter(first == TRUE)
|
||
```
|
||
|
||
For future use, the above two syntaxes can be shortened:
|
||
|
||
``` r
|
||
our_data_1st <- our_data %>%
|
||
filter_first_isolate()
|
||
```
|
||
|
||
So we end up with 2 730 isolates for analysis. Now our data looks like:
|
||
|
||
``` r
|
||
our_data_1st
|
||
#> # A tibble: 2,730 × 9
|
||
#> patient_id hospital date bacteria AMX AMC CIP GEN first
|
||
#> <chr> <chr> <date> <mo> <sir> <sir> <sir> <sir> <lgl>
|
||
#> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S TRUE
|
||
#> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S TRUE
|
||
#> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S TRUE
|
||
#> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S TRUE
|
||
#> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S TRUE
|
||
#> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S TRUE
|
||
#> 7 M3 A 2015-10-25 B_ESCHR_COLI R S S S TRUE
|
||
#> 8 J3 A 2019-06-19 B_ESCHR_COLI S S S S TRUE
|
||
#> 9 G6 A 2015-04-27 B_STPHY_AURS S S S S TRUE
|
||
#> 10 P4 A 2011-06-21 B_ESCHR_COLI S S S S TRUE
|
||
#> # ℹ 2,720 more rows
|
||
```
|
||
|
||
Time for the analysis.
|
||
|
||
## Analysing the data
|
||
|
||
The base R [`summary()`](https://rdrr.io/r/base/summary.html) function
|
||
gives a good first impression, as it comes with support for the new `mo`
|
||
and `sir` classes that we now have in our data set:
|
||
|
||
``` r
|
||
summary(our_data_1st)
|
||
#> patient_id hospital date
|
||
#> Length:2730 Length:2730 Min. :2011-01-01
|
||
#> Class :character Class :character 1st Qu.:2013-04-06
|
||
#> Mode :character Mode :character Median :2015-06-04
|
||
#> Mean :2015-06-09
|
||
#> 3rd Qu.:2017-08-14
|
||
#> Max. :2019-12-27
|
||
#> bacteria AMX AMC
|
||
#> Class :mo Class:sir Class:sir
|
||
#> <NA> :0 %S :40.1% (n=1071) %S :51.1% (n=1354)
|
||
#> Unique:4 %SDD : 0.0% (n=0) %SDD : 0.0% (n=0)
|
||
#> #1 :B_ESCHR_COLI %I :17.0% (n=453) %I :12.7% (n=335)
|
||
#> #2 :B_STPHY_AURS %R :42.9% (n=1147) %R :36.2% (n=959)
|
||
#> #3 :B_STRPT_PNMN %NI : 0.0% (n=0) %NI : 0.0% (n=0)
|
||
#> CIP GEN first
|
||
#> Class:sir Class:sir Mode:logical
|
||
#> %S :52.2% (n=1426) %S :60.7% (n=1656) TRUE:2730
|
||
#> %SDD : 0.0% (n=0) %SDD : 0.0% (n=0)
|
||
#> %I : 6.5% (n=178) %I : 3.0% (n=83)
|
||
#> %R :41.2% (n=1126) %R :36.3% (n=991)
|
||
#> %NI : 0.0% (n=0) %NI : 0.0% (n=0)
|
||
|
||
glimpse(our_data_1st)
|
||
#> Rows: 2,730
|
||
#> Columns: 9
|
||
#> $ patient_id <chr> "J3", "R7", "P3", "P10", "B7", "W3", "M3", "J3", "G6", "P4"…
|
||
#> $ hospital <chr> "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",…
|
||
#> $ date <date> 2012-11-21, 2018-04-03, 2014-09-19, 2015-12-10, 2015-03-02…
|
||
#> $ bacteria <mo> "B_ESCHR_COLI", "B_KLBSL_PNMN", "B_ESCHR_COLI", "B_ESCHR_COL…
|
||
#> $ AMX <sir> R, R, R, S, S, R, R, S, S, S, S, R, S, S, R, R, R, R, S, R,…
|
||
#> $ AMC <sir> I, I, S, I, S, S, S, S, S, S, S, S, S, S, S, S, S, R, S, S,…
|
||
#> $ CIP <sir> S, S, S, S, S, R, S, S, S, S, S, S, S, S, S, S, S, S, S, S,…
|
||
#> $ GEN <sir> S, S, S, S, S, S, S, S, S, S, S, R, S, S, S, S, S, S, S, S,…
|
||
#> $ first <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,…
|
||
|
||
# number of unique values per column:
|
||
sapply(our_data_1st, n_distinct)
|
||
#> patient_id hospital date bacteria AMX AMC CIP
|
||
#> 260 3 1854 4 4 4 3
|
||
#> GEN first
|
||
#> 3 1
|
||
```
|
||
|
||
### Availability of species
|
||
|
||
To just get an idea how the species are distributed, create a frequency
|
||
table with [`count()`](https://amr-for-r.org/reference/count.md) based
|
||
on the name of the microorganisms:
|
||
|
||
``` r
|
||
our_data %>%
|
||
count(mo_name(bacteria), sort = TRUE)
|
||
#> # A tibble: 4 × 2
|
||
#> `mo_name(bacteria)` n
|
||
#> <chr> <int>
|
||
#> 1 Escherichia coli 1518
|
||
#> 2 Staphylococcus aureus 730
|
||
#> 3 Streptococcus pneumoniae 426
|
||
#> 4 Klebsiella pneumoniae 326
|
||
|
||
our_data_1st %>%
|
||
count(mo_name(bacteria), sort = TRUE)
|
||
#> # A tibble: 4 × 2
|
||
#> `mo_name(bacteria)` n
|
||
#> <chr> <int>
|
||
#> 1 Escherichia coli 1326
|
||
#> 2 Staphylococcus aureus 684
|
||
#> 3 Streptococcus pneumoniae 401
|
||
#> 4 Klebsiella pneumoniae 319
|
||
```
|
||
|
||
### Select and filter with antibiotic selectors
|
||
|
||
Using so-called antibiotic class selectors, you can select or filter
|
||
columns based on the antibiotic class that your antibiotic results are
|
||
in:
|
||
|
||
``` r
|
||
our_data_1st %>%
|
||
select(date, aminoglycosides())
|
||
#> ℹ For `aminoglycosides()` using column 'GEN' (gentamicin)
|
||
#> # A tibble: 2,730 × 2
|
||
#> date GEN
|
||
#> <date> <sir>
|
||
#> 1 2012-11-21 S
|
||
#> 2 2018-04-03 S
|
||
#> 3 2014-09-19 S
|
||
#> 4 2015-12-10 S
|
||
#> 5 2015-03-02 S
|
||
#> 6 2018-03-31 S
|
||
#> 7 2015-10-25 S
|
||
#> 8 2019-06-19 S
|
||
#> 9 2015-04-27 S
|
||
#> 10 2011-06-21 S
|
||
#> # ℹ 2,720 more rows
|
||
|
||
our_data_1st %>%
|
||
select(bacteria, betalactams())
|
||
#> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC'
|
||
#> (amoxicillin/clavulanic acid)
|
||
#> # A tibble: 2,730 × 3
|
||
#> bacteria AMX AMC
|
||
#> <mo> <sir> <sir>
|
||
#> 1 B_ESCHR_COLI R I
|
||
#> 2 B_KLBSL_PNMN R I
|
||
#> 3 B_ESCHR_COLI R S
|
||
#> 4 B_ESCHR_COLI S I
|
||
#> 5 B_ESCHR_COLI S S
|
||
#> 6 B_STPHY_AURS R S
|
||
#> 7 B_ESCHR_COLI R S
|
||
#> 8 B_ESCHR_COLI S S
|
||
#> 9 B_STPHY_AURS S S
|
||
#> 10 B_ESCHR_COLI S S
|
||
#> # ℹ 2,720 more rows
|
||
|
||
our_data_1st %>%
|
||
select(bacteria, where(is.sir))
|
||
#> # A tibble: 2,730 × 5
|
||
#> bacteria AMX AMC CIP GEN
|
||
#> <mo> <sir> <sir> <sir> <sir>
|
||
#> 1 B_ESCHR_COLI R I S S
|
||
#> 2 B_KLBSL_PNMN R I S S
|
||
#> 3 B_ESCHR_COLI R S S S
|
||
#> 4 B_ESCHR_COLI S I S S
|
||
#> 5 B_ESCHR_COLI S S S S
|
||
#> 6 B_STPHY_AURS R S R S
|
||
#> 7 B_ESCHR_COLI R S S S
|
||
#> 8 B_ESCHR_COLI S S S S
|
||
#> 9 B_STPHY_AURS S S S S
|
||
#> 10 B_ESCHR_COLI S S S S
|
||
#> # ℹ 2,720 more rows
|
||
|
||
# filtering using AB selectors is also possible:
|
||
our_data_1st %>%
|
||
filter(any(aminoglycosides() == "R"))
|
||
#> ℹ For `aminoglycosides()` using column 'GEN' (gentamicin)
|
||
#> # A tibble: 991 × 9
|
||
#> patient_id hospital date bacteria AMX AMC CIP GEN first
|
||
#> <chr> <chr> <date> <mo> <sir> <sir> <sir> <sir> <lgl>
|
||
#> 1 J5 A 2017-12-25 B_STRPT_PNMN R S S R TRUE
|
||
#> 2 X1 A 2017-07-04 B_STPHY_AURS R S S R TRUE
|
||
#> 3 B3 A 2016-07-24 B_ESCHR_COLI S S S R TRUE
|
||
#> 4 V7 A 2012-04-03 B_ESCHR_COLI S S S R TRUE
|
||
#> 5 C9 A 2017-03-23 B_ESCHR_COLI S S S R TRUE
|
||
#> 6 R1 A 2018-06-10 B_STPHY_AURS S S S R TRUE
|
||
#> 7 S2 A 2013-07-19 B_STRPT_PNMN S S S R TRUE
|
||
#> 8 P5 A 2019-03-09 B_STPHY_AURS S S S R TRUE
|
||
#> 9 Q8 A 2019-08-10 B_STPHY_AURS S S S R TRUE
|
||
#> 10 K5 A 2013-03-15 B_STRPT_PNMN S S S R TRUE
|
||
#> # ℹ 981 more rows
|
||
|
||
our_data_1st %>%
|
||
filter(all(betalactams() == "R"))
|
||
#> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC'
|
||
#> (amoxicillin/clavulanic acid)
|
||
#> # A tibble: 461 × 9
|
||
#> patient_id hospital date bacteria AMX AMC CIP GEN first
|
||
#> <chr> <chr> <date> <mo> <sir> <sir> <sir> <sir> <lgl>
|
||
#> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE
|
||
#> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE
|
||
#> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE
|
||
#> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE
|
||
#> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE
|
||
#> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE
|
||
#> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE
|
||
#> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE
|
||
#> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE
|
||
#> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE
|
||
#> # ℹ 451 more rows
|
||
|
||
# even works in base R (since R 3.0):
|
||
our_data_1st[all(betalactams() == "R"), ]
|
||
#> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC'
|
||
#> (amoxicillin/clavulanic acid)
|
||
#> # A tibble: 461 × 9
|
||
#> patient_id hospital date bacteria AMX AMC CIP GEN first
|
||
#> <chr> <chr> <date> <mo> <sir> <sir> <sir> <sir> <lgl>
|
||
#> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE
|
||
#> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE
|
||
#> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE
|
||
#> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE
|
||
#> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE
|
||
#> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE
|
||
#> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE
|
||
#> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE
|
||
#> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE
|
||
#> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE
|
||
#> # ℹ 451 more rows
|
||
```
|
||
|
||
### Generate antibiograms
|
||
|
||
Since AMR v2.0 (March 2023), it is very easy to create different types
|
||
of antibiograms, with support for 20 different languages.
|
||
|
||
There are four antibiogram types, as proposed by Klinker *et al.* (2021,
|
||
[DOI
|
||
10.1177/20499361211011373](https://doi.org/10.1177/20499361211011373)),
|
||
and they are all supported by the new
|
||
[`antibiogram()`](https://amr-for-r.org/reference/antibiogram.md)
|
||
function:
|
||
|
||
1. **Traditional Antibiogram (TA)** e.g, for the susceptibility of
|
||
*Pseudomonas aeruginosa* to piperacillin/tazobactam (TZP)
|
||
2. **Combination Antibiogram (CA)** e.g, for the sdditional
|
||
susceptibility of *Pseudomonas aeruginosa* to TZP + tobramycin
|
||
versus TZP alone
|
||
3. **Syndromic Antibiogram (SA)** e.g, for the susceptibility of
|
||
*Pseudomonas aeruginosa* to TZP among respiratory specimens
|
||
(obtained among ICU patients only)
|
||
4. **Weighted-Incidence Syndromic Combination Antibiogram (WISCA)**
|
||
e.g, for the susceptibility of *Pseudomonas aeruginosa* to TZP among
|
||
respiratory specimens (obtained among ICU patients only) for male
|
||
patients age \>=65 years with heart failure
|
||
|
||
In this section, we show how to use the
|
||
[`antibiogram()`](https://amr-for-r.org/reference/antibiogram.md)
|
||
function to create any of the above antibiogram types. For starters,
|
||
this is what the included `example_isolates` data set looks like:
|
||
|
||
``` r
|
||
example_isolates
|
||
#> # A tibble: 2,000 × 46
|
||
#> date patient age gender ward mo PEN OXA FLC AMX
|
||
#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir>
|
||
#> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
|
||
#> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
|
||
#> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
|
||
#> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
|
||
#> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
|
||
#> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
|
||
#> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
|
||
#> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
|
||
#> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA
|
||
#> 10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA
|
||
#> # ℹ 1,990 more rows
|
||
#> # ℹ 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,
|
||
#> # CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
|
||
#> # TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>, NIT <sir>,
|
||
#> # FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>, TEC <sir>,
|
||
#> # TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>, AZM <sir>,
|
||
#> # IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>, MUP <sir>, …
|
||
```
|
||
|
||
#### Traditional Antibiogram
|
||
|
||
To create a traditional antibiogram, simply state which antibiotics
|
||
should be used. The `antibiotics` argument in the
|
||
[`antibiogram()`](https://amr-for-r.org/reference/antibiogram.md)
|
||
function supports any (combination) of the previously mentioned
|
||
antibiotic class selectors:
|
||
|
||
``` r
|
||
antibiogram(example_isolates,
|
||
antibiotics = c(aminoglycosides(), carbapenems()))
|
||
#> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
|
||
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
|
||
#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||
```
|
||
|
||
| Pathogen | Amikacin | Gentamicin | Imipenem | Kanamycin | Meropenem | Tobramycin |
|
||
|:-----------------|:---------------------|:--------------------|:---------------------|:----------------|:---------------------|:--------------------|
|
||
| CoNS | 0% (0-8%,N=43) | 86% (82-90%,N=309) | 52% (37-67%,N=48) | 0% (0-8%,N=43) | 52% (37-67%,N=48) | 22% (12-35%,N=55) |
|
||
| *E. coli* | 100% (98-100%,N=171) | 98% (96-99%,N=460) | 100% (99-100%,N=422) | NA | 100% (99-100%,N=418) | 97% (96-99%,N=462) |
|
||
| *E. faecalis* | 0% (0-9%,N=39) | 0% (0-9%,N=39) | 100% (91-100%,N=38) | 0% (0-9%,N=39) | NA | 0% (0-9%,N=39) |
|
||
| *K. pneumoniae* | NA | 90% (79-96%,N=58) | 100% (93-100%,N=51) | NA | 100% (93-100%,N=53) | 90% (79-96%,N=58) |
|
||
| *P. aeruginosa* | NA | 100% (88-100%,N=30) | NA | 0% (0-12%,N=30) | NA | 100% (88-100%,N=30) |
|
||
| *P. mirabilis* | NA | 94% (80-99%,N=34) | 94% (79-99%,N=32) | NA | NA | 94% (80-99%,N=34) |
|
||
| *S. aureus* | NA | 99% (97-100%,N=233) | NA | NA | NA | 98% (92-100%,N=86) |
|
||
| *S. epidermidis* | 0% (0-8%,N=44) | 79% (71-85%,N=163) | NA | 0% (0-8%,N=44) | NA | 51% (40-61%,N=89) |
|
||
| *S. hominis* | NA | 92% (84-97%,N=80) | NA | NA | NA | 85% (74-93%,N=62) |
|
||
| *S. pneumoniae* | 0% (0-3%,N=117) | 0% (0-3%,N=117) | NA | 0% (0-3%,N=117) | NA | 0% (0-3%,N=117) |
|
||
|
||
Notice that the
|
||
[`antibiogram()`](https://amr-for-r.org/reference/antibiogram.md)
|
||
function automatically prints in the right format when using Quarto or R
|
||
Markdown (such as this page), and even applies italics for taxonomic
|
||
names (by using
|
||
[`italicise_taxonomy()`](https://amr-for-r.org/reference/italicise_taxonomy.md)
|
||
internally).
|
||
|
||
It also uses the language of your OS if this is either English, Arabic,
|
||
Bengali, Chinese, Czech, Danish, Dutch, Finnish, French, German, Greek,
|
||
Hindi, Indonesian, Italian, Japanese, Korean, Norwegian, Polish,
|
||
Portuguese, Romanian, Russian, Spanish, Swahili, Swedish, Turkish,
|
||
Ukrainian, Urdu, or Vietnamese. In this next example, we force the
|
||
language to be Spanish using the `language` argument:
|
||
|
||
``` r
|
||
antibiogram(example_isolates,
|
||
mo_transform = "gramstain",
|
||
antibiotics = aminoglycosides(),
|
||
ab_transform = "name",
|
||
language = "es")
|
||
#> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
|
||
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
|
||
```
|
||
|
||
| Patógeno | Amikacina | Gentamicina | Kanamicina | Tobramicina |
|
||
|:--------------|:-------------------|:--------------------|:----------------|:-------------------|
|
||
| Gram negativo | 98% (96-99%,N=256) | 96% (95-98%,N=684) | 0% (0-10%,N=35) | 96% (94-97%,N=686) |
|
||
| Gram positivo | 0% (0-1%,N=436) | 63% (60-66%,N=1170) | 0% (0-1%,N=436) | 34% (31-38%,N=665) |
|
||
|
||
#### Combined Antibiogram
|
||
|
||
To create a combined antibiogram, use antibiotic codes or names with a
|
||
plus `+` character like this:
|
||
|
||
``` r
|
||
combined_ab <- antibiogram(example_isolates,
|
||
antibiotics = c("TZP", "TZP+TOB", "TZP+GEN"),
|
||
ab_transform = NULL)
|
||
combined_ab
|
||
```
|
||
|
||
| Pathogen | TZP | TZP + GEN | TZP + TOB |
|
||
|:-----------------|:---------------------|:---------------------|:---------------------|
|
||
| CoNS | 30% (16-49%,N=33) | 97% (95-99%,N=274) | NA |
|
||
| *E. coli* | 94% (92-96%,N=416) | 100% (98-100%,N=459) | 99% (97-100%,N=461) |
|
||
| *K. pneumoniae* | 89% (77-96%,N=53) | 93% (83-98%,N=58) | 93% (83-98%,N=58) |
|
||
| *P. aeruginosa* | NA | 100% (88-100%,N=30) | 100% (88-100%,N=30) |
|
||
| *P. mirabilis* | NA | 100% (90-100%,N=34) | 100% (90-100%,N=34) |
|
||
| *S. aureus* | NA | 100% (98-100%,N=231) | 100% (96-100%,N=91) |
|
||
| *S. epidermidis* | NA | 100% (97-100%,N=128) | 100% (92-100%,N=46) |
|
||
| *S. hominis* | NA | 100% (95-100%,N=74) | 100% (93-100%,N=53) |
|
||
| *S. pneumoniae* | 100% (97-100%,N=112) | 100% (97-100%,N=112) | 100% (97-100%,N=112) |
|
||
|
||
#### Syndromic Antibiogram
|
||
|
||
To create a syndromic antibiogram, the `syndromic_group` argument must
|
||
be used. This can be any column in the data, or e.g. an
|
||
[`ifelse()`](https://rdrr.io/r/base/ifelse.html) with calculations based
|
||
on certain columns:
|
||
|
||
``` r
|
||
antibiogram(example_isolates,
|
||
antibiotics = c(aminoglycosides(), carbapenems()),
|
||
syndromic_group = "ward")
|
||
#> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
|
||
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
|
||
#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||
```
|
||
|
||
| Syndromic Group | Pathogen | Amikacin | Gentamicin | Imipenem | Kanamycin | Meropenem | Tobramycin |
|
||
|:----------------|:-----------------|:---------------------|:--------------------|:---------------------|:----------------|:---------------------|:--------------------|
|
||
| Clinical | CoNS | NA | 89% (84-93%,N=205) | 57% (39-74%,N=35) | NA | 57% (39-74%,N=35) | 26% (12-45%,N=31) |
|
||
| ICU | CoNS | NA | 79% (68-88%,N=73) | NA | NA | NA | NA |
|
||
| Outpatient | CoNS | NA | 84% (66-95%,N=31) | NA | NA | NA | NA |
|
||
| Clinical | *E. coli* | 100% (97-100%,N=104) | 98% (96-99%,N=297) | 100% (99-100%,N=266) | NA | 100% (99-100%,N=276) | 98% (96-99%,N=299) |
|
||
| ICU | *E. coli* | 100% (93-100%,N=52) | 99% (95-100%,N=137) | 100% (97-100%,N=133) | NA | 100% (97-100%,N=118) | 96% (92-99%,N=137) |
|
||
| Clinical | *K. pneumoniae* | NA | 92% (81-98%,N=51) | 100% (92-100%,N=44) | NA | 100% (92-100%,N=46) | 92% (81-98%,N=51) |
|
||
| Clinical | *P. mirabilis* | NA | 100% (88-100%,N=30) | NA | NA | NA | 100% (88-100%,N=30) |
|
||
| Clinical | *S. aureus* | NA | 99% (95-100%,N=150) | NA | NA | NA | 97% (89-100%,N=63) |
|
||
| ICU | *S. aureus* | NA | 100% (95-100%,N=66) | NA | NA | NA | NA |
|
||
| Clinical | *S. epidermidis* | NA | 82% (72-90%,N=79) | NA | NA | NA | 55% (39-70%,N=44) |
|
||
| ICU | *S. epidermidis* | NA | 72% (60-82%,N=75) | NA | NA | NA | 41% (26-58%,N=41) |
|
||
| Clinical | *S. hominis* | NA | 96% (85-99%,N=45) | NA | NA | NA | 94% (79-99%,N=31) |
|
||
| Clinical | *S. pneumoniae* | 0% (0-5%,N=78) | 0% (0-5%,N=78) | NA | 0% (0-5%,N=78) | NA | 0% (0-5%,N=78) |
|
||
| ICU | *S. pneumoniae* | 0% (0-12%,N=30) | 0% (0-12%,N=30) | NA | 0% (0-12%,N=30) | NA | 0% (0-12%,N=30) |
|
||
|
||
#### Weighted-Incidence Syndromic Combination Antibiogram (WISCA)
|
||
|
||
To create a **Weighted-Incidence Syndromic Combination Antibiogram
|
||
(WISCA)**, simply set `wisca = TRUE` in the
|
||
[`antibiogram()`](https://amr-for-r.org/reference/antibiogram.md)
|
||
function, or use the dedicated
|
||
[`wisca()`](https://amr-for-r.org/reference/antibiogram.md) function.
|
||
Unlike traditional antibiograms, WISCA provides syndrome-based
|
||
susceptibility estimates, weighted by pathogen incidence and
|
||
antimicrobial susceptibility patterns.
|
||
|
||
``` r
|
||
example_isolates %>%
|
||
wisca(antibiotics = c("TZP", "TZP+TOB", "TZP+GEN"),
|
||
minimum = 10) # Recommended threshold: ≥30
|
||
```
|
||
|
||
| Piperacillin/tazobactam | Piperacillin/tazobactam + Gentamicin | Piperacillin/tazobactam + Tobramycin |
|
||
|:------------------------|:-------------------------------------|:-------------------------------------|
|
||
| 69.4% (64.3-74.3%) | 92.6% (91.1-93.9%) | 88.7% (85.8-91.2%) |
|
||
|
||
WISCA uses a **Bayesian decision model** to integrate data from multiple
|
||
pathogens, improving empirical therapy guidance, especially for
|
||
low-incidence infections. It is **pathogen-agnostic**, meaning results
|
||
are syndrome-based rather than stratified by microorganism.
|
||
|
||
For reliable results, ensure your data includes **only first isolates**
|
||
(use
|
||
[`first_isolate()`](https://amr-for-r.org/reference/first_isolate.md))
|
||
and consider filtering for **the top *n* species** (use
|
||
[`top_n_microorganisms()`](https://amr-for-r.org/reference/top_n_microorganisms.md)),
|
||
as WISCA outcomes are most meaningful when based on robust incidence
|
||
estimates.
|
||
|
||
For **patient- or syndrome-specific WISCA**, run the function on a
|
||
grouped `tibble`, i.e., using
|
||
[`group_by()`](https://dplyr.tidyverse.org/reference/group_by.html)
|
||
first:
|
||
|
||
``` r
|
||
example_isolates %>%
|
||
top_n_microorganisms(n = 10) %>%
|
||
group_by(age_group = age_groups(age, c(25, 50, 75)),
|
||
gender) %>%
|
||
wisca(antibiotics = c("TZP", "TZP+TOB", "TZP+GEN"))
|
||
```
|
||
|
||
| age_group | gender | Piperacillin/tazobactam | Piperacillin/tazobactam + Gentamicin | Piperacillin/tazobactam + Tobramycin |
|
||
|:----------|:-------|:------------------------|:-------------------------------------|:-------------------------------------|
|
||
| 0-24 | F | 56.6% (25.2-83.9%) | 73.6% (48-91.6%) | 68.6% (42.9-89.5%) |
|
||
| 0-24 | M | 60.3% (28.4-87.1%) | 79.7% (57.6-94.2%) | 60.1% (29.5-87.7%) |
|
||
| 25-49 | F | 66.6% (45.6-85.5%) | 91.7% (84.6-96.7%) | 83% (67.9-94%) |
|
||
| 25-49 | M | 56.4% (29.1-81.7%) | 89.2% (80.3-95.7%) | 72.4% (49.7-90%) |
|
||
| 50-74 | F | 67.8% (55.8-80.1%) | 95.6% (93.2-97.5%) | 88.1% (80.4-94.6%) |
|
||
| 50-74 | M | 66.2% (54.8-75.8%) | 95.2% (92.4-97.4%) | 84.4% (74.4-92.5%) |
|
||
| 75+ | F | 71.7% (61-81.7%) | 96.6% (94.4-98.2%) | 90.6% (84.6-95.3%) |
|
||
| 75+ | M | 72.9% (63.8-82%) | 96.6% (94.6-98.1%) | 92.8% (87.8-96.5%) |
|
||
|
||
#### Plotting antibiograms
|
||
|
||
Antibiograms can be plotted using
|
||
[`autoplot()`](https://ggplot2.tidyverse.org/reference/autoplot.html)
|
||
from the `ggplot2` packages, since this `AMR` package provides an
|
||
extension to that function:
|
||
|
||
``` r
|
||
autoplot(combined_ab)
|
||
```
|
||
|
||

|
||
|
||
To calculate antimicrobial resistance in a more sensible way, also by
|
||
correcting for too few results, we use the
|
||
[`resistance()`](https://amr-for-r.org/reference/proportion.md) and
|
||
[`susceptibility()`](https://amr-for-r.org/reference/proportion.md)
|
||
functions.
|
||
|
||
### Resistance percentages
|
||
|
||
The functions
|
||
[`resistance()`](https://amr-for-r.org/reference/proportion.md) and
|
||
[`susceptibility()`](https://amr-for-r.org/reference/proportion.md) can
|
||
be used to calculate antimicrobial resistance or susceptibility. For
|
||
more specific analyses, the functions
|
||
[`proportion_S()`](https://amr-for-r.org/reference/proportion.md),
|
||
[`proportion_SI()`](https://amr-for-r.org/reference/proportion.md),
|
||
[`proportion_I()`](https://amr-for-r.org/reference/proportion.md),
|
||
[`proportion_IR()`](https://amr-for-r.org/reference/proportion.md) and
|
||
[`proportion_R()`](https://amr-for-r.org/reference/proportion.md) can be
|
||
used to determine the proportion of a specific antimicrobial outcome.
|
||
|
||
All these functions contain a `minimum` argument, denoting the minimum
|
||
required number of test results for returning a value. These functions
|
||
will otherwise return `NA`. The default is `minimum = 30`, following the
|
||
[CLSI M39-A4
|
||
guideline](https://clsi.org/standards/products/microbiology/documents/m39/)
|
||
for applying microbial epidemiology.
|
||
|
||
As per the EUCAST guideline of 2019, we calculate resistance as the
|
||
proportion of R
|
||
([`proportion_R()`](https://amr-for-r.org/reference/proportion.md),
|
||
equal to
|
||
[`resistance()`](https://amr-for-r.org/reference/proportion.md)) and
|
||
susceptibility as the proportion of S and I
|
||
([`proportion_SI()`](https://amr-for-r.org/reference/proportion.md),
|
||
equal to
|
||
[`susceptibility()`](https://amr-for-r.org/reference/proportion.md)).
|
||
These functions can be used on their own:
|
||
|
||
``` r
|
||
our_data_1st %>% resistance(AMX)
|
||
#> [1] 0.4294272
|
||
```
|
||
|
||
Or can be used in conjunction with
|
||
[`group_by()`](https://dplyr.tidyverse.org/reference/group_by.html) and
|
||
[`summarise()`](https://dplyr.tidyverse.org/reference/summarise.html),
|
||
both from the `dplyr` package:
|
||
|
||
``` r
|
||
our_data_1st %>%
|
||
group_by(hospital) %>%
|
||
summarise(amoxicillin = resistance(AMX))
|
||
#> # A tibble: 3 × 2
|
||
#> hospital amoxicillin
|
||
#> <chr> <dbl>
|
||
#> 1 A 0.341
|
||
#> 2 B 0.586
|
||
#> 3 C 0.370
|
||
```
|
||
|
||
### Interpreting MIC and Disk Diffusion Values
|
||
|
||
Minimal inhibitory concentration (MIC) values and disk diffusion
|
||
diameters can be interpreted into clinical breakpoints (SIR) using
|
||
[`as.sir()`](https://amr-for-r.org/reference/as.sir.md). Here’s an
|
||
example with randomly generated MIC values for *Klebsiella pneumoniae*
|
||
and ciprofloxacin:
|
||
|
||
``` r
|
||
set.seed(123)
|
||
mic_values <- random_mic(100)
|
||
sir_values <- as.sir(mic_values, mo = "K. pneumoniae", ab = "cipro", guideline = "EUCAST 2024")
|
||
|
||
my_data <- tibble(MIC = mic_values, SIR = sir_values)
|
||
my_data
|
||
#> # A tibble: 100 × 2
|
||
#> MIC SIR
|
||
#> <mic> <sir>
|
||
#> 1 <=0.0001 S
|
||
#> 2 0.0160 S
|
||
#> 3 >=8.0000 R
|
||
#> 4 0.0320 S
|
||
#> 5 0.0080 S
|
||
#> 6 64.0000 R
|
||
#> 7 0.0080 S
|
||
#> 8 0.1250 S
|
||
#> 9 0.0320 S
|
||
#> 10 0.0002 S
|
||
#> # ℹ 90 more rows
|
||
```
|
||
|
||
This allows direct interpretation according to EUCAST or CLSI
|
||
breakpoints, facilitating automated AMR data processing.
|
||
|
||
### Plotting MIC and SIR Interpretations
|
||
|
||
We can visualise MIC distributions and their SIR interpretations using
|
||
`ggplot2`, using the new
|
||
[`scale_y_mic()`](https://amr-for-r.org/reference/plot.md) for the
|
||
y-axis and
|
||
[`scale_colour_sir()`](https://amr-for-r.org/reference/plot.md) to
|
||
colour-code SIR categories.
|
||
|
||
``` r
|
||
# add a group
|
||
my_data$group <- rep(c("A", "B", "C", "D"), each = 25)
|
||
|
||
ggplot(my_data,
|
||
aes(x = group, y = MIC, colour = SIR)) +
|
||
geom_jitter(width = 0.2, size = 2) +
|
||
geom_boxplot(fill = NA, colour = "grey40") +
|
||
scale_y_mic() +
|
||
scale_colour_sir() +
|
||
labs(title = "MIC Distribution and SIR Interpretation",
|
||
x = "Sample Groups",
|
||
y = "MIC (mg/L)")
|
||
```
|
||
|
||

|
||
|
||
This plot provides an intuitive way to assess susceptibility patterns
|
||
across different groups while incorporating clinical breakpoints.
|
||
|
||
For a more straightforward and less manual approach, `ggplot2`’s
|
||
function
|
||
[`autoplot()`](https://ggplot2.tidyverse.org/reference/autoplot.html)
|
||
has been extended by this package to directly plot MIC and disk
|
||
diffusion values:
|
||
|
||
``` r
|
||
autoplot(mic_values)
|
||
```
|
||
|
||

|
||
|
||
``` r
|
||
|
||
# by providing `mo` and `ab`, colours will indicate the SIR interpretation:
|
||
autoplot(mic_values, mo = "K. pneumoniae", ab = "cipro", guideline = "EUCAST 2024")
|
||
```
|
||
|
||

|
||
|
||
------------------------------------------------------------------------
|
||
|
||
*Author: Dr. Matthijs Berends, 23rd Feb 2025*
|