113 lines
2.7 KiB
Python
113 lines
2.7 KiB
Python
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
from itertools import cycle
|
||
|
import argparse
|
||
|
import pickle
|
||
|
|
||
|
|
||
|
def is_ipython():
|
||
|
''' Check if script is run in IPython.
|
||
|
|
||
|
Returns:
|
||
|
bool: True if IPython, else False '''
|
||
|
try:
|
||
|
get_ipython()
|
||
|
ipy = True
|
||
|
except NameError:
|
||
|
ipy = False
|
||
|
|
||
|
return ipy
|
||
|
|
||
|
|
||
|
def load_data(file):
|
||
|
''' Load numpy data from file.
|
||
|
|
||
|
Returns
|
||
|
dict: data dictionary
|
||
|
'''
|
||
|
dat = np.load(file)
|
||
|
|
||
|
return dat
|
||
|
|
||
|
|
||
|
def plot_parameters(dat):
|
||
|
''' Plot the parameters in separate subplots with uncertainties.
|
||
|
|
||
|
Args:
|
||
|
dat (dict): data dictionary
|
||
|
deparameterize (bool): flag indicating if parameters should be
|
||
|
deparameterized via 2**theta
|
||
|
ref: reference value to be plotted with parameters
|
||
|
'''
|
||
|
if is_ipython():
|
||
|
plt.ion()
|
||
|
|
||
|
|
||
|
fig1, axes = plt.subplots(1, 1,figsize=(8,6))
|
||
|
axes.set_ylabel(r'$\theta$',fontsize=18)
|
||
|
|
||
|
col = cycle(['C0', 'C1', 'C2', 'C3'])
|
||
|
|
||
|
|
||
|
for k in dat.keys():
|
||
|
|
||
|
t = dat[k]['times']
|
||
|
theta = dat[k]['theta']
|
||
|
P = dat[k]['P_theta']
|
||
|
|
||
|
|
||
|
theta = theta.reshape((-1, 1))
|
||
|
P = P.reshape((-1, 1, 1))
|
||
|
|
||
|
#theta = 2**theta*float(k)
|
||
|
|
||
|
sP = np.sqrt(P[:,0,0])
|
||
|
sP_up = 2**sP
|
||
|
sP_down = 2**(-sP)
|
||
|
|
||
|
col_ = next(col)
|
||
|
|
||
|
axes.plot(t, theta[:, 0], '-', c=col_)
|
||
|
#axes.fill_between(t, theta[:, 0]*sP_down[:], theta[:, 0]*sP_up[:], alpha=0.3,color=col_)
|
||
|
axes.fill_between(t, theta[:, 0] - np.sqrt(P[:, 0, 0]),theta[:, 0] + np.sqrt(P[:, 0, 0]), alpha=0.3,color=col_)
|
||
|
axes.set_xlabel(r'time',fontsize=18)
|
||
|
axes.plot(t, t*0 + np.log(30/float(k))/np.log(2), '-', c='black',ls='--')
|
||
|
|
||
|
|
||
|
axes.set_xlim([-0.01,0.2])
|
||
|
|
||
|
|
||
|
if not is_ipython():
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
def get_parser():
|
||
|
parser = argparse.ArgumentParser(
|
||
|
description='''
|
||
|
Plot the time evolution of the ROUKF estimated parameters.
|
||
|
|
||
|
To execute in IPython::
|
||
|
|
||
|
%run plot_roukf_parameters.py [-d] [-r N [N \
|
||
|
...]] file
|
||
|
''',
|
||
|
formatter_class=argparse.RawDescriptionHelpFormatter)
|
||
|
parser.add_argument('file', type=str, help='path to ROUKF stats file')
|
||
|
parser.add_argument('-d', '--deparameterize', action='store_true',
|
||
|
help='deparameterize the parameters by 2**theta')
|
||
|
parser.add_argument('-r', '--ref', metavar='N', nargs='+', default=None,
|
||
|
type=float, help='Reference values for parameters')
|
||
|
return parser
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
args = get_parser().parse_args()
|
||
|
files = ['10','30','60']
|
||
|
dat_array = {}
|
||
|
|
||
|
for ff in files:
|
||
|
path = args.file + ff + '/theta_stats.npz'
|
||
|
dat_array[ff] = load_data(path)
|
||
|
|
||
|
plot_parameters(dat_array)
|