This commit is contained in:
2021-06-17 16:58:23 +02:00
parent 4ffd1c03c1
commit 1b00a76a17
7 changed files with 142 additions and 49 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

View File

@ -237,22 +237,11 @@ P_l = R_{p,l} \ Q_l + \pi_l
\column{.5\textwidth} % Left column and width
\footnotesize
\begin{itemize}
\item Incompressible Navier-Stokes equations:
\begin{equation}
\begin{cases}
\displaystyle \rho \frac{\partial \vec{u}}{\partial t} + \rho \big ( \vec{u} \cdot \nabla \big) \vec{u} - \mu \Delta \vec{u} + \nabla p = 0 \\[0.2cm]
\nabla \cdot \vec{u} = 0 \quad \text{in} \quad \Omega \\[0.2cm]
\vec{u} = \vec{u}_{inlet} \quad \text{on} \quad \Gamma_{in} \\[0.2cm]
\vec{u} = 0 \quad \text{on} \quad \Gamma_{walls}
\end{cases}
\end{equation}
\item \emph{Three-element} Windkessel coupling at every outlet:
\begin{equation}
\begin{cases}
\displaystyle C_{d,l} \frac{d \pi_l}{dt} + \frac{\pi_l}{R_{d,l}} = Q_l \\[0.2cm]
P_l = R_{p,l} \ Q_l + \pi_l
\end{cases}
\end{equation}
\item<1-> $u_{inlet} = -U f(t) \hat{n}$, with $f(t)$ the weaveform.
\item<2-> Fractional step scheme.
\item<3-> Semi-implicit Windkessel model.
\item<4-> Stabilized $\mathbb{P}1/\mathbb{P}1$ finite elements.
\item<4-> Implemented in FEniCS.
\end{itemize}
@ -260,7 +249,7 @@ P_l = R_{p,l} \ Q_l + \pi_l
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.9\textwidth]{images/ref.png}
\caption{\footnotesize Schematic of the model}
\caption{\footnotesize Reference solution at peak systole}
\end{center}
\end{figure}
\end{columns}
@ -290,13 +279,14 @@ P_l = R_{p,l} \ Q_l + \pi_l
\item<5-> Gaussian noise into the magnetization
\item<6-> Different levels of aliasing varying the $venc$ parameter
\item<7-> Only using the dominant component of the velocity: $u_z$
\item<8-> Time interpolation $dt = 1 \ ms \Longrightarrow dt = 30 \ ms$
\end{itemize}
\end{columns}
\end{frame}
\section{The inverse problem}
\begin{frame}
\frametitle{The inverse problem}
@ -381,20 +371,110 @@ J(\theta) = \displaystyle \frac{1}{2} || \theta - \theta_0 ||^2_{P_0^{-1}} + \
The parameter vector:
\begin{itemize}
\item<1-> Plug flow at the inlet: $u_{inlet} = -U f(t) \hat{n}$, with $f(t)$ is the weaveform which simulate a cardiac cycle and $\hat{n}$ is the outward normal vector.
\item<2-> Since $R_p << R_d$, we only consider an optimization dependent on $R_d, C$ for every 3D-0D coupled outlet
\item<1-> Amplitude of the inlet velocity: $U$
\item<2-> Since $R_p << R_d$, we only consider an optimization dependent on $\big ( R_{d,l}, C_l \big )$ for $l=1,...,n_l$
\end{itemize}
\onslide<3-> $$\theta = (U,\vec{R_d},\vec{C})$$ \\ with $\vec{R_d} = R_{d,l}$, $\vec{C} = C_l$ for $l=1,..., n_l$
\onslide<3-> $$\theta = (U,\vec{R_d},\vec{C})$$ \\ with $\vec{R_d} = R_{d,l}$, $\vec{C} = C_l$ for $l=1,..., \color{red} n_{l-1}$ \\[0.3cm]
\onslide<4-> \color{red} Not all the resistences can be recovered at once $\Longrightarrow$ desc. aorta fixed.
\end{frame}
\section{Numerical Experiments}
\begin{frame}
\frametitle{Easy example}
\footnotesize
\begin{itemize}
\item<1-> $\theta_{ref} = (U,\vec{R_d})$ , $U=75$, $\vec{R_d} = (7200,11520,11520)$
\end{itemize}
\begin{columns}
\footnotesize
\column{.4\textwidth}
\begin{figure}
\onslide<2-> \textbf{Test I:} $U_0 = 150$ $\vec{R_{d,0}}= (8760,8760,8760)$
\onslide<3->
\includegraphics[width=1.2\textwidth]{images/U_Pb.png}
\includegraphics[width=1.2\textwidth]{images/Rd_Pb.png}
\end{figure}
\column{.4\textwidth}
\begin{figure}
\onslide<2-> \textbf{Test II:} $U_0 = 40$ $\vec{R_{d,0}}= (4000,4000,4000)$
\onslide<4->
\includegraphics[width=1.2\textwidth]{images/U_Pc.png}
\includegraphics[width=1.2\textwidth]{images/Rd_Pc.png}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Aliased data}
\begin{center}
What happend when $venc < u_{max}$ ?
\end{center}
\end{frame}
\begin{frame}
\frametitle{Easy example: with $venc = 70 \% u_{max}$}
\footnotesize
\begin{itemize}
\item $\theta_{ref} = (U,\vec{R_d})$ , $U=75$, $\vec{R_d} = (7200,11520,11520)$
\end{itemize}
\begin{columns}
\footnotesize
\column{.4\textwidth}
\begin{figure}
\onslide<1-> \textbf{Test I:} $U_0 = 150$ $\vec{R_{d,0}}= (8760,8760,8760)$
\onslide<2->
\includegraphics[width=1.2\textwidth]{images/U_Pb.png}
\includegraphics[width=1.2\textwidth]{images/Rd_Pb.png}
\end{figure}
\column{.4\textwidth}
\begin{figure}
\onslide<1-> \textbf{Test II:} $U_0 = 40$ $\vec{R_{d,0}}= (4000,4000,4000)$
\onslide<2->
\includegraphics[width=1.2\textwidth]{images/U_Pc.png}
\includegraphics[width=1.2\textwidth]{images/Rd_Pc.png}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{The Kalman Filter: A frequency defined functional}
\begin{itemize}
\item<1-> We proposed a change in the cost functional:
\onslide<2->
\begin{equation*}
\hat{\theta} = arg \min_{\theta} J(\theta)
\end{equation*}
\begin{equation}
J(\theta) = \displaystyle \frac{1}{2} || \theta - \theta_0 ||^2_{P_0^{-1}} + \color{red} \sum_{k=1}^N 1- cos \big ( \frac{\pi}{venc} \cdot ( Z_k - \mathbb{H} X_k ) \big )
\end{equation}
\end{itemize}
\end{frame}
\section{Numerical Experiments}
\begin{frame}
\frametitle{Numerical Experiments}
\begin{center}