adding press

This commit is contained in:
jeremias
2020-12-16 15:39:18 -03:00
parent 013d7e87ba
commit 292d997a33
48 changed files with 1834 additions and 6 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 346 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 303 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 263 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 210 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 669 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 860 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 818 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 753 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 200 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 188 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.5 MiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.9 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.8 MiB

View File

@ -0,0 +1,776 @@
\documentclass[xcolor=dvipsnames,notheorem,mathserifs]{beamer}
\usepackage{amsmath}
%\documentclass{beamer}
\usepackage[english]{babel}
%\usepackage[latin1]{inputenc}
\usepackage{multicol} % indice en 2 columnas
\usepackage[utf8]{inputenc}
\usepackage{helvet}
\usefonttheme{serif}
%\usepackage{ccfonts} % Font family: Concrete Math
\usepackage[T1]{fontenc}
%\usepackage{graphicx}
%\usepackage{movie15}
%\usepackage{media9}[2013/11/04]
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage{multimedia}
\usepackage{media9}
\usepackage{listings,xcolor,caption, mathtools, wrapfig}
\usepackage{amsfonts}
\usepackage{amssymb,graphicx,enumerate}
\usepackage{subcaption}
\usepackage{hyperref}
\usepackage[normalem]{ulem} % for strike out command \sout
%\usetheme{default}
%\usetheme{AnnArbor}
%\usetheme{Antibes}
%\usetheme{Bergen}
%\usetheme{Berkeley}
%\usetheme{Berlin}
%\usetheme{Boadilla}
%\usetheme{CambridgeUS}
%\usetheme{Copenhagen}
%\usetheme{Darmstadt}
%\usetheme{Dresden}
%\usetheme{Frankfurt}
%\usetheme{Goettingen}
%\usetheme{Hannover}
%\usetheme{Ilmenau}
%\usetheme{JuanLesPins}
%\usetheme{Luebeck}
%\usetheme{Madrid}
%\usetheme{Malmoe}
%\usetheme{Marburg}
%\usetheme{Montpellier}
%\usetheme{PaloAlto}
%\usetheme{Pittsburgh}
%\usetheme{Rochester}
%\usetheme{Singapore}
%\usetheme{Szeged}
\usetheme{Warsaw}
%\usecolortheme{albatross}
%\usecolortheme{beaver}
%\usecolortheme{beetle}
\usecolortheme{crane}
%\usecolortheme{dolphin}
%\usecolortheme{dove}
%\usecolortheme{fly}
%\usecolortheme{lily}
%\usecolortheme{orchid}
%\usecolortheme{rose}
%\usecolortheme{seagull}
%\usecolortheme{seahorse}
%\usecolortheme{whale}
%\usecolortheme{wolverine}
%\useoutertheme{infolines}
%\useoutertheme{miniframes}
%\useoutertheme{sidebar}
\useoutertheme{smoothbars}
%\useoutertheme{shadow}
%\useoutertheme{smoothtree}
%\useoutertheme{split}
%\useoutertheme{tree}
\usepackage{amssymb,mathrsfs,amsmath,latexsym,amsthm,amsfonts}
\useinnertheme{rectangles}
\setbeamertemplate{navigation symbols}{} % quitar simbolitos
\setbeamerfont{page number in head/foot}{size=\large}
%\setbeamertemplate{footline}[frame number] number in footer
\setbeamertemplate{footline}{}
\title[A new mathematical model for verifying the Navier-Stokes compatibility of 4D flow MRI data]{ A new mathematical model for verifying the Navier-Stokes compatibility of 4D flow MRI}
%\author[Jeremías Garay Labra]
%{Jeremías Garay Labra}
\institute[University of Groningen]
{
Bernoulli Institute\\
Faculty of Sciences and Engineering\\
University of Groningen\\[0.5cm]
%\includegraphics[height=1.5cm]{Imagenes/escudoU2014.pdf}
% \includegraphics[height=1cm]{Imagenes/fcfm.png} \\[0.5cm]
Jeremías Garay Labra \emph{join with} Hernan Mella, Julio Sotelo, Sergio Uribe, Cristobal Bertoglio and Joaquin Mura.}
\date{\today}
\begin{document}
\frame{\titlepage}
% \onslide<1->
\begin{frame}
\frametitle{Index}
\tableofcontents
\end{frame}
\section[4D flow MRI]{4D flow MRI}
\begin{frame}
\frametitle{4D flow MRI}
\begin{columns}[c]
\column{.5\textwidth} % Left column and width
\footnotesize
\begin{itemize}
\item<2-> Full 3D coverage of the region of interest
\item<3-> Rich post-proccesing: derived parameters
\end{itemize}
\onslide<4-> Disadvantages:
\begin{itemize}
\item<5-> Long scan time
\end{itemize}
\column{.54\textwidth} % Right column and width
\onslide<1->
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.9\textwidth]{images/4dflow.png}
\caption{\footnotesize 4D flow MRI of a human thorax}
\end{center}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{4D flow MRI}
\footnotesize
\onslide<1-> Strategies:
\begin{itemize}
\item<2-> modest spatial resolutions $ \sim (2.5 \times 2.5 \times 2.5 \ mm^3)$
\item<3-> partial data coverage
\end{itemize}
\begin{columns}[c]
\column{.4\textwidth} % Right column and width
\onslide<4->
\footnotesize
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.25\textwidth]{images/channel_noise.png} \\
(a) Noise
%\caption{Noise}
\end{center}
\end{figure}
\column{.4\textwidth} % Right column and width
\onslide<5->
\footnotesize
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.25\textwidth]{images/channel_aliasing.png}\\
(b) Aliasing
%\caption{Aliasing}
\end{center}
\end{figure}
\column{.4\textwidth} % Right column and width
\onslide<6->
\footnotesize
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.25\textwidth]{images/channel_under.png}\\
(c) Undersampling
%\caption{Aliasing}
\end{center}
\end{figure}
\end{columns}
\vspace{0.5cm}
\onslide<7-> Typical quality estimators: SNR, VNR, peak flows/velocities, mass conservation (zero divergence)
\vspace{0.5cm}
\onslide<8-> This work $\longrightarrow$ \textbf{conservation of linear momentum} (Navier-Stokes compatibility).
\end{frame}
\section[]{The corrector field}
\begin{frame}
\frametitle{The corrector field}
\begin{center}
Methodology
\end{center}
\end{frame}
\begin{frame}
\frametitle{The corrector field}
\footnotesize
\onslide<1-> We assume a perfect physical velocity field $\vec{u}$
\onslide<2-> \begin{eqnarray*}
\rho \frac{\partial \vec{u}}{\partial t} + \rho \big ( \vec{u} \cdot \nabla \big) \vec{u} - \mu \Delta \vec{u} + \nabla p = 0 \quad \text{in} \quad \Omega \label{eq:NSmom}
\end{eqnarray*}
\onslide<3-> And a corrector field $\vec{w}$ which satisfies:
\onslide<4-> \begin{align}
\vec{u} & = \vec{u}_{meas} + \vec{w} \quad \text{in} \quad \Omega \label{eq:corrector}\\
\nabla \cdot \vec w & = 0 \quad \text{in} \quad \Omega \label{eq:correctorDiv} \\
\vec w & = \vec 0 \quad \text{on} \quad \partial \Omega \label{eq:correctorBC}
\end{align}
\onslide<5-> The corrector field $\vec{w}$ measures the level of agreedment of the 4D flow measures respect to the Navier-Stokes equations.
\end{frame}
\begin{frame}
\frametitle{The corrector field: Continuum problem}
\footnotesize
\onslide<1-> Applying the decomposition $\vec{u} = \vec{u}_{meas} + \vec{w}$ into the original equation and writing a variational problem for $\vec w$ we have:\\[0.2cm]
Find $(\vec w(t) ,p(t)) \in H^1_0(\Omega)\times L^2(\Omega)$ such that:
\onslide<2-> \begin{equation*}
\int_{\Omega} \rho \frac{\partial \vec{w}}{\partial t} \cdot \vec{v} + \rho \big ( ( \vec{u}_{meas} + \vec w) \cdot \nabla \big) \vec{w} \cdot \vec{v} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas} \cdot \vec{v} + \mu \nabla \vec{w} : \nabla \vec{v} - p \nabla \cdot \vec{v} + q \nabla \cdot \vec{w} \notag
\end{equation*}
\begin{equation*}
= - \int_{\Omega} \rho \frac{\partial \vec{u}_{meas}}{\partial t} \cdot \vec{v} + \rho \big ( \vec{u}_{meas} \cdot \nabla \big) \vec{u}_{meas} \cdot \vec{v} + \mu \nabla \vec{u}_{meas} : \nabla \vec{v} + q \nabla \cdot \vec{u}_{meas}
\end{equation*}
\vspace{0.2cm}
\onslide<3-> or in simple terms:
\onslide<4-> \begin{equation*}
A(\vec w,p;\vec v ,q ) = \mathcal{L} (\vec v)
\end{equation*}
for all $(\vec v,q) \in H^1_0(\Omega) \times L^2(\Omega)$.
\end{frame}
\begin{frame}
\frametitle{The corrector field: Discrete problem}
\footnotesize
\onslide<1-> In the Discrete, we can write the problem as follows:
\onslide<2-> \begin{equation}
A_{k}(\vec w,p;\vec v ,q ) + \color{blue}{S^{press}_{k}(\vec w,p;\vec v ,q)} + \color{red}{S^{conv}_{k}(\vec w;\vec v)} \color{black}{ = \mathcal{L}_j (\vec v)}
\label{eq:Corrector_discrete}
\end{equation}
\begin{itemize}
\small
\item<3-> $
A_{k}(\vec w,p;\vec v ,q ) := \int_{\Omega} \frac{\rho}{\tau} \vec{w} \cdot \vec{v} + \rho \big ( ( \vec{u}_{meas}^k + \vec{w}^{k-1} ) \cdot \nabla \big) \vec{w} \cdot \vec{v} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas}^k \cdot \vec{v} + \mu \nabla \vec{w} : \nabla \vec{v} - p \nabla \cdot \vec{v} + q \nabla \cdot \vec{w}
$ \vspace{0.2cm}
\item<3-> $ \mathcal{L}_j (\vec v) := \int_{\Omega} \frac{\rho}{\tau} \vec{w}^{k-1} \cdot \vec{v} + \mathcal{\ell}_j (\vec v,q) $
\vspace{0.2cm}
\item<4-> \color{blue}$
S^{press}_{k}(\vec w,p;\vec v ,q) := \delta \sum_{K \in \Omega}\int_{K} \frac{h_j^2}{\mu} \bigg ( \rho \big ( (\vec u^k_{meas} + \vec w^{k-1}) \cdot \nabla \big) \vec{w} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas}^k + \nabla p \bigg) \cdot \notag \bigg ( \rho \big ( (\vec u^k_{meas} + \vec w^{k-1}) \cdot \nabla \big) \vec{v} + \rho \big ( \vec{v} \cdot \nabla \big) \vec{u}_{meas}^k + \nabla q \bigg )
$
\vspace{0.2cm}
\item<5-> \color{red}$
S^{conv}_{k}(\vec w;\vec v) := \int_{\Omega} \frac{\rho}{2} \ \big( \nabla \cdot (\vec u^k_{meas} + \vec w^{k-1}) \big) \ \vec{w} \cdot \vec{v}
$ \vspace{0.2cm}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{The corrector field: Well-posedness}
\footnotesize
\onslide<1->
\begin{theorem}
There exists a unique solution of Problem (\ref{eq:Corrector_discrete}) under the condition: $$\rho/\tau + C_\Omega^{-2} \mu/2 - \rho 3 \| \nabla\vec u_{meas}^k\|_\infty > 0$$ for all $k>0$.
\end{theorem}
\onslide<2->
We can furthermore prove the following energy balance:
\onslide<3->
\begin{theorem} For $(\vec w^k ,p^k)$ solution of Problem (\ref{eq:Corrector_discrete}), with $\ell_j(\vec v,q)=0$ it holds
\begin{equation*}\label{eq:energy}
\| \vec w^k \|^2_{L_2(\Omega)} \leq \| \vec w^{k-1} \|^2_{L_2(\Omega)}
\end{equation*}
under the condition
\begin{equation*}\label{eq:condstab}
\mu \geq C_\Omega^2 \rho \| \nabla \vec u_{meas}^k\|_\infty
\end{equation*}
\end{theorem}
\end{frame}
\section[Synthetic data]{Experiments using synthetic data }
\begin{frame}
\frametitle{Experiments}
\begin{center}
Experiments using synthetic data
\end{center}
\end{frame}
\begin{frame}
\frametitle{Numerical tests}
\onslide<1->
\footnotesize
\begin{columns}[c]
\column{.4\textwidth} % Right column and width
\footnotesize
Simulated channel flow as measurements (Stokes flow)
\column{.5\textwidth} % Right column and width
\footnotesize
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.35\textwidth]{images/cilinder_2.png}\\
(b) Channel mesh
%\caption{Aliasing}
\end{center}
\end{figure}
\end{columns}
\vspace{0.2cm}
%\onslide<1-> We tested the corrector using CFD simulations as a measurements, in the following testcases:
%\onslide<2->
%\begin{itemize}
%\item Womersley flow in a cilinder
%\item Navier-Stokes simulations in an aortic mesh
%\end{itemize}
\onslide<2-> Afterwards, perturbations were added:
\begin{itemize}
\item<3-> velocity aliasing (varying the $venc$ parameter)
\item<4-> additive noise (setting SNR in decibels)
\item<5-> simulated k-space undersampling (compressed sensing for the reconstruction)
\end{itemize}
%\onslide<7-> All simulations were done using a stabilized finite element method implemented in FEniCS. Afterwards, all numerical simulations were interpolated into a voxel-type structured mesh
\end{frame}
%
%\begin{frame}
% \frametitle{Numerical tests: channel}
%\begin{columns}[c]
%\column{.6\textwidth} % Left column and width
%\footnotesize
%\textbf{Channel:}
%\begin{itemize}
%\item Convective term was neglected
%\item Non-slip condition at walls
%\item Oscilatory pressure at $\Gamma_{inlet}$
%\end{itemize}
%\column{.5\textwidth} % Right column and width
%\footnotesize
%\begin{figure}[!hbtp]
% \begin{center}
% \includegraphics[height=1.0\textwidth]{images/cilinder.png}
% \caption{3D channel mesh}
% \end{center}
% \end{figure}
%\end{columns}
%\end{frame}
%
\begin{frame}
\frametitle{Numerical tests}
\begin{center}
Results
\end{center}
\end{frame}
\begin{frame}
\frametitle{Aliasing and noise}
\footnotesize
\onslide<1-> For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$
\onslide<2->
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.45\textwidth]{images/channel_ppt_1.png}
\caption{\small Fields for the channel: $(SNR,venc) = (\infty,120\%)$. $\vec{w} \times 200$}
\end{center}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Aliasing and noise}
\footnotesize
For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.45\textwidth]{images/channel_ppt_2.png}
\caption{\small Fields for the channel: $(SNR,venc) = (\infty,80\%)$. $\vec{w} \times 4$ }
%\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ }
\end{center}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Aliasing and noise}
\footnotesize
For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.45\textwidth]{images/channel_ppt_3.png}
\caption{\small Fields for the channel: $(SNR,venc) = (10 \ dB,120\%)$. $\delta \vec{u}, \vec{w} \times 4$}
%\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ }
\end{center}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Aliasing and noise}
\footnotesize
For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.45\textwidth]{images/channel_ppt_4.png}
\caption{\small Fields for the channel: $(SNR,venc) = (10 \ dB,80\%)$. $\vec{w} \times 4$}
%\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ }
\end{center}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Aliasing and noise}
\footnotesize
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.5\textwidth]{images/channel_curves_SNRinf.png}
\caption{ \footnotesize Evolution of the $L-2$ norms of the components of $\vec w$}
\end{center}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Aliasing and noise}
\footnotesize
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.5\textwidth]{images/channel_curves_SNR10.png}
\caption{ \footnotesize Evolution of the $L-2$ norms of the components of $\vec w$}
\end{center}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Undersampling}
\footnotesize
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.6\textwidth]{images/histo_channel.png}
\caption{ \footnotesize Histograms of different undersampling rates for the channel}
\end{center}
\end{figure}
\end{frame}
%\begin{frame}
% \frametitle{Results for channel: undersampling}
%\footnotesize
%
%\begin{figure}[!hbtp]
% \begin{center}
% \includegraphics[height=0.6\textwidth]{images/undersampling_press.png}
%\caption{ \footnotesize Different undersampling rates for the channel}
% \end{center}
% \end{figure}
%
%
%\end{frame}
%
%\begin{frame}
% \frametitle{Numerical tests: aorta}
%
%\begin{columns}[c]
%\column{.6\textwidth} % Left column and width
%\footnotesize
%\textbf{Aorta}
%\begin{itemize}
%\item a mild coartation was added in the descending aorta
%\item $u_{inlet}$ simulates a cardiac cycle
%\item 3-element Windkessel for the outlets
%\item Non-slip condition at walls
%\end{itemize}
%\column{.5\textwidth} % Right column and width
%\footnotesize
%\begin{figure}[!hbtp]
% \begin{center}
% \includegraphics[height=1.0\textwidth]{images/aorta_blender.png}
%\caption{Aortic mesh}
% \end{center}
% \end{figure}
%\end{columns}
%
%
%\end{frame}
%
%
%\begin{frame}
% \frametitle{Results for aorta: aliasing and noise}
%\footnotesize
%
%\begin{figure}[!hbtp]
% \begin{center}
% \includegraphics[height=0.7\textwidth]{images/aorta_perturbation.png}
%\caption{Different perturbation scenarios for the aortic mesh}
% \end{center}
% \end{figure}
%
%\end{frame}
%
%
%\begin{frame}
% \frametitle{Results for aorta: undersampling}
%\footnotesize
%
%\begin{figure}[!hbtp]
% \begin{center}
% \includegraphics[height=0.6\textwidth]{images/histo_blender.png}
%\caption{ \footnotesize Histograms of different undersampling rates for the aortic mesh}
% \end{center}
% \end{figure}
%
%\end{frame}
%
%\begin{frame}
% \frametitle{Results for aorta: undersampling}
%\footnotesize
%
%\begin{figure}[!hbtp]
% \begin{center}
% \includegraphics[height=0.7\textwidth]{images/undersampling_blender.png}
%\caption{ \footnotesize Different undersampling rates for the aortic mesh}
% \end{center}
% \end{figure}
%
%\end{frame}
%
%
\section[4D flow data]{Experiments using real 4D flow data }
\begin{frame}
\frametitle{Experiments}
\begin{center}
Experiments using real 4D flow data
\end{center}
\end{frame}
\begin{frame}
\frametitle{Experiments}
\footnotesize
\begin{columns}[c]
\column{.6\textwidth} % Left column and width
\begin{itemize}
\item<1-> 4D flow measurements were taken from a silicon thoracic aortic phantom made of silicon.
\item<2-> A controled pump (heart rate, peak flow, stroke volume and flow waveform)
\item<3-> A stenosis of $11 \ mm$ of diameter was added in the descending aorta
\item<4-> The phantom was scanned using a clinical $1.5 \ T$ MR scanner (Philips Achieva, Best, The Netherlands)
\end{itemize}
\column{.5\textwidth} % Right column and width
\begin{figure}[!hbtp]
\begin{center}
\footnotesize
\includegraphics[height=\textwidth]{images/phantom.jpg}
\caption{\footnotesize{Experiment done at the Centre of Biomedical Images (CIB) of the Catholic Unversity of Chili (PUC)}}
\end{center}
\end{figure}
\end{columns}
%\includemedia[width=0.6\linewidth,height=0.6\linewidth,activate=pageopen,
%passcontext,
%transparent,
%addresource=images/phantom.mp4,
%flashvars={source=images/phantom.mp4}
%]{\includegraphics[width=0.6\linewidth]{images/phantom.jpg}}{VPlayer.swf}
%
\end{frame}
\begin{frame}
\frametitle{Results}
\footnotesize
\begin{figure}
\begin{subfigure}{.31\textwidth}
\centering
\includegraphics[trim=100 80 100 150, clip, width=1.0\textwidth]{images/u_15.png}
\caption*{(a) $\vec{u}_{meas}$}
\end{subfigure}
\begin{subfigure}{.01\textwidth}
\hfill
\end{subfigure}
\begin{subfigure}{.31\textwidth}
\centering
\includegraphics[trim=100 80 100 150, clip, width=1.0\textwidth]{images/w_15.png}
\caption*{(b) $\vec{w}$}
\end{subfigure}
\begin{subfigure}{.01\textwidth}
\hfill
\end{subfigure}
\begin{subfigure}{.31\textwidth}
\centering
\includegraphics[trim=100 80 100 150, clip, width=1.0\textwidth]{images/uc_15.png}
\caption*{(c) $\vec{u}_{meas}+\vec{w}$}
\end{subfigure}
\caption{Measurements, corrector fields and corrected velocities for all the cases.}
\label{fig:phantom_resolution}
\end{figure}
\end{frame}
\section{Conclusions}
\begin{frame}
\frametitle{Experiments}
\begin{center}
Conclusions
\end{center}
\end{frame}
\begin{frame}
\frametitle{Conclusions and future work}
\footnotesize
\onslide<1-> Potential of the new quality parameter:
\begin{itemize}
\item<2-> Vector fields has more details
\item<3-> Artifacts recognition
\end{itemize}
\onslide<4-> Future:
\begin{itemize}
\item<5-> The use of the field for create new inverse problems which can be used for further accelerations
\end{itemize}
\end{frame}
\begin{frame}
\begin{center}
\huge{Thank you for your time!}
\end{center}
\end{frame}
%\includegraphics<1>[height=4.5cm]{images/pat1.png}
%\includegraphics<2>[height=4.5cm]{images/pat2.png}
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 122 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 111 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

View File

@ -0,0 +1,82 @@
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\providecommand\babel@aux[2]{}
\@nameuse{bbl@beforestart}
\babel@aux{english}{}
\@writefile{nav}{\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {1}{1}}}
\@writefile{toc}{\beamer@sectionintoc {1}{Introduction}{2}{0}{1}}
\@writefile{nav}{\headcommand {\beamer@sectionpages {1}{1}}}
\@writefile{nav}{\headcommand {\beamer@subsectionpages {1}{1}}}
\@writefile{nav}{\headcommand {\sectionentry {1}{Introduction}{2}{Introduction}{0}}}
\@writefile{nav}{\headcommand {\slideentry {1}{0}{1}{2/2}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {2}{2}}}
\@writefile{nav}{\headcommand {\slideentry {1}{0}{2}{3/5}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {3}{5}}}
\@writefile{nav}{\headcommand {\slideentry {1}{0}{3}{6/9}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {6}{9}}}
\@writefile{nav}{\headcommand {\slideentry {1}{0}{4}{10/12}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {10}{12}}}
\@writefile{nav}{\headcommand {\slideentry {1}{0}{5}{13/21}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {13}{21}}}
\@writefile{nav}{\headcommand {\slideentry {1}{0}{6}{22/22}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {22}{22}}}
\@writefile{nav}{\headcommand {\slideentry {1}{0}{7}{23/23}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {23}{23}}}
\@writefile{nav}{\headcommand {\slideentry {1}{0}{8}{24/24}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {24}{24}}}
\@writefile{nav}{\headcommand {\slideentry {1}{0}{9}{25/25}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {25}{25}}}
\@writefile{nav}{\headcommand {\slideentry {1}{0}{10}{26/26}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {26}{26}}}
\@writefile{toc}{\beamer@sectionintoc {2}{Application: Parameter recovery}{27}{0}{2}}
\@writefile{nav}{\headcommand {\beamer@sectionpages {2}{26}}}
\@writefile{nav}{\headcommand {\beamer@subsectionpages {2}{26}}}
\@writefile{nav}{\headcommand {\sectionentry {2}{Application: Parameter recovery}{27}{Application: Parameter recovery}{0}}}
\@writefile{nav}{\headcommand {\slideentry {2}{0}{1}{27/27}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {27}{27}}}
\@writefile{nav}{\headcommand {\slideentry {2}{0}{2}{28/29}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {28}{29}}}
\@writefile{nav}{\headcommand {\slideentry {2}{0}{3}{30/33}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {30}{33}}}
\@writefile{nav}{\headcommand {\slideentry {2}{0}{4}{34/34}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {34}{34}}}
\@writefile{nav}{\headcommand {\slideentry {2}{0}{5}{35/38}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {35}{38}}}
\@writefile{nav}{\headcommand {\slideentry {2}{0}{6}{39/39}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {39}{39}}}
\@writefile{nav}{\headcommand {\slideentry {2}{0}{7}{40/40}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {40}{40}}}
\@writefile{nav}{\headcommand {\slideentry {2}{0}{8}{41/42}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {41}{42}}}
\@writefile{nav}{\headcommand {\slideentry {2}{0}{9}{43/43}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {43}{43}}}
\@writefile{toc}{\beamer@sectionintoc {3}{Summary}{44}{0}{3}}
\@writefile{nav}{\headcommand {\beamer@sectionpages {27}{43}}}
\@writefile{nav}{\headcommand {\beamer@subsectionpages {27}{43}}}
\@writefile{nav}{\headcommand {\sectionentry {3}{Summary}{44}{Summary}{0}}}
\@writefile{nav}{\headcommand {\slideentry {3}{0}{1}{44/44}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {44}{44}}}
\@writefile{nav}{\headcommand {\slideentry {3}{0}{2}{45/47}{}{0}}}
\@writefile{nav}{\headcommand {\beamer@framepages {45}{47}}}
\@writefile{nav}{\headcommand {\beamer@partpages {1}{47}}}
\@writefile{nav}{\headcommand {\beamer@subsectionpages {44}{47}}}
\@writefile{nav}{\headcommand {\beamer@sectionpages {44}{47}}}
\@writefile{nav}{\headcommand {\beamer@documentpages {47}}}
\@writefile{nav}{\headcommand {\gdef \inserttotalframenumber {22}}}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,58 @@
\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}
\headcommand {\beamer@framepages {1}{1}}
\headcommand {\beamer@sectionpages {1}{1}}
\headcommand {\beamer@subsectionpages {1}{1}}
\headcommand {\sectionentry {1}{Introduction}{2}{Introduction}{0}}
\headcommand {\slideentry {1}{0}{1}{2/2}{}{0}}
\headcommand {\beamer@framepages {2}{2}}
\headcommand {\slideentry {1}{0}{2}{3/5}{}{0}}
\headcommand {\beamer@framepages {3}{5}}
\headcommand {\slideentry {1}{0}{3}{6/9}{}{0}}
\headcommand {\beamer@framepages {6}{9}}
\headcommand {\slideentry {1}{0}{4}{10/12}{}{0}}
\headcommand {\beamer@framepages {10}{12}}
\headcommand {\slideentry {1}{0}{5}{13/21}{}{0}}
\headcommand {\beamer@framepages {13}{21}}
\headcommand {\slideentry {1}{0}{6}{22/22}{}{0}}
\headcommand {\beamer@framepages {22}{22}}
\headcommand {\slideentry {1}{0}{7}{23/23}{}{0}}
\headcommand {\beamer@framepages {23}{23}}
\headcommand {\slideentry {1}{0}{8}{24/24}{}{0}}
\headcommand {\beamer@framepages {24}{24}}
\headcommand {\slideentry {1}{0}{9}{25/25}{}{0}}
\headcommand {\beamer@framepages {25}{25}}
\headcommand {\slideentry {1}{0}{10}{26/26}{}{0}}
\headcommand {\beamer@framepages {26}{26}}
\headcommand {\beamer@sectionpages {2}{26}}
\headcommand {\beamer@subsectionpages {2}{26}}
\headcommand {\sectionentry {2}{Application: Parameter recovery}{27}{Application: Parameter recovery}{0}}
\headcommand {\slideentry {2}{0}{1}{27/27}{}{0}}
\headcommand {\beamer@framepages {27}{27}}
\headcommand {\slideentry {2}{0}{2}{28/29}{}{0}}
\headcommand {\beamer@framepages {28}{29}}
\headcommand {\slideentry {2}{0}{3}{30/33}{}{0}}
\headcommand {\beamer@framepages {30}{33}}
\headcommand {\slideentry {2}{0}{4}{34/34}{}{0}}
\headcommand {\beamer@framepages {34}{34}}
\headcommand {\slideentry {2}{0}{5}{35/38}{}{0}}
\headcommand {\beamer@framepages {35}{38}}
\headcommand {\slideentry {2}{0}{6}{39/39}{}{0}}
\headcommand {\beamer@framepages {39}{39}}
\headcommand {\slideentry {2}{0}{7}{40/40}{}{0}}
\headcommand {\beamer@framepages {40}{40}}
\headcommand {\slideentry {2}{0}{8}{41/42}{}{0}}
\headcommand {\beamer@framepages {41}{42}}
\headcommand {\slideentry {2}{0}{9}{43/43}{}{0}}
\headcommand {\beamer@framepages {43}{43}}
\headcommand {\beamer@sectionpages {27}{43}}
\headcommand {\beamer@subsectionpages {27}{43}}
\headcommand {\sectionentry {3}{Summary}{44}{Summary}{0}}
\headcommand {\slideentry {3}{0}{1}{44/44}{}{0}}
\headcommand {\beamer@framepages {44}{44}}
\headcommand {\slideentry {3}{0}{2}{45/47}{}{0}}
\headcommand {\beamer@framepages {45}{47}}
\headcommand {\beamer@partpages {1}{47}}
\headcommand {\beamer@subsectionpages {44}{47}}
\headcommand {\beamer@sectionpages {44}{47}}
\headcommand {\beamer@documentpages {47}}
\headcommand {\gdef \inserttotalframenumber {22}}

View File

@ -0,0 +1,3 @@
\BOOKMARK [2][]{Outline0.1}{Introduction}{}% 1
\BOOKMARK [2][]{Outline0.2}{Application: Parameter recovery}{}% 2
\BOOKMARK [2][]{Outline0.3}{Summary}{}% 3

Binary file not shown.

View File

Binary file not shown.

View File

@ -0,0 +1,418 @@
\documentclass{beamer}
\usetheme{Boadilla}
\usefonttheme[onlylarge]{serif}
\usebeamercolor{dolphin}
\setbeamerfont*{frametitle}{size=\normalsize,series=\bfseries}
\setbeamertemplate{navigation symbols}{}
% Standard packages
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
\usepackage{times}
\usepackage[T1]{fontenc}
% Setup TikZ
\usepackage{tikz}
\usetikzlibrary{arrows}
\tikzstyle{block}=[draw opacity=0.7,line width=1.4cm]
% Author, Title, etc.
\title[]
{%
Data assimilation on the Kalman filter
}
\author[Garay]
{
Jeremias Garay %\inst{1}
%\textcolor{green!50!black}{Till~Tantau}\inst{5}
}
%\institute[University of Groningen]
%{
% \inst{1}%
% University of Groningen, The Netherlands
% \and
% \vskip-2mm
%}
\date
% The main document
\begin{document}
\begin{frame}
\titlepage
\end{frame}
%\begin{frame}{Outline}
% \tableofcontents
%\end{frame}
\section{Introduction}
\begin{frame}
\begin{center}
\large{Introduction}
\end{center}
\end{frame}
\begin{frame}{Stationary Case: Least square estimation}
\onslide<1->
\textit{Assume we want to find an estimator $\hat{X}$ of a unknown vector $X$, with a certain guess available $\hat{X}^-$, associated with a confidence matrix $(P^-)^{-1}$. Assume also that we have partial observation $Z$, satisfying $Z = HX + \zeta^Z$, associated with a confidence matrix $W^{-1}$.} \\[0.5cm]
\onslide<2->
A quantity taking care of $\hat{X}^{-}$ and $Z$ can be obtained minimizing the cuadratic cost functional:
\onslide<3->
\begin{equation}
J(\hat{X}) = \frac{1}{2} (\hat{X} - \hat{X}^-) (P^-)^{-1} (\hat{X} - \hat{X}^-) + \frac{1}{2} (Z -H\hat{X}) W^{-1} (Z - H\hat{X})
\end{equation}
\end{frame}
\begin{frame}{Stationary Case: Least square estimation}
\onslide<1->
Find the optimal state imposing: $\frac{dJ}{d\hat{X}}(\hat{X}^+) = 0$:
\onslide<2->
\begin{eqnarray*}
-H^T W^{-1} Z + H^T W^{-1} H \hat{X} - (P^-)^{-1} \hat{X}^- + (P^-)^{-1} \hat{X} \equiv 0
\end{eqnarray*}
\onslide<3->
or reordering terms:
\onslide<4->
\begin{equation*}
\hat{X}^+ = \hat{X}^- + K (Z-H\hat{X}^-)
\end{equation*}
\vspace{0.4cm}
With $K = P^+ H^T W^{-1}$ the Kalman matrix and $P^+ = ((P^-)^{-1} + H^T W^{-1} H)^{-1}$.
\end{frame}
\begin{frame}{Time dependent problems}
\onslide<1->
The method could be easily expanded into time-dependent systems ($\dot{X} = AX + F$):
\begin{itemize}
\item[1.]<2-> Assume that $\hat{X}^{+}_{n-1}$ is known with a covariance $P^+_{n-1}$
\begin{exampleblock}{Prediction}
$$\hat{X}^{-}_n = A_n \hat{X}^{+}_{n-1} + F_n$$
by linearity of $A_n$, the covariance of $\hat{X}^-_n$ is equal to $A_n P_{n-1}^+ A_n^T$
\end{exampleblock}
\item[2. ]<3-> Afterwards
\begin{exampleblock}{Correction}
$$\hat{X}^{+}_n = \hat{X}^{-}_n + K_n (Z_n - H_n \hat{X}_n^-) $$
\end{exampleblock}
\end{itemize}
\end{frame}
\begin{frame}{Non-linear problems}
\begin{itemize}
\item[1.]<1-> \emph{Extended Kalman Filter (EKF)}
\begin{itemize}
\item[a.]<2-> Taylor's expansion on the non-linear operator (tangent operators)
\item[b.]<3-> High cost if the Jacobian can be found numerically
\item[c.]<4-> Not optimal when the system is highly non-linear
\end{itemize}
\item[2.]<5-> \emph{Unscented Kalman Filter (UKF)}
\begin{itemize}
\item[a.]<6-> Approximate propagation of vectors by propagating suitable particles
\item[b.]<7-> Could be shown that by computing mean and covariance of the particles, a better approx could be reached.
\end{itemize}
\item[3.]<8-> \emph{Reduced Order Unscented Kalman Filter (ROUKF)}
\begin{itemize}
\item[a.]<9-> LU factorization could be performed on the covariance matrix $P_n^-$
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Graphical Picture: Initial State}
\begin{figure}
\includegraphics[width=\textwidth]{pictures/kalman1.png}
\end{figure}
\end{frame}
\begin{frame}{Graphical Picture: Initial State}
\begin{figure}
\includegraphics[width=\textwidth]{pictures/kalman2.png}
\end{figure}
\end{frame}
\begin{frame}{Graphical Picture: Prediction}
\begin{figure}
\includegraphics[width=\textwidth]{pictures/kalman3.png}
\end{figure}
\end{frame}
\begin{frame}{Graphical Picture: Updating Measurements}
\begin{figure}
\includegraphics[width=\textwidth]{pictures/kalman4.png}
\end{figure}
\end{frame}
\begin{frame}{Graphical Picture: Correction}
\begin{figure}
\includegraphics[width=\textwidth]{pictures/kalman5.png}
\end{figure}
\end{frame}
\section{Application: Parameter recovery}
\begin{frame}
\begin{center}
\large{Application: Parameter recovery}
\end{center}
\end{frame}
\begin{frame}{Application: Parameter recovery}
\onslide<1-> Consider a Poiseuille flow in a cylinder coming from a simulation. Assume we have:
\begin{columns}[t]
\column{.4\textwidth}
\vspace{0.3cm}
\column{.4\textwidth}
\onslide<2->
\begin{figure}
\includegraphics[width=1.3\textwidth]{pictures/u_ref.png}
\vspace{1.5cm}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}{Application: Parameter recovery}
Consider a Poiseuille flow in a cylinder coming from a simulation. Assume we have:
\begin{columns}[t]
\column{.4\textwidth}
\begin{itemize}
\item[1.]The velocity measurements with the addition of some noise
\item[2.]<2-> The measurement's mesh
\end{itemize}
\vspace{0.3cm}
\onslide<3-> We want to estimate the amplitude of the inlet flow
\onslide<4-> $$ u_{inlet} = \alert{U} \ (R^2-r^2) \ sin(\pi t / T) $$
\column{.4\textwidth}
\onslide<1->
\begin{figure}
\includegraphics[width=1.3\textwidth]{pictures/u_noi.png}
\vspace{1.5cm}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}{Application: Parameter recovery}
\begin{figure}
\includegraphics[width=0.8\textwidth]{pictures/channel_inlet.png}
\end{figure}
\begin{itemize}
\item[] Reparametrized value: $\theta_0 \cdot 2^\theta$
\end{itemize}
\end{frame}
\begin{frame}{Application: More complex scenario}
\onslide<1-> Aortic velocity data with reduced order boundary condition:
\begin{columns}[t]
\column{.55\textwidth}
\begin{itemize}
\item[1.]<2-> Navier-Stokes simulation with a \emph{plug-flow} at the intlet:
\[
u_{inlet} =
\begin{cases}
U sin(\pi t/T) & \text{if} \ t<T^* \\
\alpha U sin( \pi t/T')e^{- \gamma t} & \text{if} \ t \geq T^*\\
\end{cases}
\]
\item[2.]<3-> A 1-element Windkessel boundary condition is defined in every inlet.
\end{itemize}
\vspace{0.3cm}
\onslide<4-> We want to recover the proximal resistances $R_i$, $i=1,2,3,4$ and the amplitude $U$ from noisy velocity measurements.
\column{.4\textwidth}
\onslide<1->
\begin{figure}
\includegraphics[width=1.0\textwidth]{pictures/windk_model.png}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}{Application: Parameter recovery $\theta_0 \ 2^\theta$}
\begin{figure}
\includegraphics[width=0.9\textwidth]{pictures/windk_res.png}
\end{figure}
\end{frame}
\begin{frame}{Application: Parameter recovery}
\begin{tabular}{ l c r }
& \emph{true} & \emph{recovered} \\[0.1cm]
\hline
$R_1 \ (dyn\cdot s \cdot cm^{-5})$ & $250$ & $242.14$ \\
$R_2 \ (dyn\cdot s \cdot cm^{-5})$ & $250$ & $249.16$ \\
$R_3 \ (dyn\cdot s \cdot cm^{-5})$ & $250$ & $246.03$ \\
$R_4 \ (dyn\cdot s \cdot cm^{-5})$ & $10$ & $9.87$ \\
$U \ (cm/s)$ & $30$ & $29.94$ \\
\end{tabular}
\end{frame}
\begin{frame}{Application: Parameter recovery (\alert{only using 1 vel. component})}
\onslide<2->
\begin{figure}
\includegraphics[width=0.9\textwidth]{pictures/windk_res2.png}
\end{figure}
\end{frame}
\begin{frame}{Application: Parameter recovery}
\begin{tabular}{ l c c c }
& \emph{true} & \emph{recovered} & \emph{recovered with reduced vel}\\[0.1cm]
\hline
$R_1 \ (dyn\cdot s \cdot cm^{-5})$ & $250$ & $242.14$ & $247.31$ \\
$R_2 \ (dyn\cdot s \cdot cm^{-5})$ & $250$ & $249.16$ & $255.56$ \\
$R_3 \ (dyn\cdot s \cdot cm^{-5})$ & $250$ & $246.03$ & $277.37$ \\
$R_4 \ (dyn\cdot s \cdot cm^{-5})$ & $10$ & $9.87$ & $8.03$ \\
$U \ (cm/s)$ & $30$ & $29.94$ & $29.80$ \\
\end{tabular}
\end{frame}
\section{Summary}
\begin{frame}
\begin{center}
\large{Summary}
\end{center}
\end{frame}
\begin{frame}
\frametitle<presentation>{Summary}
\begin{itemize}
\item<1->
Kalman's filter uses a series of measurements and produce an estimate in two steps: Prediction and Correction
\item<2->
The Reduced Order Kalman Filter (ROUKF) its a simplification for non-linear problems which generally run faster than others methods. (no derivatives are need it)
\item<3-> Parameter recovery its a straightforward application.
\end{itemize}
\end{frame}
\end{document}

View File

@ -0,0 +1,4 @@
\babel@toc {english}{}
\beamer@sectionintoc {1}{Introduction}{2}{0}{1}
\beamer@sectionintoc {2}{Application: Parameter recovery}{27}{0}{2}
\beamer@sectionintoc {3}{Summary}{44}{0}{3}