new v
This commit is contained in:
@ -146,6 +146,17 @@ def plot_parameters(dat, input_file, deparameterize=False, ref=None):
|
||||
|
||||
|
||||
for i in range(len(ids)):
|
||||
|
||||
cur_key = ids[i]
|
||||
rec_value = np.round(2**theta[-1, idx]*current_val[i],2)
|
||||
curve = 2**theta[:, idx]*current_val[i]
|
||||
std_down = 2**(-np.sqrt(P[:, idx, idx]))*curve
|
||||
std_up = 2**np.sqrt(P[:, idx, idx])*curve
|
||||
dash_curve = true_values[ids[i]] + t*0
|
||||
|
||||
|
||||
|
||||
|
||||
if ids_type[i] == 'dirichlet':
|
||||
fig3, axes3 = plt.subplots(1,1,figsize=(12,5))
|
||||
axes3.plot(t, curve , '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key]) + '$', linewidth = 4)
|
||||
@ -159,17 +170,9 @@ def plot_parameters(dat, input_file, deparameterize=False, ref=None):
|
||||
axes3.set_box_aspect(1/4)
|
||||
plt.xticks(fontsize=28)
|
||||
plt.yticks(fontsize=28)
|
||||
plt.savefig('U.png')
|
||||
plt.close(fig3)
|
||||
plt.savefig('results/' + name_file + '/U.png')
|
||||
else:
|
||||
|
||||
cur_key = ids[i]
|
||||
rec_value = np.round(2**theta[-1, idx]*current_val[i],2)
|
||||
curve = 2**theta[:, idx]*current_val[i]
|
||||
std_down = 2**(-np.sqrt(P[:, idx, idx]))*curve
|
||||
std_up = 2**np.sqrt(P[:, idx, idx])*curve
|
||||
dash_curve = true_values[ids[i]] + t*0
|
||||
|
||||
axes1.plot(t, curve , '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key]) + '$', linewidth = 3)
|
||||
axes1.fill_between(t, std_down, std_up, alpha=0.3, color=col_)
|
||||
axes1.plot(t, dash_curve , color=col_,ls='--',linewidth = 3)
|
||||
@ -202,7 +205,7 @@ def plot_parameters(dat, input_file, deparameterize=False, ref=None):
|
||||
axes1.set_ylabel(r'$R_d$',fontsize=36)
|
||||
axes1.legend(fontsize=36,loc='upper right')
|
||||
axes1.set_xlim([-0.01,0.81])
|
||||
axes1.set_ylim([1700,45000])
|
||||
axes1.set_ylim([1700,55000])
|
||||
axes1.set_box_aspect(1/2)
|
||||
plt.xticks(fontsize=28)
|
||||
plt.yticks(fontsize=28)
|
||||
@ -220,7 +223,7 @@ def plot_parameters(dat, input_file, deparameterize=False, ref=None):
|
||||
axes2.set_xlabel(r'$t (s)$',fontsize=36)
|
||||
fig2.savefig('C.png')
|
||||
|
||||
fig1.savefig('Rd.png')
|
||||
fig1.savefig('results/' + name_file + '/Rd.png')
|
||||
if not is_ipython():
|
||||
plt.show()
|
||||
|
||||
|
@ -33,5 +33,7 @@ ax1.legend(fontsize=20, loc= 'upper right')
|
||||
ax1.tick_params(axis='both', which='major', labelsize=22)
|
||||
ax1.set_yticks([])
|
||||
ax1.set_xlabel('$u$',fontsize=font_size)
|
||||
ax1.set_ylabel('$J(u)$',fontsize=font_size)
|
||||
|
||||
plt.show()
|
||||
fig1.savefig('functionals.png', dpi=500, bbox_inches='tight')
|
@ -10,9 +10,6 @@ from matplotlib import rc
|
||||
rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
|
||||
rc('text', usetex=True)
|
||||
|
||||
|
||||
fig1, ax1 = plt.subplots(1,1,figsize=(8, 5))
|
||||
lwidth = 2
|
||||
font_size = 28
|
||||
|
||||
################ Flow Parameters
|
||||
@ -23,148 +20,150 @@ mu = 0.5
|
||||
fac = 1
|
||||
nr = 50
|
||||
VENC = 0.6
|
||||
VENC2 = 0.4
|
||||
|
||||
gamma = 267.513e6 # rad/Tesla/sec Gyromagnetic ratio for H nuclei
|
||||
Bo = 1.5 # Tesla Magnetic Field Strenght
|
||||
TE = 5e-3 # Echo-time
|
||||
M = np.ones(nr) # Magnetization
|
||||
phi0 = gamma*Bo*TE # Reference phase
|
||||
phi02 = phi0%3.14
|
||||
M1 = np.pi/(gamma*VENC)
|
||||
ff = np.pi/(1000*gamma*M1)
|
||||
uv = np.arange(-4*VENC,4*VENC,ff)
|
||||
|
||||
|
||||
r = np.linspace(-Rd, Rd, nr)
|
||||
dr = r[2]-r[1]
|
||||
vmax = 1
|
||||
v = vmax/Rt**2*( Rt**2 - r**2 )*(np.abs(r)<Rt); # Poiseuille Formula
|
||||
ai = v/vmax
|
||||
|
||||
|
||||
theta = np.linspace(-4,5,2000)
|
||||
vtest = np.linspace(-5,5,2000)
|
||||
JF = 0*theta
|
||||
jv = 0*theta
|
||||
JV = 0*theta
|
||||
JV2 = 0*theta
|
||||
|
||||
Mjv = np.zeros([len(theta),len(ai)])
|
||||
Mjv2 = np.zeros([len(theta),len(ai)])
|
||||
jv0 = 0*theta
|
||||
JV0 = 0*theta
|
||||
Mjv0 = np.zeros([len(theta),len(ai)])
|
||||
#################################### MAGNETIZACION FROM V
|
||||
phiv = phi02 + v*np.pi/VENC
|
||||
phiv2 = phi02 + v*np.pi/VENC2
|
||||
|
||||
modv = np.ones(phiv.shape)
|
||||
M1 = modv*np.cos(phi02) + 1j*modv*np.sin(phi02)
|
||||
M2 = modv*np.cos(phiv) + 1j*modv*np.sin(phiv)
|
||||
M2_2 = modv*np.cos(phiv2) + 1j*modv*np.sin(phiv2)
|
||||
|
||||
|
||||
################################### FFT to COMPLEX M
|
||||
S1 = np.fft.fft(M1)
|
||||
S2 = np.fft.fft(M2)
|
||||
################################### SubSampling
|
||||
a1 = 0
|
||||
a2 = 1
|
||||
##### FILLED WITH ZEROS
|
||||
US1 = S1
|
||||
US2 = 0*S2
|
||||
US2[a1::a2] = S2[a1::a2]
|
||||
S2_2 = np.fft.fft(M2_2)
|
||||
MR1 = np.fft.ifft(S1)
|
||||
MR2 = np.fft.ifft(S2)
|
||||
MR2_2 = np.fft.ifft(S2_2)
|
||||
|
||||
|
||||
MR1 = np.fft.ifft(US1)
|
||||
MR2 = np.fft.ifft(US2)
|
||||
vrec1 = (np.angle(MR2)-phi02)*VENC/(np.pi)
|
||||
vrec2 = (np.angle(MR2_2)-phi02)*VENC2/(np.pi)
|
||||
|
||||
|
||||
|
||||
for k in range(len(ai)):
|
||||
jv0 = 1-np.cos(np.pi*(vrec1[k]-vtest)/VENC)
|
||||
Mjv0[:,k] = jv0[:]
|
||||
JV0 = JV0 + jv0
|
||||
|
||||
for k in range(len(ai)):
|
||||
jv = 1-np.cos(np.pi*(vrec1[k]-theta*ai[k])/VENC)
|
||||
Mjv[:,k] = jv[:]
|
||||
JV = JV + jv
|
||||
|
||||
NJV1 = JV*100/np.max(JV)
|
||||
# v func
|
||||
jv0 = 1-np.cos(np.pi*(vrec1[k]-vtest)/VENC)
|
||||
Mjv0[:,k] = jv0[:]
|
||||
JV0 += jv0
|
||||
|
||||
# theta func
|
||||
jv = 1-np.cos(np.pi*(vrec1[k]-theta*ai[k])/VENC)
|
||||
Mjv[:,k] = jv[:]
|
||||
JV += jv
|
||||
|
||||
jv2 = 1-np.cos(np.pi*(vrec2[k]-theta*ai[k])/VENC2)
|
||||
Mjv2[:,k] = jv2[:]
|
||||
JV2 += jv2
|
||||
|
||||
NJV1 = JV#*100/np.max(JV)
|
||||
NJV2 = JV2#*110/np.max(JV)
|
||||
MV = Mjv0
|
||||
V =NJV1
|
||||
V2 =NJV2
|
||||
|
||||
|
||||
|
||||
left, bottom, width, height = [0.2, 0.2, 0.1, 0.1]
|
||||
|
||||
fig = plt.figure(figsize=(12, 6), dpi=100)
|
||||
ax1 = plt.subplot(1,2,1)
|
||||
|
||||
ch1 = 20
|
||||
ch2 = 23
|
||||
color1 = 'xkcd:coral'
|
||||
color2 = 'xkcd:azure'
|
||||
color3 = 'darkviolet'
|
||||
lwidth = 2
|
||||
|
||||
|
||||
# Miniplot
|
||||
left, bottom, width, height = [0.18, 0.17, 0.1, 0.1]
|
||||
ax0 = fig.add_axes([left, bottom, width, height])
|
||||
ax0.plot(r,v,'b-')
|
||||
ax0.plot([r[ch1]],[v[ch1]],color='xkcd:coral',marker='o')
|
||||
ax0.plot([r[ch2]],[v[ch2]],color='xkcd:azure',marker='o')
|
||||
ax0.plot([r[ch1]],[v[ch1]],color=color1,marker='o')
|
||||
ax0.plot([r[ch2]],[v[ch2]],color=color2,marker='o')
|
||||
ax0.set_xlim((-1.5,1.5))
|
||||
ax0.set_xticks([])
|
||||
ax0.set_ylabel(r'$u$',fontsize=20)
|
||||
|
||||
|
||||
|
||||
|
||||
#for k in range(22,39):
|
||||
# if k!=ch1 and k!=ch2 and np.sum(MV[:,k])!=0:
|
||||
# ax1.plot(vtest, MV[:,k],color='xkcd:beige',alpha=0.8)
|
||||
|
||||
|
||||
|
||||
ax1.plot(vtest, MV[:,ch1],color='xkcd:coral',label='$v_1$')
|
||||
ax1.plot(vtest, MV[:,ch2],color='xkcd:azure',label='$v_2$')
|
||||
|
||||
# Figure 1
|
||||
#ax1.plot(vtest, MV[:,ch1],color='xkcd:coral',label='$v_1$')
|
||||
#ax1.plot(vtest, MV[:,ch2],color='xkcd:azure',label='$v_2$')
|
||||
ax1.plot(vtest, MV[:,ch1],color=color1,linewidth=lwidth)
|
||||
ax1.plot(vtest, MV[:,ch2],color=color2,linewidth=lwidth)
|
||||
|
||||
m1x = vtest[np.where( np.abs(MV[:,ch1] - np.min(MV[:,ch1]))<0.001 )]
|
||||
|
||||
m1y = np.min(MV[:,ch1])
|
||||
|
||||
m2x = vtest[np.where( np.abs(MV[:,ch2] - np.min(MV[:,ch2]))<0.001 )]
|
||||
#m2x = vtest[np.where(MV[:,ch2]==np.min(MV[:,ch2]))]
|
||||
m2y = np.min(MV[:,ch2])
|
||||
|
||||
|
||||
ax1.plot([m1x],[m1y],color='xkcd:coral',marker='o')
|
||||
ax1.plot([m2x],[m2y],color='xkcd:azure',marker='o')
|
||||
|
||||
|
||||
ax1.axvline(x=v[ch1], color='xkcd:coral', linestyle='--',label='$v_{1,true}$')
|
||||
ax1.axvline(x=v[ch2], color='xkcd:azure', linestyle='--',label='$v_{2,true}$')
|
||||
|
||||
|
||||
ax1.set_xlabel(r'$u$',fontsize=20)
|
||||
ax1.set_ylabel(r'$J_i(u)$',fontsize=20)
|
||||
#ax1.plot([m1x],[m1y],color='xkcd:coral',marker='o')
|
||||
#ax1.plot([m2x],[m2y],color='xkcd:azure',marker='o')
|
||||
ax1.axvline(x=v[ch1], color=color1, linestyle='--',label='$v_{1,true}$')
|
||||
ax1.axvline(x=v[ch2], color=color2, linestyle='--',label='$v_{2,true}$')
|
||||
ax1.set_ylabel('$individual \ functional$',fontsize=20)
|
||||
#ax1.legend(loc='upper right', bbox_to_anchor=(0.5, 1.05),ncol=2, fancybox=True, shadow=True,fontsize=15)
|
||||
ax1.set_yticks([])
|
||||
ax1.set_xticks([])
|
||||
ax1.tick_params(axis='both', which='major', labelsize=22)
|
||||
#ax1.set_xticks([])
|
||||
#ax1.legend(fontsize=20, loc= 'upper right')
|
||||
ax1.set_xlim((-3.5,3.5))
|
||||
ax1.set_ylim((-1.0,2.4))
|
||||
|
||||
ax2 = plt.subplot(1,2,2)
|
||||
ax2.plot(theta,V,'b-')
|
||||
ax2.axvline(x=1, color='k', linestyle='--')
|
||||
ax2.set_xlabel(r'$\theta$',fontsize=20)
|
||||
ax2.set_ylabel(r'$J_T(\theta)$',fontsize=20)
|
||||
plt.yticks([])
|
||||
ax2.set_xticks([])
|
||||
plt.title(r'$\theta_{true}=1$' + '\n' +'$venc < v_{max}$',fontsize=15)
|
||||
plt.xlim((-2,3))
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#ax1.plot(u, J1, color = 'orangered', label = '$venc = 0.9 u_{true}$', linestyle='-',linewidth=lwidth)
|
||||
#ax1.plot(u, J2, color = 'dodgerblue', label = '$venc = 0.6 u_{true}$', linestyle='-',linewidth=lwidth)
|
||||
#ax1.axvline(x=1,color = 'black',linewidth = lwidth , label = '$u_{true}$')
|
||||
|
||||
|
||||
ax1.legend(fontsize=20, loc= 'upper right')
|
||||
ax1.set_ylim((-1.1,2.9))
|
||||
ax1.set_xlabel('$u$',fontsize=font_size)
|
||||
ax1.tick_params(axis='both', which='major', labelsize=22)
|
||||
ax1.set_yticks([])
|
||||
ax1.set_xlabel('$u$',fontsize=font_size)
|
||||
ax1.text(-1,2.4,'$u_{true}$',fontsize=22, color = color1)
|
||||
ax1.text(1.1,2.4,'$u_{true}$',fontsize=22, color = color2)
|
||||
|
||||
|
||||
# Figure 2
|
||||
ax2 = plt.subplot(1,2,2)
|
||||
ax2.plot(theta,V,color=color3,linestyle = '-',linewidth=lwidth, label = '$venc=0.6u_{true}$')
|
||||
ax2.plot(theta,V2,color='darkorange',linestyle = '-',linewidth=lwidth, label = '$venc=0.4u_{true}$')
|
||||
|
||||
ax2.axvline(x=1, color='black', linestyle='--')
|
||||
ax2.set_xlabel(r'$\theta$',fontsize=font_size)
|
||||
ax2.set_ylabel(r'$total \ functional$',fontsize=20)
|
||||
plt.yticks([])
|
||||
ax2.legend(fontsize=17, loc= 'upper left',frameon=False)
|
||||
ax2.set_ylim((-3,20))
|
||||
ax2.text(1.2,17,r'$ \theta _{true}$',fontsize=22, color = 'black')
|
||||
ax2.tick_params(axis='both', which='major', labelsize=22)
|
||||
#ax2.set_xticks([])
|
||||
#plt.title(r'$\theta_{true}=1$' + '\n' +'$venc < v_{max}$',fontsize=15)
|
||||
plt.xlim((-3.5,3.5))
|
||||
|
||||
|
||||
|
||||
|
||||
plt.show()
|
||||
#fig1.savefig('functionals.png', dpi=500, bbox_inches='tight')
|
||||
fig.savefig('functionals2.png', dpi=500, bbox_inches='tight')
|
Reference in New Issue
Block a user