update
@ -52,42 +52,31 @@ def plot_parameters(dat, input_file, deparameterize=False, ref=None):
|
||||
inputfile = yaml.full_load(file)
|
||||
|
||||
|
||||
#true_values = {
|
||||
# 3: 3400,
|
||||
# 4: 4200,
|
||||
# 5: 11000,
|
||||
# 6: 7800,
|
||||
# 2: 100
|
||||
# }
|
||||
|
||||
true_values = {
|
||||
3: 4800,
|
||||
4: 7020,
|
||||
4: 7200,
|
||||
5: 11520,
|
||||
6: 11520,
|
||||
2: 75
|
||||
}
|
||||
|
||||
|
||||
|
||||
true_values_c = {
|
||||
3: 0.0008,
|
||||
4: 0.00034,
|
||||
5: 0.00034,
|
||||
6: 0.00034,
|
||||
2: 100
|
||||
}
|
||||
|
||||
true_values_rp = {
|
||||
3: 10,
|
||||
4: 60,
|
||||
5: 220,
|
||||
6: 160,
|
||||
2: 100
|
||||
true_values_C = {
|
||||
3: 0.0004,
|
||||
4: 0.0004,
|
||||
5: 0.0003,
|
||||
6: 0.0003,
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
meas_flag = False
|
||||
RC_mod = True
|
||||
line_split = 1.5
|
||||
current_val = []
|
||||
current_val_C = []
|
||||
ids_type = []
|
||||
labels = []
|
||||
ids = []
|
||||
|
||||
@ -97,14 +86,23 @@ def plot_parameters(dat, input_file, deparameterize=False, ref=None):
|
||||
for bnd_set in inputfile['boundary_conditions']:
|
||||
if bnd_c['id'] == bnd_set['id']:
|
||||
ids.append(bnd_c['id'])
|
||||
ids_type.append('windkessel')
|
||||
current_val.append(bnd_set['parameters']['R_d'])
|
||||
labels.append('$R_' + str(bnd_c['id']))
|
||||
if RC_mod:
|
||||
current_val_C.append(bnd_set['parameters']['C'])
|
||||
labels.append('$C_' + str(bnd_c['id']))
|
||||
|
||||
|
||||
elif 'dirichlet' in bnd_c['type']:
|
||||
current_val.append(inputfile['boundary_conditions'][0]['parameters']['U'])
|
||||
ids.append(bnd_c['id'])
|
||||
ids_type.append('dirichlet')
|
||||
labels.append('$U')
|
||||
|
||||
|
||||
|
||||
|
||||
dim = dat['theta'].shape[-1]
|
||||
fig1, axes = plt.subplots(1,1,figsize=(8,6))
|
||||
|
||||
@ -116,9 +114,12 @@ def plot_parameters(dat, input_file, deparameterize=False, ref=None):
|
||||
|
||||
col = cycle(['C0', 'C1', 'C2', 'C3','C4'])
|
||||
ls = cycle(['-', '-', '--', '--', ':', ':', '-.', '-.'])
|
||||
#legends = cycle(['$R_3$','$R_4$','$R_5$','$R_6$','$U$'])
|
||||
legends = cycle(labels)
|
||||
|
||||
if meas_flag:
|
||||
t_und = t[0::30]
|
||||
t_und = np.append( t_und , [t[-1]])
|
||||
meas_mark = t_und*0
|
||||
|
||||
col_ = next(col)
|
||||
ls_ = next(ls)
|
||||
@ -129,21 +130,49 @@ def plot_parameters(dat, input_file, deparameterize=False, ref=None):
|
||||
P = P.reshape((-1, 1, 1))
|
||||
|
||||
|
||||
for i in range(dim):
|
||||
|
||||
true_level = np.log(true_values[ids[i]]/current_val[i])/np.log(2)
|
||||
rec_value = np.round(2**theta[-1, i]*current_val[i],2)
|
||||
idx = 0
|
||||
idc = 0
|
||||
|
||||
for i in range(len(ids)):
|
||||
cur_key = ids[i]
|
||||
|
||||
axes.plot(t, theta[:, i] + 1.5*i, '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key]) + '$')
|
||||
axes.fill_between(t, theta[:, i] + 1.5*i - np.sqrt(P[:, i, i]),
|
||||
theta[:, i] + 1.5*i + np.sqrt(P[:, i, i]), alpha=0.3,
|
||||
color=col_)
|
||||
true_level = np.log(true_values[ids[i]]/current_val[i])/np.log(2)
|
||||
rec_value = np.round(2**theta[-1, idx]*current_val[i],2)
|
||||
|
||||
#curve = theta[:,i] + line_split*i
|
||||
#dash_curve = line_split*i + t*0 + true_level
|
||||
|
||||
axes.plot(t,1.5*i + t*0 + true_level , color=col_,ls='--')
|
||||
col_ = next(col)
|
||||
curve = theta[:,idx] + line_split*idx - true_level
|
||||
dash_curve = line_split*idx + t*0
|
||||
|
||||
axes.plot(t, curve , '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key]) + '$')
|
||||
axes.fill_between(t, curve - np.sqrt(P[:, idx, idx]), curve + np.sqrt(P[:, idx, idx]), alpha=0.3, color=col_)
|
||||
legends_=next(legends)
|
||||
axes.plot(t, dash_curve , color=col_,ls='--')
|
||||
|
||||
|
||||
if RC_mod:
|
||||
|
||||
if i<len(current_val_C):
|
||||
true_level_C = np.log(true_values_C[ids[i]]/current_val_C[i])/np.log(2)
|
||||
rec_value_C = np.round(2**theta[-1, idc]*current_val_C[idc],6)
|
||||
curve_C = theta[:,idx+1] + line_split*(idx+1) - true_level_C
|
||||
dash_curve_C = line_split*(idx+1) + t*0
|
||||
#print(true_values_C[cur_key_C])
|
||||
axes.plot(t, curve_C , '-', color=col_,label= legends_ + '= ' + str(rec_value_C) + '/' + str(true_values_C[cur_key]) + '$')
|
||||
axes.fill_between(t, curve_C - np.sqrt(P[:, idx+1, idx+1]), curve_C + np.sqrt(P[:, idx+1, idx+1]), alpha=0.3, color=col_)
|
||||
axes.plot(t, dash_curve_C , color=col_,ls='--')
|
||||
legends_=next(legends)
|
||||
idx +=1
|
||||
idc +=1
|
||||
|
||||
|
||||
if meas_flag:
|
||||
axes.plot(t_und, meas_mark + line_split*idx, marker = 'x', color='red')
|
||||
|
||||
col_ = next(col)
|
||||
idx +=1
|
||||
|
||||
axes.legend(fontsize=14,loc='lower right')
|
||||
axes.set_xlim([-0.01,0.81])
|
||||
@ -152,7 +181,7 @@ def plot_parameters(dat, input_file, deparameterize=False, ref=None):
|
||||
print('Final value theta: \t {}'.format(theta[-1, :]))
|
||||
print('Deparameterized: 2^theta_end: \t {}'.format(2**theta[-1, :]))
|
||||
print('Real values: \t {}'.format(true_values))
|
||||
print('Recon values: \t {a}:{b} '.format(a=ids[:],b=np.round(2**theta[-1, :]*current_val,2)))
|
||||
#print('Recon values: \t {a}:{b} '.format(a=ids[:],b=np.round(2**theta[-1, :]*current_val,2)))
|
||||
|
||||
|
||||
|
||||
|
244
kalman/graphics/figure3.py
Normal file
@ -0,0 +1,244 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from itertools import cycle
|
||||
import argparse
|
||||
import pickle
|
||||
import yaml
|
||||
|
||||
|
||||
from matplotlib import rc
|
||||
rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
|
||||
rc('text', usetex=True)
|
||||
|
||||
import matplotlib.font_manager
|
||||
|
||||
def is_ipython():
|
||||
''' Check if script is run in IPython.
|
||||
|
||||
Returns:
|
||||
bool: True if IPython, else False '''
|
||||
try:
|
||||
get_ipython()
|
||||
ipy = True
|
||||
except NameError:
|
||||
ipy = False
|
||||
|
||||
return ipy
|
||||
|
||||
|
||||
def load_data(file):
|
||||
''' Load numpy data from file.
|
||||
|
||||
Returns
|
||||
dict: data dictionary
|
||||
'''
|
||||
dat = np.load(file)
|
||||
|
||||
return dat
|
||||
|
||||
|
||||
def plot_parameters(dat, input_file, deparameterize=False, ref=None):
|
||||
''' Plot the parameters in separate subplots with uncertainties.
|
||||
|
||||
Args:
|
||||
dat (dict): data dictionary
|
||||
deparameterize (bool): flag indicating if parameters should be
|
||||
deparameterized via 2**theta
|
||||
ref: reference value to be plotted with parameters
|
||||
'''
|
||||
if is_ipython():
|
||||
plt.ion()
|
||||
|
||||
idx_a = input_file.find('/')
|
||||
idx_b = input_file[idx_a+1::].find('/')
|
||||
name_file = input_file[idx_a+1:idx_b+idx_a+1]
|
||||
inputfile_path = 'results/' + name_file + '/input.yaml'
|
||||
|
||||
|
||||
with open(inputfile_path) as file:
|
||||
inputfile = yaml.full_load(file)
|
||||
|
||||
|
||||
|
||||
true_values = {
|
||||
3: 4800,
|
||||
4: 7200,
|
||||
5: 11520,
|
||||
6: 11520,
|
||||
2: 75
|
||||
}
|
||||
|
||||
true_values_C = {
|
||||
3: 0.0004,
|
||||
4: 0.0004,
|
||||
5: 0.0003,
|
||||
6: 0.0003,
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
meas_flag = False
|
||||
RC_flag = False
|
||||
line_split = 1.5
|
||||
current_val = []
|
||||
current_val_C = []
|
||||
ids_type = []
|
||||
labels = []
|
||||
ids = []
|
||||
|
||||
for bnd_c in inputfile['estimation']['boundary_conditions']:
|
||||
|
||||
if 'windkessel' in bnd_c['type']:
|
||||
for bnd_set in inputfile['boundary_conditions']:
|
||||
if bnd_c['id'] == bnd_set['id']:
|
||||
ids.append(bnd_c['id'])
|
||||
ids_type.append('windkessel')
|
||||
current_val.append(bnd_set['parameters']['R_d'])
|
||||
labels.append('$R_' + str(bnd_c['id']))
|
||||
if RC_flag:
|
||||
current_val_C.append(bnd_set['parameters']['C'])
|
||||
labels.append('$C_' + str(bnd_c['id']))
|
||||
|
||||
|
||||
elif 'dirichlet' in bnd_c['type']:
|
||||
current_val.append(inputfile['boundary_conditions'][0]['parameters']['U'])
|
||||
ids.append(bnd_c['id'])
|
||||
ids_type.append('dirichlet')
|
||||
labels.append('$U')
|
||||
|
||||
|
||||
|
||||
|
||||
dim = dat['theta'].shape[-1]
|
||||
fig1, axes1 = plt.subplots(1,1,figsize=(12,6))
|
||||
if RC_flag:
|
||||
fig2, axes2 = plt.subplots(1,1,figsize=(12,6))
|
||||
|
||||
|
||||
t = dat['times']
|
||||
theta = dat['theta']
|
||||
P = dat['P_theta']
|
||||
|
||||
col = cycle(['C0', 'C1', 'C2', 'C3','C4'])
|
||||
ls = cycle(['-', '-', '--', '--', ':', ':', '-.', '-.'])
|
||||
legends = cycle(labels)
|
||||
|
||||
if meas_flag:
|
||||
t_und = t[0::30]
|
||||
t_und = np.append( t_und , [t[-1]])
|
||||
meas_mark = t_und*0
|
||||
|
||||
col_ = next(col)
|
||||
ls_ = next(ls)
|
||||
legends_=next(legends)
|
||||
|
||||
if dim == 1:
|
||||
theta = theta.reshape((-1, 1))
|
||||
P = P.reshape((-1, 1, 1))
|
||||
|
||||
|
||||
|
||||
idx = 0
|
||||
idc = 0
|
||||
|
||||
|
||||
for i in range(len(ids)):
|
||||
cur_key = ids[i]
|
||||
|
||||
true_level = np.log(true_values[ids[i]]/current_val[i])/np.log(2)
|
||||
rec_value = np.round(2**theta[-1, idx]*current_val[i],2)
|
||||
|
||||
|
||||
#curve = theta[:,idx] + line_split*idx - true_level
|
||||
#dash_curve = line_split*idx + t*0
|
||||
|
||||
curve = 2**theta[:, idx]*current_val[i]
|
||||
std_down = 2**(-np.sqrt(P[:, idx, idx]))*curve
|
||||
std_up = 2**np.sqrt(P[:, idx, idx])*curve
|
||||
dash_curve = true_values[ids[i]] + t*0
|
||||
|
||||
|
||||
if ids_type[i] == 'dirichlet':
|
||||
pass
|
||||
#axes3.plot(t, curve , '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key]) + '$')
|
||||
#axes3.fill_between(t, curve - np.sqrt(P[:, idx, idx]), curve + np.sqrt(P[:, idx, idx]), alpha=0.3, color=col_)
|
||||
#legends_=next(legends)
|
||||
#axes3.plot(t, dash_curve , color=col_,ls='--')
|
||||
else:
|
||||
axes1.plot(t, curve , '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key]) + '$', linewidth = 2)
|
||||
axes1.fill_between(t, std_down, std_up, alpha=0.3, color=col_)
|
||||
axes1.plot(t, dash_curve , color=col_,ls='--')
|
||||
legends_=next(legends)
|
||||
|
||||
|
||||
if RC_flag:
|
||||
if i<len(current_val_C):
|
||||
true_level_C = np.log(true_values_C[ids[i]]/current_val_C[i])/np.log(2)
|
||||
rec_value_C = np.round(2**theta[-1, idc]*current_val_C[idc],6)
|
||||
|
||||
curve_C = 2**theta[:, idx+1]*current_val_C[idc]
|
||||
dash_curve_C = true_values_C[ids[i]] + t*0
|
||||
std_C_down = 2**(-np.sqrt(P[:, idx+1, idx+1]))*curve_C
|
||||
std_C_up = 2**np.sqrt(P[:, idx+1, idx+1])*curve_C
|
||||
|
||||
axes2.plot(t, curve_C , '-', color=col_,label= legends_ + '= ' + str(rec_value_C) + '/' + str(true_values_C[cur_key]) + '$', linewidth = 2)
|
||||
axes2.fill_between(t, std_C_down, std_C_up, alpha=0.3, color=col_)
|
||||
axes2.plot(t, dash_curve_C , color=col_,ls='--')
|
||||
legends_=next(legends)
|
||||
idx +=1
|
||||
idc +=1
|
||||
|
||||
|
||||
if meas_flag:
|
||||
axes1.plot(t_und, meas_mark + line_split*idx, marker = 'x', color='red')
|
||||
|
||||
col_ = next(col)
|
||||
idx +=1
|
||||
|
||||
|
||||
axes1.set_ylabel(r'$R_d$',fontsize=22)
|
||||
axes1.legend(fontsize=18,loc='upper right')
|
||||
axes1.set_xlim([-0.01,0.81])
|
||||
axes1.set_xlabel(r'$t (s)$',fontsize=22)
|
||||
plt.savefig('C.png')
|
||||
|
||||
if RC_flag:
|
||||
|
||||
axes2.set_ylabel(r'$C$',fontsize=22)
|
||||
axes2.legend(fontsize=18,loc='upper right')
|
||||
axes2.set_xlim([-0.01,0.81])
|
||||
axes2.set_xlabel(r'$t (s)$',fontsize=22)
|
||||
fig2.savefig('C.png')
|
||||
|
||||
fig1.savefig('Rd.png')
|
||||
if not is_ipython():
|
||||
plt.show()
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='''
|
||||
Plot the time evolution of the ROUKF estimated parameters.
|
||||
|
||||
To execute in IPython::
|
||||
|
||||
%run plot_roukf_parameters.py [-d] [-r N [N \
|
||||
...]] file
|
||||
''',
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter)
|
||||
parser.add_argument('file', type=str, help='path to ROUKF stats file')
|
||||
parser.add_argument('-d', '--deparameterize', action='store_true',
|
||||
help='deparameterize the parameters by 2**theta')
|
||||
parser.add_argument('-r', '--ref', metavar='N', nargs='+', default=None,
|
||||
type=float, help='Reference values for parameters')
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = get_parser().parse_args()
|
||||
|
||||
dat = load_data(args.file)
|
||||
|
||||
plot_parameters(dat, args.file,deparameterize=args.deparameterize, ref=args.ref)
|
@ -8,7 +8,7 @@ fluid:
|
||||
implicit_windkessel: True
|
||||
|
||||
io:
|
||||
write_path: 'results/aorta25_zPb_3R'
|
||||
write_path: 'results/Rz_Pa_vnoise'
|
||||
restart:
|
||||
path: '' # './projects/nse_coa3d/results/test_restart2/'
|
||||
time: 0
|
||||
@ -26,9 +26,10 @@ boundary_conditions:
|
||||
# -U*sin(DOLFIN_PI*(t-1.6)/Th)*(t<= 1.6+Th )*(t>1.6) + (t<2.4)*(1.6+Th<t)*(U*DOLFIN_PI/Th*(t-1.6-Th)*exp(-(t-1.6-Th)*beta))' ]
|
||||
value: ['0','0','-U*sin(DOLFIN_PI*t/Th)*(t<=Th) + (Th<t)*(U*DOLFIN_PI/Th*(t-Th)*exp(-(t-Th)*beta))']
|
||||
parameters:
|
||||
#U: 75
|
||||
#U: 150 #Pa
|
||||
U: 40 #Pb
|
||||
#U: 75 #P0
|
||||
U: 150 #Pa
|
||||
#U: 100 #Pg
|
||||
#U: 40 #Pc
|
||||
Th: 0.36
|
||||
beta: 70
|
||||
t: 0
|
||||
@ -41,10 +42,8 @@ boundary_conditions:
|
||||
type: 'windkessel'
|
||||
parameters:
|
||||
R_p: 200
|
||||
C: 0.0005
|
||||
#R_d: 4800
|
||||
#R_d: 9000 #Pa
|
||||
R_d: 2000 #Pb
|
||||
C: 0.0004
|
||||
R_d: 4800
|
||||
p0: 85
|
||||
conv: 1333.223874
|
||||
-
|
||||
@ -52,10 +51,16 @@ boundary_conditions:
|
||||
type: 'windkessel'
|
||||
parameters:
|
||||
R_p: 480
|
||||
C: 0.00045
|
||||
#R_d: 7200
|
||||
#R_d: 12000 #Pa
|
||||
R_d: 4000 #Pb
|
||||
#C: 0.0004 # P0
|
||||
C: 0.0005 # Pa
|
||||
#C: 0.0010 # Pb
|
||||
#C: 0.0001 # Pc
|
||||
#C: 0.0008 # Pg
|
||||
#R_d: 7200 #P0
|
||||
R_d: 8760 #Pa
|
||||
#R_d: 17520 #Pb x2
|
||||
#R_d: 10000 #Pg
|
||||
#R_d: 4000 #Pc
|
||||
p0: 85
|
||||
conv: 1333.223874
|
||||
-
|
||||
@ -63,10 +68,17 @@ boundary_conditions:
|
||||
type: 'windkessel'
|
||||
parameters:
|
||||
R_p: 520
|
||||
C: 0.00045
|
||||
#R_d: 11520
|
||||
#R_d: 23000 #Pa
|
||||
R_d: 6000 #Pb
|
||||
#C: 0.0003 # REFERENCE
|
||||
C: 0.0005 # Pa
|
||||
#C: 0.0010 # Pb
|
||||
#C: 0.0001 # Pc
|
||||
#C: 0.0008 # Pg
|
||||
#R_d: 11520 # REFERENCE
|
||||
R_d: 8760 #Pa
|
||||
#R_d: 17520 #Pb x2
|
||||
#R_d: 26280 #Pc x3
|
||||
#R_d: 10000 #Pg
|
||||
#R_d: 4000 #Pc
|
||||
p0: 85
|
||||
conv: 1333.223874
|
||||
-
|
||||
@ -74,10 +86,17 @@ boundary_conditions:
|
||||
type: 'windkessel'
|
||||
parameters:
|
||||
R_p: 520
|
||||
C: 0.00045
|
||||
R_d: 11520
|
||||
#R_d: 23000 #Pa
|
||||
#R_d: 6000 #Pb
|
||||
#C: 0.0003 # REFERENCE
|
||||
C: 0.0005 #Pa
|
||||
#C: 0.0010 #Pb
|
||||
#C: 0.0001 #Pc
|
||||
#C: 0.0008 #Pg
|
||||
#R_d: 11520 # REFERENCE
|
||||
R_d: 8760 #Pa
|
||||
#R_d: 17520 #Pb x2
|
||||
#R_d: 26280 #Pc x3
|
||||
#R_d: 10000 #Pg
|
||||
#R_d: 4000 #Pc
|
||||
p0: 85
|
||||
conv: 1333.223874
|
||||
|
||||
@ -143,22 +162,25 @@ linear_solver:
|
||||
|
||||
estimation:
|
||||
boundary_conditions:
|
||||
-
|
||||
id: 3
|
||||
type: 'windkessel'
|
||||
initial_stddev: 1
|
||||
#-
|
||||
# id: 3
|
||||
# type: 'windkessel'
|
||||
# initial_stddev: 1
|
||||
-
|
||||
id: 4
|
||||
type: 'windkessel'
|
||||
mode: 'Rd'
|
||||
initial_stddev: 1
|
||||
-
|
||||
id: 5
|
||||
type: 'windkessel'
|
||||
mode: 'Rd'
|
||||
initial_stddev: 1
|
||||
-
|
||||
id: 6
|
||||
type: 'windkessel'
|
||||
mode: 'Rd'
|
||||
initial_stddev: 1
|
||||
#-
|
||||
# id: 6
|
||||
# type: 'windkessel'
|
||||
# initial_stddev: 1
|
||||
-
|
||||
id: 2
|
||||
type: 'dirichlet'
|
||||
@ -171,13 +193,13 @@ estimation:
|
||||
mesh: '/home/yeye/NuMRI/kalman/meshes/coaortaH3_leo2.0.h5'
|
||||
#mesh: './meshes/coaortaH1.h5'
|
||||
fe_degree: 1
|
||||
xdmf_file: 'measurements/aorta25_z/Perturbation/Mg15V120/u_all.xdmf'
|
||||
file_root: 'measurements/aorta25_z/Perturbation/Mg15V120/u{i}.h5'
|
||||
#xdmf_file: 'measurements/aorta25_z/u_all.xdmf'
|
||||
#file_root: 'measurements/aorta25_z/u{i}.h5'
|
||||
#xdmf_file: 'measurements/aorta_zdir/Perturbation/Mg15V120/u_all.xdmf'
|
||||
#file_root: 'measurements/aorta_zdir/Perturbation/Mg15V120/u{i}.h5'
|
||||
xdmf_file: 'measurements/aorta_zdir_vnoise/u_all.xdmf'
|
||||
file_root: 'measurements/aorta_zdir_vnoise/u{i}.h5'
|
||||
indices: 0 # indices of checkpoints to be processed. 0 == all
|
||||
velocity_direction: [0,0,1]
|
||||
noise_stddev: 55 # standard deviation of Gaussian noise
|
||||
noise_stddev: 45 # standard deviation of Gaussian noise
|
||||
|
||||
roukf:
|
||||
particles: 'simplex' # unique or simplex
|
||||
@ -185,4 +207,4 @@ estimation:
|
||||
reparameterize: True
|
||||
ODV_functional:
|
||||
enable: False
|
||||
VENC: 102 # 102,120% 59,70% 42 50%, 21,25%
|
||||
VENC: 244
|
||||
|
0
presentations/press_course1/images/4dflow.png
Normal file → Executable file
Before Width: | Height: | Size: 346 KiB After Width: | Height: | Size: 346 KiB |
0
presentations/press_course1/images/MRI.jpg
Normal file → Executable file
Before Width: | Height: | Size: 177 KiB After Width: | Height: | Size: 177 KiB |
BIN
presentations/press_course1/images/aorta_healthy.JPG
Executable file
After Width: | Height: | Size: 230 KiB |
BIN
presentations/press_course1/images/aortic_stenosis_1.png
Executable file
After Width: | Height: | Size: 132 KiB |
BIN
presentations/press_course1/images/aortic_stenosis_2.png
Executable file
After Width: | Height: | Size: 265 KiB |
BIN
presentations/press_course1/images/aortic_stenosis_3.png
Executable file
After Width: | Height: | Size: 425 KiB |
0
presentations/press_course1/images/aortic_stenosis.png → presentations/press_course1/images/aortic_stenosis_4.png
Normal file → Executable file
Before Width: | Height: | Size: 496 KiB After Width: | Height: | Size: 496 KiB |
0
presentations/press_course1/images/catheter.png
Normal file → Executable file
Before Width: | Height: | Size: 922 KiB After Width: | Height: | Size: 922 KiB |
0
presentations/press_course1/images/p.png
Normal file → Executable file
Before Width: | Height: | Size: 180 KiB After Width: | Height: | Size: 180 KiB |
BIN
presentations/press_course1/images/p2.png
Executable file
After Width: | Height: | Size: 207 KiB |