777 lines
19 KiB
TeX
Executable File
777 lines
19 KiB
TeX
Executable File
\documentclass[xcolor=dvipsnames,notheorem,mathserifs]{beamer}
|
|
\usepackage{amsmath}
|
|
%\documentclass{beamer}
|
|
\usepackage[english]{babel}
|
|
%\usepackage[latin1]{inputenc}
|
|
\usepackage{multicol} % indice en 2 columnas
|
|
\usepackage[utf8]{inputenc}
|
|
|
|
\usepackage{helvet}
|
|
\usefonttheme{serif}
|
|
%\usepackage{ccfonts} % Font family: Concrete Math
|
|
\usepackage[T1]{fontenc}
|
|
|
|
%\usepackage{graphicx}
|
|
%\usepackage{movie15}
|
|
%\usepackage{media9}[2013/11/04]
|
|
\usepackage{xcolor}
|
|
|
|
|
|
\usepackage{graphicx}
|
|
\usepackage{multimedia}
|
|
\usepackage{media9}
|
|
\usepackage{listings,xcolor,caption, mathtools, wrapfig}
|
|
\usepackage{amsfonts}
|
|
\usepackage{amssymb,graphicx,enumerate}
|
|
\usepackage{subcaption}
|
|
\usepackage{hyperref}
|
|
|
|
\usepackage[normalem]{ulem} % for strike out command \sout
|
|
|
|
|
|
|
|
|
|
|
|
%\usetheme{default}
|
|
%\usetheme{AnnArbor}
|
|
%\usetheme{Antibes}
|
|
%\usetheme{Bergen}
|
|
%\usetheme{Berkeley}
|
|
%\usetheme{Berlin}
|
|
%\usetheme{Boadilla}
|
|
%\usetheme{CambridgeUS}
|
|
%\usetheme{Copenhagen}
|
|
%\usetheme{Darmstadt}
|
|
%\usetheme{Dresden}
|
|
%\usetheme{Frankfurt}
|
|
%\usetheme{Goettingen}
|
|
%\usetheme{Hannover}
|
|
%\usetheme{Ilmenau}
|
|
%\usetheme{JuanLesPins}
|
|
%\usetheme{Luebeck}
|
|
%\usetheme{Madrid}
|
|
%\usetheme{Malmoe}
|
|
%\usetheme{Marburg}
|
|
%\usetheme{Montpellier}
|
|
%\usetheme{PaloAlto}
|
|
%\usetheme{Pittsburgh}
|
|
%\usetheme{Rochester}
|
|
%\usetheme{Singapore}
|
|
%\usetheme{Szeged}
|
|
\usetheme{Warsaw}
|
|
|
|
%\usecolortheme{albatross}
|
|
%\usecolortheme{beaver}
|
|
%\usecolortheme{beetle}
|
|
\usecolortheme{crane}
|
|
%\usecolortheme{dolphin}
|
|
%\usecolortheme{dove}
|
|
%\usecolortheme{fly}
|
|
%\usecolortheme{lily}
|
|
%\usecolortheme{orchid}
|
|
%\usecolortheme{rose}
|
|
%\usecolortheme{seagull}
|
|
%\usecolortheme{seahorse}
|
|
%\usecolortheme{whale}
|
|
%\usecolortheme{wolverine}
|
|
|
|
%\useoutertheme{infolines}
|
|
%\useoutertheme{miniframes}
|
|
%\useoutertheme{sidebar}
|
|
\useoutertheme{smoothbars}
|
|
%\useoutertheme{shadow}
|
|
%\useoutertheme{smoothtree}
|
|
%\useoutertheme{split}
|
|
%\useoutertheme{tree}
|
|
|
|
|
|
\usepackage{amssymb,mathrsfs,amsmath,latexsym,amsthm,amsfonts}
|
|
\useinnertheme{rectangles}
|
|
|
|
|
|
\setbeamertemplate{navigation symbols}{} % quitar simbolitos
|
|
|
|
|
|
\setbeamerfont{page number in head/foot}{size=\large}
|
|
%\setbeamertemplate{footline}[frame number] number in footer
|
|
\setbeamertemplate{footline}{}
|
|
|
|
|
|
|
|
\title[A new mathematical model for verifying the Navier-Stokes compatibility of 4D flow MRI data]{ A new mathematical model for verifying the Navier-Stokes compatibility of 4D flow MRI}
|
|
%\author[Jeremías Garay Labra]
|
|
%{Jeremías Garay Labra}
|
|
\institute[University of Groningen]
|
|
{
|
|
Bernoulli Institute\\
|
|
Faculty of Sciences and Engineering\\
|
|
University of Groningen\\[0.5cm]
|
|
%\includegraphics[height=1.5cm]{Imagenes/escudoU2014.pdf}
|
|
% \includegraphics[height=1cm]{Imagenes/fcfm.png} \\[0.5cm]
|
|
Jeremías Garay Labra \emph{join with} Hernan Mella, Julio Sotelo, Sergio Uribe, Cristobal Bertoglio and Joaquin Mura.}
|
|
\date{\today}
|
|
|
|
|
|
\begin{document}
|
|
\frame{\titlepage}
|
|
|
|
|
|
% \onslide<1->
|
|
|
|
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Index}
|
|
\tableofcontents
|
|
\end{frame}
|
|
|
|
|
|
\section[4D flow MRI]{4D flow MRI}
|
|
\begin{frame}
|
|
\frametitle{4D flow MRI}
|
|
\begin{columns}[c]
|
|
\column{.5\textwidth} % Left column and width
|
|
\footnotesize
|
|
|
|
\begin{itemize}
|
|
\item<2-> Full 3D coverage of the region of interest
|
|
\item<3-> Rich post-proccesing: derived parameters
|
|
\end{itemize}
|
|
|
|
\onslide<4-> Disadvantages:
|
|
\begin{itemize}
|
|
\item<5-> Long scan time
|
|
\end{itemize}
|
|
|
|
|
|
|
|
|
|
\column{.54\textwidth} % Right column and width
|
|
\onslide<1->
|
|
\begin{figure}[!hbtp]
|
|
\begin{center}
|
|
\includegraphics[height=0.9\textwidth]{images/4dflow.png}
|
|
\caption{\footnotesize 4D flow MRI of a human thorax}
|
|
\end{center}
|
|
\end{figure}
|
|
\end{columns}
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{4D flow MRI}
|
|
\footnotesize
|
|
\onslide<1-> Strategies:
|
|
\begin{itemize}
|
|
\item<2-> modest spatial resolutions $ \sim (2.5 \times 2.5 \times 2.5 \ mm^3)$
|
|
\item<3-> partial data coverage
|
|
\end{itemize}
|
|
|
|
|
|
\begin{columns}[c]
|
|
\column{.4\textwidth} % Right column and width
|
|
\onslide<4->
|
|
\footnotesize
|
|
\begin{figure}[!hbtp]
|
|
\begin{center}
|
|
\includegraphics[height=0.25\textwidth]{images/channel_noise.png} \\
|
|
(a) Noise
|
|
%\caption{Noise}
|
|
\end{center}
|
|
\end{figure}
|
|
\column{.4\textwidth} % Right column and width
|
|
\onslide<5->
|
|
\footnotesize
|
|
\begin{figure}[!hbtp]
|
|
\begin{center}
|
|
\includegraphics[height=0.25\textwidth]{images/channel_aliasing.png}\\
|
|
(b) Aliasing
|
|
%\caption{Aliasing}
|
|
\end{center}
|
|
\end{figure}
|
|
\column{.4\textwidth} % Right column and width
|
|
\onslide<6->
|
|
\footnotesize
|
|
\begin{figure}[!hbtp]
|
|
\begin{center}
|
|
\includegraphics[height=0.25\textwidth]{images/channel_under.png}\\
|
|
(c) Undersampling
|
|
%\caption{Aliasing}
|
|
\end{center}
|
|
\end{figure}
|
|
\end{columns}
|
|
|
|
\vspace{0.5cm}
|
|
|
|
\onslide<7-> Typical quality estimators: SNR, VNR, peak flows/velocities, mass conservation (zero divergence)
|
|
|
|
\vspace{0.5cm}
|
|
|
|
\onslide<8-> This work $\longrightarrow$ \textbf{conservation of linear momentum} (Navier-Stokes compatibility).
|
|
|
|
\end{frame}
|
|
|
|
|
|
\section[]{The corrector field}
|
|
|
|
\begin{frame}
|
|
\frametitle{The corrector field}
|
|
\begin{center}
|
|
Methodology
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{The corrector field}
|
|
\footnotesize
|
|
|
|
\onslide<1-> We assume a perfect physical velocity field $\vec{u}$
|
|
\onslide<2-> \begin{eqnarray*}
|
|
\rho \frac{\partial \vec{u}}{\partial t} + \rho \big ( \vec{u} \cdot \nabla \big) \vec{u} - \mu \Delta \vec{u} + \nabla p = 0 \quad \text{in} \quad \Omega \label{eq:NSmom}
|
|
\end{eqnarray*}
|
|
|
|
\onslide<3-> And a corrector field $\vec{w}$ which satisfies:
|
|
\onslide<4-> \begin{align}
|
|
\vec{u} & = \vec{u}_{meas} + \vec{w} \quad \text{in} \quad \Omega \label{eq:corrector}\\
|
|
\nabla \cdot \vec w & = 0 \quad \text{in} \quad \Omega \label{eq:correctorDiv} \\
|
|
\vec w & = \vec 0 \quad \text{on} \quad \partial \Omega \label{eq:correctorBC}
|
|
\end{align}
|
|
|
|
\onslide<5-> The corrector field $\vec{w}$ measures the level of agreedment of the 4D flow measures respect to the Navier-Stokes equations.
|
|
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{The corrector field: Continuum problem}
|
|
\footnotesize
|
|
|
|
\onslide<1-> Applying the decomposition $\vec{u} = \vec{u}_{meas} + \vec{w}$ into the original equation and writing a variational problem for $\vec w$ we have:\\[0.2cm]
|
|
Find $(\vec w(t) ,p(t)) \in H^1_0(\Omega)\times L^2(\Omega)$ such that:
|
|
\onslide<2-> \begin{equation*}
|
|
\int_{\Omega} \rho \frac{\partial \vec{w}}{\partial t} \cdot \vec{v} + \rho \big ( ( \vec{u}_{meas} + \vec w) \cdot \nabla \big) \vec{w} \cdot \vec{v} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas} \cdot \vec{v} + \mu \nabla \vec{w} : \nabla \vec{v} - p \nabla \cdot \vec{v} + q \nabla \cdot \vec{w} \notag
|
|
\end{equation*}
|
|
\begin{equation*}
|
|
= - \int_{\Omega} \rho \frac{\partial \vec{u}_{meas}}{\partial t} \cdot \vec{v} + \rho \big ( \vec{u}_{meas} \cdot \nabla \big) \vec{u}_{meas} \cdot \vec{v} + \mu \nabla \vec{u}_{meas} : \nabla \vec{v} + q \nabla \cdot \vec{u}_{meas}
|
|
\end{equation*}
|
|
|
|
\vspace{0.2cm}
|
|
|
|
\onslide<3-> or in simple terms:
|
|
\onslide<4-> \begin{equation*}
|
|
A(\vec w,p;\vec v ,q ) = \mathcal{L} (\vec v)
|
|
\end{equation*}
|
|
|
|
|
|
for all $(\vec v,q) \in H^1_0(\Omega) \times L^2(\Omega)$.
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{The corrector field: Discrete problem}
|
|
\footnotesize
|
|
|
|
\onslide<1-> In the Discrete, we can write the problem as follows:
|
|
|
|
\onslide<2-> \begin{equation}
|
|
A_{k}(\vec w,p;\vec v ,q ) + \color{blue}{S^{press}_{k}(\vec w,p;\vec v ,q)} + \color{red}{S^{conv}_{k}(\vec w;\vec v)} \color{black}{ = \mathcal{L}_j (\vec v)}
|
|
\label{eq:Corrector_discrete}
|
|
\end{equation}
|
|
|
|
\begin{itemize}
|
|
\small
|
|
\item<3-> $
|
|
A_{k}(\vec w,p;\vec v ,q ) := \int_{\Omega} \frac{\rho}{\tau} \vec{w} \cdot \vec{v} + \rho \big ( ( \vec{u}_{meas}^k + \vec{w}^{k-1} ) \cdot \nabla \big) \vec{w} \cdot \vec{v} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas}^k \cdot \vec{v} + \mu \nabla \vec{w} : \nabla \vec{v} - p \nabla \cdot \vec{v} + q \nabla \cdot \vec{w}
|
|
$ \vspace{0.2cm}
|
|
\item<3-> $ \mathcal{L}_j (\vec v) := \int_{\Omega} \frac{\rho}{\tau} \vec{w}^{k-1} \cdot \vec{v} + \mathcal{\ell}_j (\vec v,q) $
|
|
\vspace{0.2cm}
|
|
\item<4-> \color{blue}$
|
|
S^{press}_{k}(\vec w,p;\vec v ,q) := \delta \sum_{K \in \Omega}\int_{K} \frac{h_j^2}{\mu} \bigg ( \rho \big ( (\vec u^k_{meas} + \vec w^{k-1}) \cdot \nabla \big) \vec{w} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas}^k + \nabla p \bigg) \cdot \notag \bigg ( \rho \big ( (\vec u^k_{meas} + \vec w^{k-1}) \cdot \nabla \big) \vec{v} + \rho \big ( \vec{v} \cdot \nabla \big) \vec{u}_{meas}^k + \nabla q \bigg )
|
|
$
|
|
\vspace{0.2cm}
|
|
\item<5-> \color{red}$
|
|
S^{conv}_{k}(\vec w;\vec v) := \int_{\Omega} \frac{\rho}{2} \ \big( \nabla \cdot (\vec u^k_{meas} + \vec w^{k-1}) \big) \ \vec{w} \cdot \vec{v}
|
|
$ \vspace{0.2cm}
|
|
|
|
\end{itemize}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{The corrector field: Well-posedness}
|
|
\footnotesize
|
|
\onslide<1->
|
|
\begin{theorem}
|
|
There exists a unique solution of Problem (\ref{eq:Corrector_discrete}) under the condition: $$\rho/\tau + C_\Omega^{-2} \mu/2 - \rho 3 \| \nabla\vec u_{meas}^k\|_\infty > 0$$ for all $k>0$.
|
|
\end{theorem}
|
|
\onslide<2->
|
|
We can furthermore prove the following energy balance:
|
|
\onslide<3->
|
|
\begin{theorem} For $(\vec w^k ,p^k)$ solution of Problem (\ref{eq:Corrector_discrete}), with $\ell_j(\vec v,q)=0$ it holds
|
|
\begin{equation*}\label{eq:energy}
|
|
\| \vec w^k \|^2_{L_2(\Omega)} \leq \| \vec w^{k-1} \|^2_{L_2(\Omega)}
|
|
\end{equation*}
|
|
under the condition
|
|
\begin{equation*}\label{eq:condstab}
|
|
\mu \geq C_\Omega^2 \rho \| \nabla \vec u_{meas}^k\|_\infty
|
|
\end{equation*}
|
|
\end{theorem}
|
|
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\section[Synthetic data]{Experiments using synthetic data }
|
|
|
|
\begin{frame}
|
|
\frametitle{Experiments}
|
|
\begin{center}
|
|
Experiments using synthetic data
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Numerical tests}
|
|
|
|
\onslide<1->
|
|
\footnotesize
|
|
\begin{columns}[c]
|
|
\column{.4\textwidth} % Right column and width
|
|
\footnotesize
|
|
Simulated channel flow as measurements (Stokes flow)
|
|
\column{.5\textwidth} % Right column and width
|
|
\footnotesize
|
|
\begin{figure}[!hbtp]
|
|
\begin{center}
|
|
\includegraphics[height=0.35\textwidth]{images/cilinder_2.png}\\
|
|
(b) Channel mesh
|
|
%\caption{Aliasing}
|
|
\end{center}
|
|
\end{figure}
|
|
\end{columns}
|
|
|
|
|
|
\vspace{0.2cm}
|
|
|
|
%\onslide<1-> We tested the corrector using CFD simulations as a measurements, in the following testcases:
|
|
%\onslide<2->
|
|
%\begin{itemize}
|
|
%\item Womersley flow in a cilinder
|
|
%\item Navier-Stokes simulations in an aortic mesh
|
|
%\end{itemize}
|
|
\onslide<2-> Afterwards, perturbations were added:
|
|
\begin{itemize}
|
|
\item<3-> velocity aliasing (varying the $venc$ parameter)
|
|
\item<4-> additive noise (setting SNR in decibels)
|
|
\item<5-> simulated k-space undersampling (compressed sensing for the reconstruction)
|
|
\end{itemize}
|
|
%\onslide<7-> All simulations were done using a stabilized finite element method implemented in FEniCS. Afterwards, all numerical simulations were interpolated into a voxel-type structured mesh
|
|
\end{frame}
|
|
|
|
%
|
|
%\begin{frame}
|
|
% \frametitle{Numerical tests: channel}
|
|
%\begin{columns}[c]
|
|
%\column{.6\textwidth} % Left column and width
|
|
%\footnotesize
|
|
%\textbf{Channel:}
|
|
%\begin{itemize}
|
|
%\item Convective term was neglected
|
|
%\item Non-slip condition at walls
|
|
%\item Oscilatory pressure at $\Gamma_{inlet}$
|
|
%\end{itemize}
|
|
%\column{.5\textwidth} % Right column and width
|
|
%\footnotesize
|
|
%\begin{figure}[!hbtp]
|
|
% \begin{center}
|
|
% \includegraphics[height=1.0\textwidth]{images/cilinder.png}
|
|
% \caption{3D channel mesh}
|
|
% \end{center}
|
|
% \end{figure}
|
|
%\end{columns}
|
|
%\end{frame}
|
|
%
|
|
|
|
\begin{frame}
|
|
\frametitle{Numerical tests}
|
|
\begin{center}
|
|
Results
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Aliasing and noise}
|
|
\footnotesize
|
|
|
|
\onslide<1-> For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$
|
|
|
|
\onslide<2->
|
|
\begin{figure}[!hbtp]
|
|
\begin{center}
|
|
\includegraphics[height=0.45\textwidth]{images/channel_ppt_1.png}
|
|
\caption{\small Fields for the channel: $(SNR,venc) = (\infty,120\%)$. $\vec{w} \times 200$}
|
|
\end{center}
|
|
\end{figure}
|
|
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Aliasing and noise}
|
|
\footnotesize
|
|
|
|
For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$
|
|
|
|
|
|
\begin{figure}[!hbtp]
|
|
\begin{center}
|
|
\includegraphics[height=0.45\textwidth]{images/channel_ppt_2.png}
|
|
\caption{\small Fields for the channel: $(SNR,venc) = (\infty,80\%)$. $\vec{w} \times 4$ }
|
|
%\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ }
|
|
\end{center}
|
|
\end{figure}
|
|
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Aliasing and noise}
|
|
\footnotesize
|
|
For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$
|
|
|
|
\begin{figure}[!hbtp]
|
|
\begin{center}
|
|
\includegraphics[height=0.45\textwidth]{images/channel_ppt_3.png}
|
|
\caption{\small Fields for the channel: $(SNR,venc) = (10 \ dB,120\%)$. $\delta \vec{u}, \vec{w} \times 4$}
|
|
%\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ }
|
|
\end{center}
|
|
\end{figure}
|
|
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Aliasing and noise}
|
|
\footnotesize
|
|
For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$
|
|
|
|
\begin{figure}[!hbtp]
|
|
\begin{center}
|
|
\includegraphics[height=0.45\textwidth]{images/channel_ppt_4.png}
|
|
\caption{\small Fields for the channel: $(SNR,venc) = (10 \ dB,80\%)$. $\vec{w} \times 4$}
|
|
%\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ }
|
|
\end{center}
|
|
\end{figure}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Aliasing and noise}
|
|
\footnotesize
|
|
|
|
\begin{figure}[!hbtp]
|
|
\begin{center}
|
|
\includegraphics[height=0.5\textwidth]{images/channel_curves_SNRinf.png}
|
|
\caption{ \footnotesize Evolution of the $L-2$ norms of the components of $\vec w$}
|
|
\end{center}
|
|
\end{figure}
|
|
|
|
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Aliasing and noise}
|
|
\footnotesize
|
|
|
|
\begin{figure}[!hbtp]
|
|
\begin{center}
|
|
\includegraphics[height=0.5\textwidth]{images/channel_curves_SNR10.png}
|
|
\caption{ \footnotesize Evolution of the $L-2$ norms of the components of $\vec w$}
|
|
\end{center}
|
|
\end{figure}
|
|
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Undersampling}
|
|
\footnotesize
|
|
|
|
\begin{figure}[!hbtp]
|
|
\begin{center}
|
|
\includegraphics[height=0.6\textwidth]{images/histo_channel.png}
|
|
\caption{ \footnotesize Histograms of different undersampling rates for the channel}
|
|
\end{center}
|
|
\end{figure}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
|
|
%\begin{frame}
|
|
% \frametitle{Results for channel: undersampling}
|
|
%\footnotesize
|
|
%
|
|
%\begin{figure}[!hbtp]
|
|
% \begin{center}
|
|
% \includegraphics[height=0.6\textwidth]{images/undersampling_press.png}
|
|
%\caption{ \footnotesize Different undersampling rates for the channel}
|
|
% \end{center}
|
|
% \end{figure}
|
|
%
|
|
%
|
|
%\end{frame}
|
|
%
|
|
|
|
|
|
|
|
%\begin{frame}
|
|
% \frametitle{Numerical tests: aorta}
|
|
%
|
|
%\begin{columns}[c]
|
|
%\column{.6\textwidth} % Left column and width
|
|
%\footnotesize
|
|
%\textbf{Aorta}
|
|
%\begin{itemize}
|
|
%\item a mild coartation was added in the descending aorta
|
|
%\item $u_{inlet}$ simulates a cardiac cycle
|
|
%\item 3-element Windkessel for the outlets
|
|
%\item Non-slip condition at walls
|
|
%\end{itemize}
|
|
|
|
%\column{.5\textwidth} % Right column and width
|
|
%\footnotesize
|
|
%\begin{figure}[!hbtp]
|
|
% \begin{center}
|
|
% \includegraphics[height=1.0\textwidth]{images/aorta_blender.png}
|
|
%\caption{Aortic mesh}
|
|
% \end{center}
|
|
% \end{figure}
|
|
%\end{columns}
|
|
%
|
|
%
|
|
%\end{frame}
|
|
%
|
|
%
|
|
|
|
|
|
%\begin{frame}
|
|
% \frametitle{Results for aorta: aliasing and noise}
|
|
%\footnotesize
|
|
%
|
|
%\begin{figure}[!hbtp]
|
|
% \begin{center}
|
|
% \includegraphics[height=0.7\textwidth]{images/aorta_perturbation.png}
|
|
%\caption{Different perturbation scenarios for the aortic mesh}
|
|
% \end{center}
|
|
% \end{figure}
|
|
%
|
|
%\end{frame}
|
|
%
|
|
%
|
|
%\begin{frame}
|
|
% \frametitle{Results for aorta: undersampling}
|
|
%\footnotesize
|
|
%
|
|
%\begin{figure}[!hbtp]
|
|
% \begin{center}
|
|
% \includegraphics[height=0.6\textwidth]{images/histo_blender.png}
|
|
%\caption{ \footnotesize Histograms of different undersampling rates for the aortic mesh}
|
|
% \end{center}
|
|
% \end{figure}
|
|
%
|
|
%\end{frame}
|
|
%
|
|
%\begin{frame}
|
|
% \frametitle{Results for aorta: undersampling}
|
|
%\footnotesize
|
|
%
|
|
%\begin{figure}[!hbtp]
|
|
% \begin{center}
|
|
% \includegraphics[height=0.7\textwidth]{images/undersampling_blender.png}
|
|
%\caption{ \footnotesize Different undersampling rates for the aortic mesh}
|
|
% \end{center}
|
|
% \end{figure}
|
|
%
|
|
%\end{frame}
|
|
%
|
|
%
|
|
|
|
|
|
|
|
\section[4D flow data]{Experiments using real 4D flow data }
|
|
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Experiments}
|
|
\begin{center}
|
|
Experiments using real 4D flow data
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Experiments}
|
|
\footnotesize
|
|
|
|
\begin{columns}[c]
|
|
\column{.6\textwidth} % Left column and width
|
|
|
|
\begin{itemize}
|
|
\item<1-> 4D flow measurements were taken from a silicon thoracic aortic phantom made of silicon.
|
|
\item<2-> A controled pump (heart rate, peak flow, stroke volume and flow waveform)
|
|
\item<3-> A stenosis of $11 \ mm$ of diameter was added in the descending aorta
|
|
\item<4-> The phantom was scanned using a clinical $1.5 \ T$ MR scanner (Philips Achieva, Best, The Netherlands)
|
|
\end{itemize}
|
|
|
|
|
|
\column{.5\textwidth} % Right column and width
|
|
|
|
\begin{figure}[!hbtp]
|
|
\begin{center}
|
|
\footnotesize
|
|
\includegraphics[height=\textwidth]{images/phantom.jpg}
|
|
\caption{\footnotesize{Experiment done at the Centre of Biomedical Images (CIB) of the Catholic Unversity of Chili (PUC)}}
|
|
\end{center}
|
|
\end{figure}
|
|
|
|
\end{columns}
|
|
|
|
%\includemedia[width=0.6\linewidth,height=0.6\linewidth,activate=pageopen,
|
|
%passcontext,
|
|
%transparent,
|
|
%addresource=images/phantom.mp4,
|
|
%flashvars={source=images/phantom.mp4}
|
|
%]{\includegraphics[width=0.6\linewidth]{images/phantom.jpg}}{VPlayer.swf}
|
|
%
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Results}
|
|
\footnotesize
|
|
|
|
\begin{figure}
|
|
\begin{subfigure}{.31\textwidth}
|
|
\centering
|
|
% \includegraphics[trim=100 80 100 150, clip, width=1.0\textwidth]{images/u_15.png}
|
|
\caption*{(a) $\vec{u}_{meas}$}
|
|
\end{subfigure}
|
|
\begin{subfigure}{.01\textwidth}
|
|
\hfill
|
|
\end{subfigure}
|
|
\begin{subfigure}{.31\textwidth}
|
|
\centering
|
|
%\includegraphics[trim=100 80 100 150, clip, width=1.0\textwidth]{images/w_15.png}
|
|
\caption*{(b) $\vec{w}$}
|
|
\end{subfigure}
|
|
\begin{subfigure}{.01\textwidth}
|
|
\hfill
|
|
\end{subfigure}
|
|
\begin{subfigure}{.31\textwidth}
|
|
\centering
|
|
%\includegraphics[trim=100 80 100 150, clip, width=1.0\textwidth]{images/uc_15.png}
|
|
\caption*{(c) $\vec{u}_{meas}+\vec{w}$}
|
|
\end{subfigure}
|
|
\caption{Measurements, corrector fields and corrected velocities for all the cases.}
|
|
\label{fig:phantom_resolution}
|
|
\end{figure}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
|
|
|
|
\section{Conclusions}
|
|
|
|
\begin{frame}
|
|
\frametitle{Experiments}
|
|
\begin{center}
|
|
Conclusions
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Conclusions and future work}
|
|
\footnotesize
|
|
|
|
\onslide<1-> Potential of the new quality parameter:
|
|
|
|
\begin{itemize}
|
|
\item<2-> Vector fields has more details
|
|
\item<3-> Artifacts recognition
|
|
\end{itemize}
|
|
|
|
|
|
\onslide<4-> Future:
|
|
\begin{itemize}
|
|
\item<5-> The use of the field for create new inverse problems which can be used for further accelerations
|
|
\end{itemize}
|
|
|
|
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{frame}
|
|
\begin{center}
|
|
\huge{Thank you for your time!}
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
%\includegraphics<1>[height=4.5cm]{images/pat1.png}
|
|
%\includegraphics<2>[height=4.5cm]{images/pat2.png}
|
|
|
|
|
|
|
|
\end{document}
|
|
|