257 lines
7.3 KiB
Python
257 lines
7.3 KiB
Python
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from itertools import cycle
|
|
import argparse
|
|
import pickle
|
|
import yaml
|
|
|
|
|
|
#import matplotlib.font_manager
|
|
from matplotlib import rc
|
|
rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
|
|
rc('text', usetex=True)
|
|
|
|
|
|
|
|
def is_ipython():
|
|
''' Check if script is run in IPython.
|
|
|
|
Returns:
|
|
bool: True if IPython, else False '''
|
|
try:
|
|
get_ipython()
|
|
ipy = True
|
|
except NameError:
|
|
ipy = False
|
|
|
|
return ipy
|
|
|
|
|
|
def load_data(file):
|
|
''' Load numpy data from file.
|
|
|
|
Returns
|
|
dict: data dictionary
|
|
'''
|
|
dat = np.load(file)
|
|
|
|
return dat
|
|
|
|
|
|
def plot_parameters(dat, input_file, deparameterize=False, ref=None):
|
|
''' Plot the parameters in separate subplots with uncertainties.
|
|
|
|
Args:
|
|
dat (dict): data dictionary
|
|
deparameterize (bool): flag indicating if parameters should be
|
|
deparameterized via 2**theta
|
|
ref: reference value to be plotted with parameters
|
|
'''
|
|
if is_ipython():
|
|
plt.ion()
|
|
|
|
idx_a = input_file.find('/')
|
|
idx_b = input_file[idx_a+1::].find('/')
|
|
name_file = input_file[idx_a+1:idx_b+idx_a+1]
|
|
inputfile_path = 'results/' + name_file + '/input.yaml'
|
|
|
|
|
|
with open(inputfile_path) as file:
|
|
inputfile = yaml.full_load(file)
|
|
|
|
|
|
|
|
true_values = {
|
|
3: 4800,
|
|
4: 7200,
|
|
5: 11520,
|
|
6: 11520,
|
|
2: 75
|
|
}
|
|
|
|
true_values_C = {
|
|
3: 0.0004,
|
|
4: 0.0004,
|
|
5: 0.0003,
|
|
6: 0.0003,
|
|
}
|
|
|
|
|
|
dim = dat['theta'].shape[-1]
|
|
|
|
meas_flag = False
|
|
if dim==7:
|
|
RC_flag = True
|
|
else:
|
|
RC_flag = False
|
|
line_split = 1.5
|
|
current_val = []
|
|
current_val_C = []
|
|
ids_type = []
|
|
labels = []
|
|
ids = []
|
|
|
|
for bnd_c in inputfile['estimation']['boundary_conditions']:
|
|
|
|
if 'windkessel' in bnd_c['type']:
|
|
for bnd_set in inputfile['boundary_conditions']:
|
|
if bnd_c['id'] == bnd_set['id']:
|
|
ids.append(bnd_c['id'])
|
|
ids_type.append('windkessel')
|
|
current_val.append(bnd_set['parameters']['R_d'])
|
|
labels.append('$R_' + str(bnd_c['id']-3))
|
|
if RC_flag:
|
|
current_val_C.append(bnd_set['parameters']['C'])
|
|
labels.append('$C_' + str(bnd_c['id']-3))
|
|
|
|
|
|
elif 'dirichlet' in bnd_c['type']:
|
|
current_val.append(inputfile['boundary_conditions'][0]['parameters']['U'])
|
|
ids.append(bnd_c['id'])
|
|
ids_type.append('dirichlet')
|
|
labels.append('$U')
|
|
|
|
|
|
|
|
fig1, axes1 = plt.subplots(1,1,figsize=(12,7))
|
|
if RC_flag:
|
|
fig2, axes2 = plt.subplots(1,1,figsize=(12,7))
|
|
|
|
|
|
t = dat['times']
|
|
theta = dat['theta']
|
|
P = dat['P_theta']
|
|
|
|
col = cycle(['C0', 'C1', 'C2', 'C3','C4'])
|
|
ls = cycle(['-', '-', '--', '--', ':', ':', '-.', '-.'])
|
|
legends = cycle(labels)
|
|
|
|
if meas_flag:
|
|
t_und = t[0::30]
|
|
t_und = np.append( t_und , [t[-1]])
|
|
meas_mark = t_und*0
|
|
|
|
col_ = next(col)
|
|
ls_ = next(ls)
|
|
legends_=next(legends)
|
|
|
|
if dim == 1:
|
|
theta = theta.reshape((-1, 1))
|
|
P = P.reshape((-1, 1, 1))
|
|
|
|
|
|
|
|
idx = 0
|
|
idc = 0
|
|
|
|
|
|
for i in range(len(ids)):
|
|
|
|
cur_key = ids[i]
|
|
rec_value = np.round(2**theta[-1, idx]*current_val[i],2)
|
|
curve = 2**theta[:, idx]*current_val[i]
|
|
std_down = 2**(-np.sqrt(P[:, idx, idx]))*curve
|
|
std_up = 2**np.sqrt(P[:, idx, idx])*curve
|
|
dash_curve = true_values[ids[i]] + t*0
|
|
|
|
|
|
|
|
|
|
if ids_type[i] == 'dirichlet':
|
|
fig3, axes3 = plt.subplots(1,1,figsize=(12,5))
|
|
axes3.plot(t, curve , '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key]) + '$', linewidth = 4)
|
|
axes3.fill_between(t, std_down, std_up, alpha=0.3, color=col_)
|
|
legends_=next(legends)
|
|
axes3.plot(t, dash_curve , color=col_,ls='--' , linewidth = 3)
|
|
axes3.set_ylabel(r'$U$',fontsize=36)
|
|
axes3.legend(fontsize=36,loc='upper right')
|
|
axes3.set_xlim([-0.01,0.81])
|
|
axes3.set_xlabel(r'$t (s)$',fontsize=36)
|
|
axes3.set_box_aspect(1/4)
|
|
plt.xticks(fontsize=28)
|
|
plt.yticks(fontsize=28)
|
|
plt.savefig('results/' + name_file + '/U.png')
|
|
else:
|
|
|
|
axes1.plot(t, curve , '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key]) + '$', linewidth = 3)
|
|
axes1.fill_between(t, std_down, std_up, alpha=0.3, color=col_)
|
|
axes1.plot(t, dash_curve , color=col_,ls='--',linewidth = 3)
|
|
legends_=next(legends)
|
|
|
|
if RC_flag:
|
|
if i<len(current_val_C):
|
|
rec_value_C = np.round(2**theta[-1, idx+1]*current_val_C[idc],6)
|
|
|
|
curve_C = 2**theta[:, idx+1]*current_val_C[idc]
|
|
dash_curve_C = true_values_C[ids[i]] + t*0
|
|
std_C_down = 2**(-np.sqrt(P[:, idx+1, idx+1]))*curve_C
|
|
std_C_up = 2**np.sqrt(P[:, idx+1, idx+1])*curve_C
|
|
|
|
axes2.plot(t, curve_C , '-', color=col_,label= legends_ + '= ' + str(rec_value_C) + '/' + str(true_values_C[cur_key]) + '$', linewidth = 3)
|
|
axes2.fill_between(t, std_C_down, std_C_up, alpha=0.3, color=col_)
|
|
axes2.plot(t, dash_curve_C , color=col_,ls='--',linewidth = 3)
|
|
legends_=next(legends)
|
|
idx +=1
|
|
idc +=1
|
|
|
|
|
|
if meas_flag:
|
|
axes1.plot(t_und, meas_mark + line_split*idx, marker = 'x', color='red')
|
|
|
|
col_ = next(col)
|
|
idx +=1
|
|
|
|
|
|
axes1.set_ylabel(r'$R_d$',fontsize=36)
|
|
axes1.legend(fontsize=36,loc='upper right')
|
|
axes1.set_xlim([-0.01,0.81])
|
|
axes1.set_ylim([1700,55000])
|
|
axes1.set_box_aspect(1/2)
|
|
plt.xticks(fontsize=28)
|
|
plt.yticks(fontsize=28)
|
|
axes1.set_xlabel(r'$t (s)$',fontsize=36)
|
|
plt.savefig('Rd.png')
|
|
|
|
|
|
if RC_flag:
|
|
|
|
axes2.set_ylabel(r'$C$',fontsize=36)
|
|
axes2.legend(fontsize=36,loc='upper right')
|
|
axes2.set_xlim([-0.01,0.81])
|
|
plt.xticks(fontsize=28)
|
|
plt.yticks(fontsize=28)
|
|
axes2.set_xlabel(r'$t (s)$',fontsize=36)
|
|
fig2.savefig('C.png')
|
|
|
|
fig1.savefig('results/' + name_file + '/Rd.png')
|
|
if not is_ipython():
|
|
plt.show()
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
description='''
|
|
Plot the time evolution of the ROUKF estimated parameters.
|
|
|
|
To execute in IPython::
|
|
|
|
%run plot_roukf_parameters.py [-d] [-r N [N \
|
|
...]] file
|
|
''',
|
|
formatter_class=argparse.RawDescriptionHelpFormatter)
|
|
parser.add_argument('file', type=str, help='path to ROUKF stats file')
|
|
parser.add_argument('-d', '--deparameterize', action='store_true',
|
|
help='deparameterize the parameters by 2**theta')
|
|
parser.add_argument('-r', '--ref', metavar='N', nargs='+', default=None,
|
|
type=float, help='Reference values for parameters')
|
|
|
|
return parser
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = get_parser().parse_args()
|
|
|
|
dat = load_data(args.file)
|
|
|
|
plot_parameters(dat, args.file,deparameterize=args.deparameterize, ref=args.ref)
|