136 lines
3.7 KiB
Python
136 lines
3.7 KiB
Python
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from itertools import cycle
|
|
import argparse
|
|
import pickle
|
|
import yaml
|
|
|
|
def is_ipython():
|
|
''' Check if script is run in IPython.
|
|
|
|
Returns:
|
|
bool: True if IPython, else False '''
|
|
try:
|
|
get_ipython()
|
|
ipy = True
|
|
except NameError:
|
|
ipy = False
|
|
|
|
return ipy
|
|
|
|
|
|
def load_data(file):
|
|
''' Load numpy data from file.
|
|
|
|
Returns
|
|
dict: data dictionary
|
|
'''
|
|
dat = np.load(file)
|
|
|
|
return dat
|
|
|
|
|
|
def plot_parameters(dat, deparameterize=False, ref=None):
|
|
''' Plot the parameters in separate subplots with uncertainties.
|
|
|
|
Args:
|
|
dat (dict): data dictionary
|
|
deparameterize (bool): flag indicating if parameters should be
|
|
deparameterized via 2**theta
|
|
ref: reference value to be plotted with parameters
|
|
'''
|
|
if is_ipython():
|
|
plt.ion()
|
|
|
|
|
|
inputfile_path = 'results/aorta/input.yaml'
|
|
with open(inputfile_path) as file:
|
|
inputfile = yaml.full_load(file)
|
|
|
|
true_val = [10,250,250,250,30]
|
|
current_val = []
|
|
current_val.append(inputfile['boundary_conditions'][2]['value'][0])
|
|
current_val.append(inputfile['boundary_conditions'][3]['value'][0])
|
|
current_val.append(inputfile['boundary_conditions'][4]['value'][0])
|
|
current_val.append(inputfile['boundary_conditions'][5]['value'][0])
|
|
current_val.append(inputfile['boundary_conditions'][1]['parameters']['U'])
|
|
|
|
|
|
dim = dat['theta'].shape[-1]
|
|
fig1, axes = plt.subplots(1,1,figsize=(8,6))
|
|
|
|
|
|
|
|
axes.set_ylabel(r'$\theta$',fontsize=18)
|
|
|
|
t = dat['times']
|
|
theta = dat['theta']
|
|
P = dat['P_theta']
|
|
|
|
col = cycle(['C0', 'C1', 'C2', 'C3','C4'])
|
|
ls = cycle(['-', '-', '--', '--', ':', ':', '-.', '-.'])
|
|
legends = cycle(['$R_3$','$R_4$','$R_5$','$R_6$','$U$'])
|
|
|
|
col_ = next(col)
|
|
ls_ = next(ls)
|
|
legends_=next(legends)
|
|
|
|
if dim == 1:
|
|
theta = theta.reshape((-1, 1))
|
|
P = P.reshape((-1, 1, 1))
|
|
|
|
|
|
for i in range(dim):
|
|
axes.plot(t, theta[:, i] + 1.5*i, '-', color=col_,label=legends_)
|
|
axes.fill_between(t, theta[:, i] + 1.5*i - np.sqrt(P[:, i, i]),
|
|
theta[:, i] + 1.5*i + np.sqrt(P[:, i, i]), alpha=0.3,
|
|
color=col_)
|
|
|
|
|
|
true_level = np.log(true_val[i]/current_val[i])/np.log(2)
|
|
axes.plot(t,1.5*i + t*0 + true_level , color=col_,ls='--')
|
|
col_ = next(col)
|
|
legends_=next(legends)
|
|
|
|
axes.legend(fontsize=14,loc='lower right')
|
|
axes.set_xlim([-0.01,0.81])
|
|
axes.set_xlabel(r'time (s)',fontsize=18)
|
|
# print('theta_peak: \t {}'.format(theta[round(len(theta)/2), :]))
|
|
print('Final value theta: \t {}'.format(theta[-1, :]))
|
|
print('Deparameterized: 2^theta_end: \t {}'.format(2**theta[-1, :]))
|
|
print('Real values: \t {}'.format(np.round(2**theta[-1, :]*current_val,2)))
|
|
|
|
|
|
|
|
plt.savefig('windk_res')
|
|
if not is_ipython():
|
|
plt.show()
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
description='''
|
|
Plot the time evolution of the ROUKF estimated parameters.
|
|
|
|
To execute in IPython::
|
|
|
|
%run plot_roukf_parameters.py [-d] [-r N [N \
|
|
...]] file
|
|
''',
|
|
formatter_class=argparse.RawDescriptionHelpFormatter)
|
|
parser.add_argument('file', type=str, help='path to ROUKF stats file')
|
|
parser.add_argument('-d', '--deparameterize', action='store_true',
|
|
help='deparameterize the parameters by 2**theta')
|
|
parser.add_argument('-r', '--ref', metavar='N', nargs='+', default=None,
|
|
type=float, help='Reference values for parameters')
|
|
|
|
return parser
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = get_parser().parse_args()
|
|
|
|
dat = load_data(args.file)
|
|
|
|
plot_parameters(dat, deparameterize=args.deparameterize, ref=args.ref)
|