219 lines
6.1 KiB
Python
219 lines
6.1 KiB
Python
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from itertools import cycle
|
|
import argparse
|
|
import pickle
|
|
import yaml
|
|
|
|
def is_ipython():
|
|
''' Check if script is run in IPython.
|
|
|
|
Returns:
|
|
bool: True if IPython, else False '''
|
|
try:
|
|
get_ipython()
|
|
ipy = True
|
|
except NameError:
|
|
ipy = False
|
|
|
|
return ipy
|
|
|
|
|
|
def load_data(file):
|
|
''' Load numpy data from file.
|
|
|
|
Returns
|
|
dict: data dictionary
|
|
'''
|
|
dat = np.load(file)
|
|
|
|
return dat
|
|
|
|
|
|
def plot_parameters(dat, input_file, deparameterize=False, ref=None):
|
|
''' Plot the parameters in separate subplots with uncertainties.
|
|
|
|
Args:
|
|
dat (dict): data dictionary
|
|
deparameterize (bool): flag indicating if parameters should be
|
|
deparameterized via 2**theta
|
|
ref: reference value to be plotted with parameters
|
|
'''
|
|
if is_ipython():
|
|
plt.ion()
|
|
|
|
idx_a = input_file.find('/')
|
|
idx_b = input_file[idx_a+1::].find('/')
|
|
name_file = input_file[idx_a+1:idx_b+idx_a+1]
|
|
inputfile_path = 'results/' + name_file + '/input.yaml'
|
|
|
|
|
|
with open(inputfile_path) as file:
|
|
inputfile = yaml.full_load(file)
|
|
|
|
|
|
|
|
true_values = {
|
|
3: 4800,
|
|
4: 7200,
|
|
5: 11520,
|
|
6: 11520,
|
|
2: 75
|
|
}
|
|
|
|
true_values_C = {
|
|
3: 0.0004,
|
|
4: 0.0004,
|
|
5: 0.0003,
|
|
6: 0.0003,
|
|
}
|
|
|
|
|
|
|
|
|
|
meas_flag = False
|
|
RC_mod = True
|
|
line_split = 1.5
|
|
current_val = []
|
|
current_val_C = []
|
|
ids_type = []
|
|
labels = []
|
|
ids = []
|
|
|
|
for bnd_c in inputfile['estimation']['boundary_conditions']:
|
|
|
|
if 'windkessel' in bnd_c['type']:
|
|
for bnd_set in inputfile['boundary_conditions']:
|
|
if bnd_c['id'] == bnd_set['id']:
|
|
ids.append(bnd_c['id'])
|
|
ids_type.append('windkessel')
|
|
current_val.append(bnd_set['parameters']['R_d'])
|
|
labels.append('$R_' + str(bnd_c['id']))
|
|
if RC_mod:
|
|
current_val_C.append(bnd_set['parameters']['C'])
|
|
labels.append('$C_' + str(bnd_c['id']))
|
|
|
|
|
|
elif 'dirichlet' in bnd_c['type']:
|
|
current_val.append(inputfile['boundary_conditions'][0]['parameters']['U'])
|
|
ids.append(bnd_c['id'])
|
|
ids_type.append('dirichlet')
|
|
labels.append('$U')
|
|
|
|
|
|
|
|
|
|
dim = dat['theta'].shape[-1]
|
|
fig1, axes = plt.subplots(1,1,figsize=(8,6))
|
|
|
|
axes.set_ylabel(r'$\theta$',fontsize=18)
|
|
|
|
t = dat['times']
|
|
theta = dat['theta']
|
|
P = dat['P_theta']
|
|
|
|
col = cycle(['C0', 'C1', 'C2', 'C3','C4'])
|
|
ls = cycle(['-', '-', '--', '--', ':', ':', '-.', '-.'])
|
|
legends = cycle(labels)
|
|
|
|
if meas_flag:
|
|
t_und = t[0::30]
|
|
t_und = np.append( t_und , [t[-1]])
|
|
meas_mark = t_und*0
|
|
|
|
col_ = next(col)
|
|
ls_ = next(ls)
|
|
legends_=next(legends)
|
|
|
|
if dim == 1:
|
|
theta = theta.reshape((-1, 1))
|
|
P = P.reshape((-1, 1, 1))
|
|
|
|
|
|
|
|
idx = 0
|
|
idc = 0
|
|
|
|
for i in range(len(ids)):
|
|
cur_key = ids[i]
|
|
|
|
true_level = np.log(true_values[ids[i]]/current_val[i])/np.log(2)
|
|
rec_value = np.round(2**theta[-1, idx]*current_val[i],2)
|
|
|
|
#curve = theta[:,i] + line_split*i
|
|
#dash_curve = line_split*i + t*0 + true_level
|
|
|
|
curve = theta[:,idx] + line_split*idx - true_level
|
|
dash_curve = line_split*idx + t*0
|
|
|
|
axes.plot(t, curve , '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key]) + '$')
|
|
axes.fill_between(t, curve - np.sqrt(P[:, idx, idx]), curve + np.sqrt(P[:, idx, idx]), alpha=0.3, color=col_)
|
|
legends_=next(legends)
|
|
axes.plot(t, dash_curve , color=col_,ls='--')
|
|
|
|
|
|
if RC_mod:
|
|
|
|
if i<len(current_val_C):
|
|
true_level_C = np.log(true_values_C[ids[i]]/current_val_C[i])/np.log(2)
|
|
rec_value_C = np.round(2**theta[-1, idc]*current_val_C[idc],6)
|
|
curve_C = theta[:,idx+1] + line_split*(idx+1) - true_level_C
|
|
dash_curve_C = line_split*(idx+1) + t*0
|
|
#print(true_values_C[cur_key_C])
|
|
axes.plot(t, curve_C , '-', color=col_,label= legends_ + '= ' + str(rec_value_C) + '/' + str(true_values_C[cur_key]) + '$')
|
|
axes.fill_between(t, curve_C - np.sqrt(P[:, idx+1, idx+1]), curve_C + np.sqrt(P[:, idx+1, idx+1]), alpha=0.3, color=col_)
|
|
axes.plot(t, dash_curve_C , color=col_,ls='--')
|
|
legends_=next(legends)
|
|
idx +=1
|
|
idc +=1
|
|
|
|
|
|
if meas_flag:
|
|
axes.plot(t_und, meas_mark + line_split*idx, marker = 'x', color='red')
|
|
|
|
col_ = next(col)
|
|
idx +=1
|
|
|
|
axes.legend(fontsize=14,loc='lower right')
|
|
axes.set_xlim([-0.01,0.81])
|
|
axes.set_xlabel(r'time (s)',fontsize=18)
|
|
# print('theta_peak: \t {}'.format(theta[round(len(theta)/2), :]))
|
|
print('Final value theta: \t {}'.format(theta[-1, :]))
|
|
print('Deparameterized: 2^theta_end: \t {}'.format(2**theta[-1, :]))
|
|
print('Real values: \t {}'.format(true_values))
|
|
#print('Recon values: \t {a}:{b} '.format(a=ids[:],b=np.round(2**theta[-1, :]*current_val,2)))
|
|
|
|
|
|
|
|
plt.savefig('windk_res')
|
|
if not is_ipython():
|
|
plt.show()
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
description='''
|
|
Plot the time evolution of the ROUKF estimated parameters.
|
|
|
|
To execute in IPython::
|
|
|
|
%run plot_roukf_parameters.py [-d] [-r N [N \
|
|
...]] file
|
|
''',
|
|
formatter_class=argparse.RawDescriptionHelpFormatter)
|
|
parser.add_argument('file', type=str, help='path to ROUKF stats file')
|
|
parser.add_argument('-d', '--deparameterize', action='store_true',
|
|
help='deparameterize the parameters by 2**theta')
|
|
parser.add_argument('-r', '--ref', metavar='N', nargs='+', default=None,
|
|
type=float, help='Reference values for parameters')
|
|
|
|
return parser
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = get_parser().parse_args()
|
|
|
|
dat = load_data(args.file)
|
|
|
|
plot_parameters(dat, args.file,deparameterize=args.deparameterize, ref=args.ref)
|