NuMRI/kalman/graphics/figure_func2.py

170 lines
4.5 KiB
Python

import matplotlib.pyplot as plt
import numpy as np
from itertools import cycle
import argparse
import pickle
import yaml
from matplotlib import rc
rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
rc('text', usetex=True)
fig1, ax1 = plt.subplots(1,1,figsize=(8, 5))
lwidth = 2
font_size = 28
################ Flow Parameters
Rd = 2.5
Rt = 0.5
GradP = 4
mu = 0.5
fac = 1
nr = 50
VENC = 0.6
gamma = 267.513e6 # rad/Tesla/sec Gyromagnetic ratio for H nuclei
Bo = 1.5 # Tesla Magnetic Field Strenght
TE = 5e-3 # Echo-time
M = np.ones(nr) # Magnetization
phi0 = gamma*Bo*TE # Reference phase
phi02 = phi0%3.14
M1 = np.pi/(gamma*VENC)
ff = np.pi/(1000*gamma*M1)
uv = np.arange(-4*VENC,4*VENC,ff)
r = np.linspace(-Rd, Rd, nr)
dr = r[2]-r[1]
vmax = 1
v = vmax/Rt**2*( Rt**2 - r**2 )*(np.abs(r)<Rt); # Poiseuille Formula
ai = v/vmax
theta = np.linspace(-4,5,2000)
vtest = np.linspace(-5,5,2000)
JF = 0*theta
jv = 0*theta
JV = 0*theta
Mjv = np.zeros([len(theta),len(ai)])
jv0 = 0*theta
JV0 = 0*theta
Mjv0 = np.zeros([len(theta),len(ai)])
#################################### MAGNETIZACION FROM V
phiv = phi02 + v*np.pi/VENC
modv = np.ones(phiv.shape)
M1 = modv*np.cos(phi02) + 1j*modv*np.sin(phi02)
M2 = modv*np.cos(phiv) + 1j*modv*np.sin(phiv)
################################### FFT to COMPLEX M
S1 = np.fft.fft(M1)
S2 = np.fft.fft(M2)
################################### SubSampling
a1 = 0
a2 = 1
##### FILLED WITH ZEROS
US1 = S1
US2 = 0*S2
US2[a1::a2] = S2[a1::a2]
MR1 = np.fft.ifft(US1)
MR2 = np.fft.ifft(US2)
vrec1 = (np.angle(MR2)-phi02)*VENC/(np.pi)
for k in range(len(ai)):
jv0 = 1-np.cos(np.pi*(vrec1[k]-vtest)/VENC)
Mjv0[:,k] = jv0[:]
JV0 = JV0 + jv0
for k in range(len(ai)):
jv = 1-np.cos(np.pi*(vrec1[k]-theta*ai[k])/VENC)
Mjv[:,k] = jv[:]
JV = JV + jv
NJV1 = JV*100/np.max(JV)
MV = Mjv0
V =NJV1
left, bottom, width, height = [0.2, 0.2, 0.1, 0.1]
fig = plt.figure(figsize=(12, 6), dpi=100)
ax1 = plt.subplot(1,2,1)
ch1 = 20
ch2 = 23
ax0 = fig.add_axes([left, bottom, width, height])
ax0.plot(r,v,'b-')
ax0.plot([r[ch1]],[v[ch1]],color='xkcd:coral',marker='o')
ax0.plot([r[ch2]],[v[ch2]],color='xkcd:azure',marker='o')
ax0.set_xlim((-1.5,1.5))
#for k in range(22,39):
# if k!=ch1 and k!=ch2 and np.sum(MV[:,k])!=0:
# ax1.plot(vtest, MV[:,k],color='xkcd:beige',alpha=0.8)
ax1.plot(vtest, MV[:,ch1],color='xkcd:coral',label='$v_1$')
ax1.plot(vtest, MV[:,ch2],color='xkcd:azure',label='$v_2$')
m1x = vtest[np.where( np.abs(MV[:,ch1] - np.min(MV[:,ch1]))<0.001 )]
m1y = np.min(MV[:,ch1])
m2x = vtest[np.where( np.abs(MV[:,ch2] - np.min(MV[:,ch2]))<0.001 )]
#m2x = vtest[np.where(MV[:,ch2]==np.min(MV[:,ch2]))]
m2y = np.min(MV[:,ch2])
ax1.plot([m1x],[m1y],color='xkcd:coral',marker='o')
ax1.plot([m2x],[m2y],color='xkcd:azure',marker='o')
ax1.axvline(x=v[ch1], color='xkcd:coral', linestyle='--',label='$v_{1,true}$')
ax1.axvline(x=v[ch2], color='xkcd:azure', linestyle='--',label='$v_{2,true}$')
ax1.set_xlabel(r'$u$',fontsize=20)
ax1.set_ylabel(r'$J_i(u)$',fontsize=20)
#ax1.legend(loc='upper right', bbox_to_anchor=(0.5, 1.05),ncol=2, fancybox=True, shadow=True,fontsize=15)
ax1.set_yticks([])
ax1.set_xticks([])
ax1.set_xlim((-3.5,3.5))
ax1.set_ylim((-1.0,2.4))
ax2 = plt.subplot(1,2,2)
ax2.plot(theta,V,'b-')
ax2.axvline(x=1, color='k', linestyle='--')
ax2.set_xlabel(r'$\theta$',fontsize=20)
ax2.set_ylabel(r'$J_T(\theta)$',fontsize=20)
plt.yticks([])
ax2.set_xticks([])
plt.title(r'$\theta_{true}=1$' + '\n' +'$venc < v_{max}$',fontsize=15)
plt.xlim((-2,3))
plt.show()
#ax1.plot(u, J1, color = 'orangered', label = '$venc = 0.9 u_{true}$', linestyle='-',linewidth=lwidth)
#ax1.plot(u, J2, color = 'dodgerblue', label = '$venc = 0.6 u_{true}$', linestyle='-',linewidth=lwidth)
#ax1.axvline(x=1,color = 'black',linewidth = lwidth , label = '$u_{true}$')
ax1.legend(fontsize=20, loc= 'upper right')
ax1.tick_params(axis='both', which='major', labelsize=22)
ax1.set_yticks([])
ax1.set_xlabel('$u$',fontsize=font_size)
plt.show()
#fig1.savefig('functionals.png', dpi=500, bbox_inches='tight')