You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
275 lines
5.7 KiB
275 lines
5.7 KiB
\documentclass[xcolor=dvipsnames]{beamer} |
|
%\documentclass{beamer} |
|
\usepackage[english]{babel} |
|
%\usepackage[latin1]{inputenc} |
|
\usepackage{multicol} % indice en 2 columnas |
|
\usepackage[utf8]{inputenc} |
|
|
|
\usepackage{helvet} |
|
\usefonttheme{serif} |
|
%\usepackage{ccfonts} % Font family: Concrete Math |
|
\usepackage[T1]{fontenc} |
|
|
|
%\usepackage{graphicx} |
|
%\usepackage{movie15} |
|
%\usepackage{media9}[2013/11/04] |
|
|
|
|
|
\usepackage{graphicx} |
|
\usepackage{multimedia} |
|
\usepackage{media9} |
|
|
|
%\usetheme{default} |
|
%\usetheme{AnnArbor} |
|
%\usetheme{Antibes} |
|
%\usetheme{Bergen} |
|
%\usetheme{Berkeley} |
|
%\usetheme{Berlin} |
|
%\usetheme{Boadilla} |
|
%\usetheme{CambridgeUS} |
|
%\usetheme{Copenhagen} |
|
%\usetheme{Darmstadt} |
|
%\usetheme{Dresden} |
|
%\usetheme{Frankfurt} |
|
%\usetheme{Goettingen} |
|
%\usetheme{Hannover} |
|
%\usetheme{Ilmenau} |
|
%\usetheme{JuanLesPins} |
|
%\usetheme{Luebeck} |
|
%\usetheme{Madrid} |
|
%\usetheme{Malmoe} |
|
%\usetheme{Marburg} |
|
%\usetheme{Montpellier} |
|
%\usetheme{PaloAlto} |
|
%\usetheme{Pittsburgh} |
|
%\usetheme{Rochester} |
|
%\usetheme{Singapore} |
|
%\usetheme{Szeged} |
|
\usetheme{Warsaw} |
|
|
|
%\usecolortheme{albatross} |
|
%\usecolortheme{beaver} |
|
%\usecolortheme{beetle} |
|
\usecolortheme{crane} |
|
%\usecolortheme{dolphin} |
|
%\usecolortheme{dove} |
|
%\usecolortheme{fly} |
|
%\usecolortheme{lily} |
|
%\usecolortheme{orchid} |
|
%\usecolortheme{rose} |
|
%\usecolortheme{seagull} |
|
%\usecolortheme{seahorse} |
|
%\usecolortheme{whale} |
|
%\usecolortheme{wolverine} |
|
|
|
%\useoutertheme{infolines} |
|
%\useoutertheme{miniframes} |
|
%\useoutertheme{sidebar} |
|
\useoutertheme{smoothbars} |
|
%\useoutertheme{shadow} |
|
%\useoutertheme{smoothtree} |
|
%\useoutertheme{split} |
|
%\useoutertheme{tree} |
|
|
|
|
|
\usepackage{amssymb,mathrsfs,amsmath,latexsym,amsthm,amsfonts} |
|
\useinnertheme{rectangles} |
|
|
|
|
|
\setbeamertemplate{navigation symbols}{} % quitar simbolitos |
|
|
|
|
|
\setbeamerfont{page number in head/foot}{size=\large} |
|
\setbeamertemplate{footline}[frame number] |
|
|
|
|
|
\title[A new mathematical model for verifying the Navier-Stokes compatibility of 4D flow MRI data]{ A new mathematical model for verifying the Navier-Stokes compatibility of 4D flow MRI data} |
|
%\author[Jeremías Garay Labra] |
|
%{Jeremías Garay Labra} |
|
\institute[University of Groningen] |
|
{ |
|
Bernoulli Institute\\ |
|
Faculty of Sciences and Engineering\\ |
|
University of Groningen\\[0.5cm] |
|
%\includegraphics[height=1.5cm]{Imagenes/escudoU2014.pdf} |
|
% \includegraphics[height=1cm]{Imagenes/fcfm.png} \\[0.5cm] |
|
\texttt{Jeremías Garay Labra \\ \ j.e.garay.labra@rug.nl} |
|
} |
|
\date{\today} |
|
|
|
|
|
\begin{document} |
|
\frame{\titlepage} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin{frame} |
|
\frametitle{Index} |
|
\tableofcontents |
|
\end{frame} |
|
|
|
|
|
\section{4D flow MRI} |
|
\begin{frame} |
|
\frametitle{4D flow MRI} |
|
\begin{columns}[c] |
|
\column{.55\textwidth} % Left column and width |
|
\footnotesize |
|
|
|
4D flow MRI has been shown potential in the assesment of blood flow dynamics in heart and large arteries, allowing wide variety of options for visualization and quantification. |
|
|
|
\column{.5\textwidth} % Right column and width |
|
|
|
\end{columns} |
|
\end{frame} |
|
|
|
|
|
\begin{frame} |
|
\frametitle{4D flow MRI} |
|
\footnotesize |
|
|
|
Main limitation for its clinical applicability is the long scan times involved. Therefore, multiple strategies emerged in order to make acquisition faster> |
|
\begin{itemize} |
|
\item Navigator gating |
|
\item modest spatial resolutions $2.5 \times 2.5 \times 2.5 \ mm3$ |
|
\item partial data coverage |
|
\end{itemize} |
|
|
|
Typical quality estimators are> SNR, VNR, peak flows/velocities, mass conservation (zero divergence |
|
|
|
We want to introduce a novel measure for quantify the quality of the 4D flow measurements, using the conservation of momentum of the flow. |
|
|
|
\end{frame} |
|
|
|
|
|
\section{The corrector field} |
|
|
|
|
|
\begin{frame} |
|
\frametitle{The corrector field} |
|
\begin{columns}[c] |
|
\column{.6\textwidth} % Left column and width |
|
\footnotesize |
|
|
|
\onslide<1-> We assume a perfect velocity \begin{eqnarray*} |
|
\rho \frac{\partial \vec{u}}{\partial t} + \rho \big ( \vec{u} \cdot \nabla \big) \vec{u} - \mu \Delta \vec{u} + \nabla p = 0 \quad \text{in} \quad \Omega \label{eq:NSmom} |
|
\end{eqnarray*} |
|
|
|
\onslide<2-> And a corrector field which |
|
\begin{align} |
|
\vec{u} & \approx \vec{u}_{meas} + \vec{w} \quad \text{in} \quad \Omega \label{eq:corrector} \\ |
|
\nabla \cdot \vec w & = 0 \quad \text{in} \quad \Omega \label{eq:correctorDiv} \\ |
|
\vec w & = \vec 0 \quad \text{on} \quad \partial \Omega \label{eq:correctorBC} |
|
\end{align} |
|
\onslide<3-> asd |
|
|
|
\begin{itemize} |
|
\footnotesize |
|
\item[]<4-> $u = u_{in} \quad \text{in} \quad \Gamma_{inlet}$ |
|
\end{itemize} |
|
|
|
\column{.5\textwidth} % Right column and width |
|
\begin{figure}[!hbtp] |
|
\onslide<1-> |
|
\begin{center} |
|
\includegraphics[height=\textwidth]{images/aorta_blender.png} |
|
\caption{Aortic mesh } |
|
\end{center} |
|
\end{figure} |
|
\end{columns} |
|
\end{frame} |
|
|
|
|
|
|
|
|
|
\begin{frame} |
|
\frametitle{The corrector field} |
|
\footnotesize |
|
|
|
To study the corrector in several scenarios> synthetic data, experimental phantom and healthy volunteers. |
|
|
|
\end{frame} |
|
|
|
|
|
\begin{frame} |
|
\frametitle{The corrector field} |
|
\footnotesize |
|
|
|
different data treatments> aliasing and noise. Undersampling |
|
|
|
|
|
\end{frame} |
|
|
|
|
|
|
|
|
|
|
|
|
|
\section{Results} |
|
|
|
\begin{frame} |
|
\frametitle{Results} |
|
\footnotesize |
|
|
|
results for the synthetic data. Comparison againts a perfect correction case with du. |
|
|
|
\end{frame} |
|
|
|
\begin{frame} |
|
\frametitle{Results} |
|
\footnotesize |
|
|
|
results for experimental phantom |
|
|
|
\end{frame} |
|
|
|
|
|
\begin{frame} |
|
\frametitle{Results} |
|
\footnotesize |
|
|
|
results in healthy volunteers |
|
|
|
\end{frame} |
|
|
|
|
|
|
|
|
|
\section{Conclusions} |
|
|
|
|
|
\begin{frame} |
|
\frametitle{Results} |
|
\footnotesize |
|
|
|
potential of the new quality parameter> analize real data. use the specificity for label zones with strong disagreedment. Use the field for create new inverse problems which can be used for further accelerations |
|
|
|
\end{frame} |
|
|
|
|
|
|
|
|
|
|
|
\begin{frame} |
|
\begin{center} |
|
\huge{Thank you for your time!} |
|
\end{center} |
|
\end{frame} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
%\includegraphics<1>[height=4.5cm]{images/pat1.png} |
|
%\includegraphics<2>[height=4.5cm]{images/pat2.png} |
|
|
|
|
|
|
|
\end{document} |
|
|
|
|