merged encoder

This commit is contained in:
alexmadison 2022-03-04 14:27:38 +01:00
commit 4a4c4eeb14
15 changed files with 1255 additions and 33 deletions

View File

@ -524,6 +524,19 @@ namespace tmpl {
mk_excllo(_y1, _y2) mk_excllo(_y1, _y2)
} }
} }
defproc PULLDOWN_X4(bool? a; bool! y; bool? vdd, vss)
{
prs{
[keeper=0] a -> y-
}
}
defproc PULLUP_X4(bool? a; bool! y; bool? vdd, vss)
{
prs{
[keeper=0] ~a -> y+
}
}
}} }}

View File

@ -373,6 +373,49 @@ namespace tmpl {
} }
sizing { _en{-2}; y{-2,2} } sizing { _en{-2}; y{-2,2} }
} }
export defproc DFFQ_R_X1 (bool? clk, reset, S, d, vdd, vss; bool! q)
{
bool _clk, __clk, _q_B, _dl;
bool _Ro, _So;
bool _So2;
bool _qb;
prs {
_q_B<10> -> q-
~_q_B<20> -> q+
clk<10> -> _clk-
~clk<20> -> _clk+
_clk<10> -> __clk-
~_clk<20> -> __clk+
reset<20> -> _Ro-
~reset<20> -> _Ro+
// S<20> & _dl -> _So-
// ~S<20> | ~_dl -> _So+
[keeper=0] d<10> & _clk -> _dl-
~d<20> & ~__clk<10> -> _dl+
reset<20> & _qb -> _q_B-
~reset<20> | ~_qb -> _q_B+
// _q_B<20> & S -> _So2-
// ~_q_B<20> | ~S -> _So2+
// input stage feedback
transgate<10> (__clk,_clk,_Ro,_dl)
// input to output
transgate<10> (__clk,_clk,reset,_qb)
// output feedback
transgate<10> (_clk,__clk,reset,_qb)
}
sizing { q{-1} }
}
} }
} }

View File

@ -234,7 +234,6 @@ namespace tmpl {
} }
// Generates the OR-trees required to go from // Generates the OR-trees required to go from
// N one-hot inputs to Nc dual rail binary encoding. // N one-hot inputs to Nc dual rail binary encoding.
export template<pint Nc, N> export template<pint Nc, N>
@ -282,46 +281,137 @@ namespace tmpl {
) )
} }
template<pint N, pint M,pint address_size, pint ACK_STRENGTH>
defproc encoder2D(a1of1 x[N]; a1of1 y[M] ;avMx1of2<address_size> addr; power supply; bool reset_B) {
// Reset buffers
bool _reset_BX,_reset_BXX[H];
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
sigbuf<2*address_size+3> reset_bufarray(.in=_reset_BX, .out=_reset_BXX,.vdd=supply.vdd,.vss=supply.vss);
// template<pint N, pint M, ACK_STRENGTH> // Arbiters
// defproc encoder2D(a1of1 x[N]; a1of1 y[M] ;avMx1of2<X> addr; bool! out_a; power supply) a1of1 _out_arb_x,_out_arb_y;
// { a1of1 _x_temp[N];
// // Arbiters (i:N:
// a1of1 _out_arb_x,_out_arb_y; _x_temp[i].r = x[i].r;
// a1of1 _x_temp[N]; )
// (i:N: (i:M:
// _x_temp[i].r = x[i].r; _y_temp[i].r = y[i].r;
// ) )
// (i:M: arbtree<N> Xarb(.in = _x_temp,.out = _out_arb_X,.supply = supply);
// _y_temp[i].r = y[i].r; arbtree<M> Yarb(.in = _y_temp,.out = _out_arb_Y,.supply = supply);
// )
// arbtree<N> Xarb(.in = _x_temp,.out = _out_arb_X,.supply = supply);
// arbtree<M> Yarb(.in = _y_temp,.out = _out_arb_Y,.supply = supply);
// sigbuf<ACK_STRENGTH> x_ack_arb[N]; // Sigbufs for strong ackowledge signals
// sigbuf<ACK_STRENGTH> y_ack_arb[M]; sigbuf_1output<ACK_STRENGTH> x_ack_arb[N];
// (i:N: sigbuf_1output<ACK_STRENGTH> y_ack_arb[M];
// x_ack_arb[i].in = _x_temp[i].a; (i:N:
// x_ack_arb[i].out[0] = x[i].a; x_ack_arb[i].in = _x_temp[i].a;
// x_ack_arb[i].supply = supply; x_ack_arb[i].out[0] = x[i].a;
// ) x_ack_arb[i].supply = supply;
// (i:M: )
// y_ack_arb[i].in = _y_temp[i].a; (i:M:
// y_ack_arb[i].out[0] = y[i].a; y_ack_arb[i].in = _y_temp[i].a;
// y_ack_arb[i].supply = supply; y_ack_arb[i].out[0] = y[i].a;
// ) y_ack_arb[i].supply = supply;
)
// This block checks that the input is valid and that the arbiter made a choice
// Then activates the ack of the arbiter
bool _x_v,_in_x_v;
A_2C2P_RB_X1 Y_ack_confirm();
Y_ack_confirm.p1 = _x_v;
Y_ack_confirm.p2 =_in_x_v;
Y_ack_confirm.c1 = _out_arb_Y.r;
Y_ack_confirm.c2 = _x_a_B;
Y_ack_confirm.y = _out_arb_Y.a;
Y_ack_confirm.vdd = supply.vdd;
Y_ack_confirm.vss = supply.vss;
Y_ack_confirm.reset_B = _reset_BXX[0];
// This block checks that the input is valid and that the arbiter made a choice
// Then activates the ack of the arbiter
A_2C_RB X_ack_confirm();
X_ack_confirm.c1 = _out_arb_X.r;
X_ack_confirm.c2 = _x_a_B;
X_ack_confirm.vdd = supply.vdd;
X_ack_confirm.vss = supply.vss;
X_ack_confirm.reset_B = _reset_BXX[1];
//X_REQ validation
bool _x_req_array[N],_x_v,_x_v_B;
(i:N:_x_req_array[i] = x[i].r;)
ortree x_req_ortree(.in = _x_req_array,.out = _x_v,.supply = supply);
INV_X1 not_x_req_ortree(.in = _x_v,.out = _x_v_B);
//
A_2P3P1C2N_RB_X4 x_ack();
//branch1
x_ack.p1 = _in_x_v;
x_ack.p2 = _x_v_B;
//branch2
x_ack.p3 = _in_x_v;
x_ack.p4 = _in_y_v;
x_ack.p5 = _x_v;
//
x_ack.c1 = _en
x_ack.n1 = addr.v
x_ack.n2 = _in_x_v;
//
x_ack.y = _x_a;
//
x_ack.vdd = supply.vdd;
x_ack.vss = supply.vss;
x_ack.reset_B = _reset_BXX[2];
INV_X1 not_x_ack(.in = _x_a,.out = _x_a_B);
A_1C2P enabling(.p1 = addr.a, .p2 = addr.v, .c1 = _x_a, .y = _en, .vdd = supply.vdd, .vss = supply.vss)
avMx1of2<N> _in_x;
dualrail<N> _in;
_in_x.d = _in.d;
_in_x.v = _in_x_v;
//buffer_func_s
A_2C2N_RB buffer_func_s_f[address_size];
A_2C2N_RB buffer_func_s_t[address_size];
sigbuf<address_size> en_buf_t(.in=_en, .out=_en_X_t, .supply=supply);
sigbuf<address_size> en_buf_f(.in=_en, .out=_en_X_f, .supply=supply);
INV_X1 out_a_inv(.a=addr.a,.y=_out_a_B);
sigbuf<address_size> out_a_B_buf_f(.in=_out_a_B,.out=_out_a_BX_t, .supply=supply);
sigbuf<address_size> out_a_B_buf_t(.in=_out_a_B,.out=_out_a_BX_f, .supply=supply);
(i:address_size:
buffer_func_s_f[i].c1 = _en_X_f[i];
buffer_func_s_f[i].c2 = _out_a_BX_f[i];
buffer_func_s_f[i].n1 = _in_x.d.d[i].f;
buffer_func_s_f[i].n1 = _in_x.v;
buffer_func_s_f[i].vdd=supply.vdd;
buffer_func_s_f[i].vss=supply.vss;
buffer_func_s_f[i].pr_B = _reset_BXX[i+3];
buffer_func_s_f[i].sr_B = _reset_BXX[i+3];
buffer_func_s_f[i].y = addr.d.d[i].f;
buffer_func_s_t[i].c1 = _en_X_r[i];
buffer_func_s_t[i].c2 = _out_a_BX_t[i];
buffer_func_s_t[i].n1 = _in_x.d.d[i].r;
buffer_func_s_t[i].n1 = _in_x.v;
buffer_func_s_t[i].vdd=supply.vdd;
buffer_func_s_t[i].vss=supply.vss;
buffer_func_s_t[i].pr_B = _reset_BXX[i+3+address_size];
buffer_func_s_t[i].sr_B = _reset_BXX[i+3+address_size];
buffer_func_s_t[i].y = addr.d.d[i].t;
)
bool _addr_v
vtree addr_validity(.in = addr,.out = _addr_v);
sigbuf_1output<4> addr_validity_x(.in = _addr_v,.out = addr.v);
addr_validity.supply = supply;
addr_validity_x.supply = supply;
}
// }
} }

View File

@ -673,4 +673,27 @@ namespace tmpl {
(i:N:mu2[i].vss = supply.vss;) (i:N:mu2[i].vss = supply.vss;)
(i:((1<<N)-1):dly[i].vss = supply.vss;) (i:((1<<N)-1):dly[i].vss = supply.vss;)
} }
export
defproc line_end_pull_up (a1of1 in; bool? reset_B; power supply; bool! out)
{
bool _out, __out, nor_out;
BUF_X4 buf1(.a=in.a, .y=_out, .vdd=supply.vdd,.vss=supply.vss);
BUF_X4 buf2(.a=_out, .y=__out, .vdd=supply.vdd,.vss=supply.vss);
NOR2_X1 aenor(.a=_out, .b=reset_B, .y = nor_out, .vdd=supply.vdd,.vss=supply.vss);
PULLUP_X4 pull_up(.a=nor_out, .y=out);
}
defproc line_end_pull_down (a1of1 in; bool? reset_B; power supply; bool! out)
{
bool _out, __out, nor_out;
BUF_X4 buf1(.a=in.a, .y=_out, .vdd=supply.vdd,.vss=supply.vss);
BUF_X4 buf2(.a=_out, .y=__out, .vdd=supply.vdd,.vss=supply.vss);
NOR2_X1 aenor(.a=_out, .b=reset_B, .y = nor_out, .vdd=supply.vdd,.vss=supply.vss);
PULLUP_X4 pull_down(.a=nor_out, .y=out);
}
}} }}

View File

@ -0,0 +1,113 @@
/*************************************************************************
*
* This file is part of ACT dataflow neuro library
*
* Copyright (c) 2022 University of Groningen - Ole Richter
* Copyright (c) 2022 University of Groningen - Michele Mastella
* Copyright (c) 2022 University of Groningen - Hugh Greatorex
* Copyright (c) 2022 University of Groningen - Madison Cotteret
*
*
* This source describes Open Hardware and is licensed under the CERN-OHL-W v2 or later
*
* You may redistribute and modify this documentation and make products
* using it under the terms of the CERN-OHL-W v2 (https:/cern.ch/cern-ohl).
* This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY
* AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-W v2
* for applicable conditions.
*
* Source location: https://git.web.rug.nl/bics/actlib_dataflow_neuro
*
* As per CERN-OHL-W v2 section 4.1, should You produce hardware based on
* these sources, You must maintain the Source Location visible in its
* documentation.
*
**************************************************************************
*/
*
import "../../dataflow_neuro/cell_lib_async.act";
import "../../dataflow_neuro/cell_lib_std.act";
import "../../dataflow_neuro/treegates.act";
import "../../dataflow_neuro/primitives.act";
import "../../dataflow_neuro/coders.act";
// import tmpl::dataflow_neuro;
// import tmpl::dataflow_neuro;
import std::channel;
open std::channel;
namespace tmpl {
namespace dataflow_neuro {
// Circuit for storing, reading and writing registers using AER
// The block has the parameters:
// log_nw -> log2(number of words), parameters you can store
// wl -> word length, length of each word
// N_dly_cfg -> the number of config bits in the ACK delay line
// The block has the pins:
// in -> input data,
// - the first bit is write/read_B
// - the next log_nw bits describe the location,
// - the last wl the word to write
// data -> the data saved in the flip flop, sized wl x nw
export template<pint log_nw,wl,N_dly_cfg>
defproc register_rw (avMx1of2<1+log_nw+wl> in, d1of<wl> data[2<<log_nw] ){
bool _in_v_temp,_in_a_temp,_clock_temp,_clock;
//Validation of the input
vtree val_input(.in = in,.out = _in_v_temp, .supply = supply);
sigbuf_1output<4> val_input_X(.in = _in_v_temp,.out = in.v,.supply = supply);
in.v = _in_v_temp;
// Generation of the clock pulse
delayprog<N_dly_cfg> dly(.in = _in_v_temp, .s = _clock_temp, .supply = supply);
sigbuf_1output<4> val_input_X(.in = _clock_temp,.out = _clock,.supply = supply);
// Sending back to the ackowledge
delayprog<N_dly_cfg> dly(.in = _clock, .s = _in_a_temp, .supply = supply);
sigbuf_1output<4> val_input_X(.in = _in_a_temp,.out = in.a,.supply = supply);
//Reset Buffers
bool _reset_BX,_reset_BXX[_nw*w];
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
sigbuf<_nw*wl> reset_bufarray(.in=_reset_BX, .out=_reset_BXX,.vdd=supply.vdd,.vss=supply.vss);
// Creating the different flip flop arrays
bool _nw = 2<<log_nw;
bool _word_idx = 0;
bool _out_encoder[_nw],_clock_word_temp[_nw],_clock_word[_nw];
andtree<log_nw> atree[_nw];
AND2_X1 and_encoder[_nw]
sigbuf<wl> clock_buffer;
DFQ_R_X1 ff[_nw*wl];
(k:_nw:atree_x[k].supply = supply;)
(_word_idx:_nw:
// Decoding the bit pattern to understand which word we are looking at
(pin_idx:log_nw:
bitval = (_word_idx & ( 1 << pin_idx )) >> pin_idx; // Get binary digit of integer i, column j
[bitval = 1 ->
atree[_word_idx].in[pin_idx] = in.d.d[pin_idx+1].t;
[] bitval = 0 ->
atree[_word_idx].in[pin_idx] = in.d.d[pin_idx+1].f;
[]bitval >= 2 -> {false : "fuck"};
]
)
// Activating the fake clock for the right word
atree_x[_word_idx].out = _out_encoder[_word_idx];
and_encoder[_word_idx].a = _out_encoder[_word_idx];
and_encoder[_word_idx].b = _clock
and_encoder[_word_idx].y = _clock_word_temp[_word_idx];
and_encoder[_word_idx].vdd = supply.vdd;
and_encoder[_word_idx].vss = supply.vss;
clock_buffer[_word_idx].in = _clock_word_temp[_word_idx];
clock_buffer[_word_idx].out = _clock_word[_word_idx];
clock_buffer[_word_idx].vdd = supply.vdd;
clock_buffer[_word_idx].vss = supply.vss;
// Describing all the FF and their connection
(_bit_idx:wl:
ff[_bit_idx*(1+_word_idx)].clk = _clock_word[_word_idx];
ff[_bit_idx*(1+_word_idx)].d = in.d.d[_bit_idx+1+log_nw];
ff[_bit_idx*(1+_word_idx)].q = data[_word_idx].d[_bit_idx];
ff[_bit_idx*(1+_word_idx)].reset_B = reset_BXX[_bit_idx*(1+_word_idx)];
ff[_bit_idx*(1+_word_idx)].vdd = supply.vdd;
ff[_bit_idx*(1+_word_idx)].vss = supply.vss;
)
)
}
}}

View File

@ -439,6 +439,32 @@ defproc sigbuf (bool? in; bool! out[N]; power supply)
(i:1..N-1:out[i]=out[0];) (i:1..N-1:out[i]=out[0];)
} }
//Sigbuf in which there is only 1 output. Made for outputs that cannot have multiple wires.
export template<pint N>
defproc sigbuf_1output (bool? in; bool! out; power supply)
{
{ N >= 0 : "sigbuf: parameter error" };
{ N <= 43 : "sigbuf: parameter error, N too big" };
/* -- just use in sized driver here -- */
[ N <= 4 ->
BUF_X1 buf1 (.a = in, .y = out, .vdd = supply.vdd, .vss = supply.vss);
[] N >= 5 & N <= 7 ->
BUF_X2 buf2 (.a = in, .y = out, .vdd = supply.vdd, .vss = supply.vss);
[] N >= 8 & N <= 10 ->
BUF_X3 buf3 (.a = in, .y = out, .vdd = supply.vdd, .vss = supply.vss);
[] N >= 11 & N <= 14 ->
BUF_X4 buf4 (.a = in, .y = out, .vdd = supply.vdd, .vss = supply.vss);
[] N >= 15 & N <= 18 ->
BUF_X6 buf6 (.a = in, .y = out, .vdd = supply.vdd, .vss = supply.vss);
[] N >= 19 & N <= 29 ->
BUF_X8 buf8 (.a = in, .y = out, .vdd = supply.vdd, .vss = supply.vss);
[] N >= 30 & N <= 42 ->
BUF_X12 buf12 (.a = in, .y = out, .vdd = supply.vdd, .vss = supply.vss);
]
}
}} }}

685
test/unit_tests/buf_15.v Normal file
View File

@ -0,0 +1,685 @@
//
// Verilog module for: BUF_X6<>
//
module _0_0tmpl_0_0dataflow__neuro_0_0BUF__X6(y, a);
output y;
input a;
// -- signals ---
reg y;
wire a;
reg _y;
// --- instances
endmodule
//
// Verilog module for: sigbuf<15>
//
module _0_0tmpl_0_0dataflow__neuro_0_0sigbuf_315_4(in, \out[0] );
input in;
output \out[0] ;
// -- signals ---
wire in;
reg \out[0] ;
// --- instances
_0_0tmpl_0_0dataflow__neuro_0_0BUF__X6 \buf6 (.y(\out[0] ), .a(in));
endmodule
//
// Verilog module for: A_3C_RB_X4<>
//
module _0_0tmpl_0_0dataflow__neuro_0_0A__3C__RB__X4(y, c1, c2, c3, pr_B, sr_B);
output y;
input c1;
input c2;
input c3;
input pr_B;
input sr_B;
// -- signals ---
wire sr_B;
wire pr_B;
wire c3;
wire c1;
reg _y;
reg y;
wire c2;
// --- instances
endmodule
//
// Verilog module for: BUF_X4<>
//
module _0_0tmpl_0_0dataflow__neuro_0_0BUF__X4(y, a);
output y;
input a;
// -- signals ---
reg _y;
wire a;
reg y;
// --- instances
endmodule
//
// Verilog module for: INV_X1<>
//
module _0_0tmpl_0_0dataflow__neuro_0_0INV__X1(y, a);
output y;
input a;
// -- signals ---
reg y;
wire a;
// --- instances
endmodule
//
// Verilog module for: A_2C_B_X1<>
//
module _0_0tmpl_0_0dataflow__neuro_0_0A__2C__B__X1(y, c1, c2);
output y;
input c1;
input c2;
// -- signals ---
reg y;
reg _y;
wire c2;
wire c1;
// --- instances
endmodule
//
// Verilog module for: A_3C_B_X1<>
//
module _0_0tmpl_0_0dataflow__neuro_0_0A__3C__B__X1(y, c1, c2, c3);
output y;
input c1;
input c2;
input c3;
// -- signals ---
reg _y;
reg y;
wire c3;
wire c1;
wire c2;
// --- instances
endmodule
//
// Verilog module for: ctree<15>
//
module _0_0tmpl_0_0dataflow__neuro_0_0ctree_315_4(\in[0] , \in[1] , \in[2] , \in[3] , \in[4] , \in[5] , \in[6] , \in[7] , \in[8] , \in[9] , \in[10] , \in[11] , \in[12] , \in[13] , \in[14] , out);
input \in[0] ;
input \in[1] ;
input \in[2] ;
input \in[3] ;
input \in[4] ;
input \in[5] ;
input \in[6] ;
input \in[7] ;
input \in[8] ;
input \in[9] ;
input \in[10] ;
input \in[11] ;
input \in[12] ;
input \in[13] ;
input \in[14] ;
output out;
// -- signals ---
wire \in[4] ;
wire \in[11] ;
wire \in[12] ;
reg \tmp[21] ;
wire \in[3] ;
reg out;
reg \tmp[23] ;
wire \in[6] ;
wire \in[0] ;
reg \tmp[18] ;
wire \in[10] ;
reg \tmp[15] ;
reg \tmp[16] ;
wire \in[13] ;
wire \in[1] ;
wire \in[9] ;
wire \in[2] ;
wire \in[5] ;
reg \tmp[24] ;
wire \in[14] ;
reg \tmp[19] ;
wire \in[7] ;
reg \tmp[22] ;
reg \tmp[20] ;
wire \in[8] ;
reg \tmp[17] ;
// --- instances
_0_0tmpl_0_0dataflow__neuro_0_0A__2C__B__X1 \C2Els[0] (.y(\tmp[15] ), .c1(\in[0] ), .c2(\in[1] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C__B__X1 \C2Els[1] (.y(\tmp[16] ), .c1(\in[2] ), .c2(\in[3] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C__B__X1 \C2Els[2] (.y(\tmp[17] ), .c1(\in[4] ), .c2(\in[5] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C__B__X1 \C2Els[3] (.y(\tmp[18] ), .c1(\in[6] ), .c2(\in[7] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C__B__X1 \C2Els[4] (.y(\tmp[19] ), .c1(\in[8] ), .c2(\in[9] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C__B__X1 \C2Els[5] (.y(\tmp[20] ), .c1(\in[10] ), .c2(\in[11] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C__B__X1 \C2Els[6] (.y(\tmp[22] ), .c1(\tmp[15] ), .c2(\tmp[16] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C__B__X1 \C2Els[7] (.y(\tmp[23] ), .c1(\tmp[17] ), .c2(\tmp[18] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__3C__B__X1 \C3Els[0] (.y(\tmp[21] ), .c1(\in[12] ), .c2(\in[13] ), .c3(\in[14] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__3C__B__X1 \C3Els[1] (.y(\tmp[24] ), .c1(\tmp[19] ), .c2(\tmp[20] ), .c3(\tmp[21] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__3C__B__X1 \C3Els[2] (.y(out), .c1(\tmp[22] ), .c2(\tmp[23] ), .c3(\tmp[24] ));
endmodule
//
// Verilog module for: OR2_X1<>
//
module _0_0tmpl_0_0dataflow__neuro_0_0OR2__X1(y, a, b);
output y;
input a;
input b;
// -- signals ---
reg y;
wire a;
reg _y;
wire b;
// --- instances
endmodule
//
// Verilog module for: vtree<15>
//
module _0_0tmpl_0_0dataflow__neuro_0_0vtree_315_4(\in.d[0].d[0] , \in.d[0].d[1] , \in.d[1].d[0] , \in.d[1].d[1] , \in.d[2].d[0] , \in.d[2].d[1] , \in.d[3].d[0] , \in.d[3].d[1] , \in.d[4].d[0] , \in.d[4].d[1] , \in.d[5].d[0] , \in.d[5].d[1] , \in.d[6].d[0] , \in.d[6].d[1] , \in.d[7].d[0] , \in.d[7].d[1] , \in.d[8].d[0] , \in.d[8].d[1] , \in.d[9].d[0] , \in.d[9].d[1] , \in.d[10].d[0] , \in.d[10].d[1] , \in.d[11].d[0] , \in.d[11].d[1] , \in.d[12].d[0] , \in.d[12].d[1] , \in.d[13].d[0] , \in.d[13].d[1] , \in.d[14].d[0] , \in.d[14].d[1] , out);
input \in.d[0].d[0] ;
input \in.d[0].d[1] ;
input \in.d[1].d[0] ;
input \in.d[1].d[1] ;
input \in.d[2].d[0] ;
input \in.d[2].d[1] ;
input \in.d[3].d[0] ;
input \in.d[3].d[1] ;
input \in.d[4].d[0] ;
input \in.d[4].d[1] ;
input \in.d[5].d[0] ;
input \in.d[5].d[1] ;
input \in.d[6].d[0] ;
input \in.d[6].d[1] ;
input \in.d[7].d[0] ;
input \in.d[7].d[1] ;
input \in.d[8].d[0] ;
input \in.d[8].d[1] ;
input \in.d[9].d[0] ;
input \in.d[9].d[1] ;
input \in.d[10].d[0] ;
input \in.d[10].d[1] ;
input \in.d[11].d[0] ;
input \in.d[11].d[1] ;
input \in.d[12].d[0] ;
input \in.d[12].d[1] ;
input \in.d[13].d[0] ;
input \in.d[13].d[1] ;
input \in.d[14].d[0] ;
input \in.d[14].d[1] ;
output out;
// -- signals ---
reg \ct.in[14] ;
reg \ct.in[13] ;
wire \in.d[7].d[0] ;
wire \in.d[1].d[0] ;
wire \in.d[0].d[0] ;
reg \ct.in[4] ;
reg out;
wire \in.d[10].d[0] ;
wire \in.d[4].d[1] ;
reg \ct.in[3] ;
wire \in.d[9].d[1] ;
wire \in.d[1].d[1] ;
wire \in.d[2].d[0] ;
wire \in.d[10].d[1] ;
reg \ct.in[8] ;
wire \in.d[12].d[0] ;
wire \in.d[5].d[0] ;
wire \in.d[4].d[0] ;
reg \ct.in[10] ;
reg \ct.in[0] ;
wire \in.d[11].d[0] ;
wire \in.d[7].d[1] ;
wire \in.d[3].d[1] ;
reg \ct.in[11] ;
reg \ct.in[2] ;
reg \ct.in[9] ;
wire \in.d[13].d[0] ;
wire \in.d[14].d[1] ;
wire \in.d[11].d[1] ;
wire \in.d[13].d[1] ;
wire \in.d[0].d[1] ;
reg \ct.in[1] ;
wire \in.d[14].d[0] ;
wire \in.d[12].d[1] ;
wire \in.d[9].d[0] ;
wire \in.d[2].d[1] ;
reg \ct.in[5] ;
wire \in.d[5].d[1] ;
reg \ct.in[12] ;
reg \ct.in[6] ;
wire \in.d[3].d[0] ;
wire \in.d[8].d[0] ;
wire \in.d[8].d[1] ;
reg \ct.in[7] ;
wire \in.d[6].d[0] ;
wire \in.d[6].d[1] ;
// --- instances
_0_0tmpl_0_0dataflow__neuro_0_0ctree_315_4 \ct (.\in[0] (\ct.in[0] ), .\in[1] (\ct.in[1] ), .\in[2] (\ct.in[2] ), .\in[3] (\ct.in[3] ), .\in[4] (\ct.in[4] ), .\in[5] (\ct.in[5] ), .\in[6] (\ct.in[6] ), .\in[7] (\ct.in[7] ), .\in[8] (\ct.in[8] ), .\in[9] (\ct.in[9] ), .\in[10] (\ct.in[10] ), .\in[11] (\ct.in[11] ), .\in[12] (\ct.in[12] ), .\in[13] (\ct.in[13] ), .\in[14] (\ct.in[14] ), .out(out));
_0_0tmpl_0_0dataflow__neuro_0_0OR2__X1 \OR2_tf[0] (.y(\ct.in[0] ), .a(\in.d[0].d[1] ), .b(\in.d[0].d[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0OR2__X1 \OR2_tf[1] (.y(\ct.in[1] ), .a(\in.d[1].d[1] ), .b(\in.d[1].d[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0OR2__X1 \OR2_tf[2] (.y(\ct.in[2] ), .a(\in.d[2].d[1] ), .b(\in.d[2].d[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0OR2__X1 \OR2_tf[3] (.y(\ct.in[3] ), .a(\in.d[3].d[1] ), .b(\in.d[3].d[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0OR2__X1 \OR2_tf[4] (.y(\ct.in[4] ), .a(\in.d[4].d[1] ), .b(\in.d[4].d[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0OR2__X1 \OR2_tf[5] (.y(\ct.in[5] ), .a(\in.d[5].d[1] ), .b(\in.d[5].d[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0OR2__X1 \OR2_tf[6] (.y(\ct.in[6] ), .a(\in.d[6].d[1] ), .b(\in.d[6].d[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0OR2__X1 \OR2_tf[7] (.y(\ct.in[7] ), .a(\in.d[7].d[1] ), .b(\in.d[7].d[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0OR2__X1 \OR2_tf[8] (.y(\ct.in[8] ), .a(\in.d[8].d[1] ), .b(\in.d[8].d[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0OR2__X1 \OR2_tf[9] (.y(\ct.in[9] ), .a(\in.d[9].d[1] ), .b(\in.d[9].d[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0OR2__X1 \OR2_tf[10] (.y(\ct.in[10] ), .a(\in.d[10].d[1] ), .b(\in.d[10].d[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0OR2__X1 \OR2_tf[11] (.y(\ct.in[11] ), .a(\in.d[11].d[1] ), .b(\in.d[11].d[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0OR2__X1 \OR2_tf[12] (.y(\ct.in[12] ), .a(\in.d[12].d[1] ), .b(\in.d[12].d[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0OR2__X1 \OR2_tf[13] (.y(\ct.in[13] ), .a(\in.d[13].d[1] ), .b(\in.d[13].d[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0OR2__X1 \OR2_tf[14] (.y(\ct.in[14] ), .a(\in.d[14].d[1] ), .b(\in.d[14].d[0] ));
endmodule
//
// Verilog module for: A_1C1P_X1<>
//
module _0_0tmpl_0_0dataflow__neuro_0_0A__1C1P__X1(y, c1, p1);
output y;
input c1;
input p1;
// -- signals ---
reg y;
wire c1;
wire p1;
// --- instances
endmodule
//
// Verilog module for: BUF_X1<>
//
module _0_0tmpl_0_0dataflow__neuro_0_0BUF__X1(y, a);
output y;
input a;
// -- signals ---
reg y;
wire a;
reg _y;
// --- instances
endmodule
//
// Verilog module for: A_2C1N_RB_X4<>
//
module _0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4(y, c1, c2, n1, pr_B, sr_B);
output y;
input c1;
input c2;
input n1;
input pr_B;
input sr_B;
// -- signals ---
reg y;
wire pr_B;
wire c2;
wire n1;
wire c1;
reg _y;
wire sr_B;
// --- instances
endmodule
//
// Verilog module for: buffer<15>
//
module _0_0tmpl_0_0dataflow__neuro_0_0buffer_315_4(\in.d.d[0].d[0] , \in.d.d[0].d[1] , \in.d.d[1].d[0] , \in.d.d[1].d[1] , \in.d.d[2].d[0] , \in.d.d[2].d[1] , \in.d.d[3].d[0] , \in.d.d[3].d[1] , \in.d.d[4].d[0] , \in.d.d[4].d[1] , \in.d.d[5].d[0] , \in.d.d[5].d[1] , \in.d.d[6].d[0] , \in.d.d[6].d[1] , \in.d.d[7].d[0] , \in.d.d[7].d[1] , \in.d.d[8].d[0] , \in.d.d[8].d[1] , \in.d.d[9].d[0] , \in.d.d[9].d[1] , \in.d.d[10].d[0] , \in.d.d[10].d[1] , \in.d.d[11].d[0] , \in.d.d[11].d[1] , \in.d.d[12].d[0] , \in.d.d[12].d[1] , \in.d.d[13].d[0] , \in.d.d[13].d[1] , \in.d.d[14].d[0] , \in.d.d[14].d[1] , \in.a , \in.v , \out.d.d[0].d[0] , \out.d.d[0].d[1] , \out.d.d[1].d[0] , \out.d.d[1].d[1] , \out.d.d[2].d[0] , \out.d.d[2].d[1] , \out.d.d[3].d[0] , \out.d.d[3].d[1] , \out.d.d[4].d[0] , \out.d.d[4].d[1] , \out.d.d[5].d[0] , \out.d.d[5].d[1] , \out.d.d[6].d[0] , \out.d.d[6].d[1] , \out.d.d[7].d[0] , \out.d.d[7].d[1] , \out.d.d[8].d[0] , \out.d.d[8].d[1] , \out.d.d[9].d[0] , \out.d.d[9].d[1] , \out.d.d[10].d[0] , \out.d.d[10].d[1] , \out.d.d[11].d[0] , \out.d.d[11].d[1] , \out.d.d[12].d[0] , \out.d.d[12].d[1] , \out.d.d[13].d[0] , \out.d.d[13].d[1] , \out.d.d[14].d[0] , \out.d.d[14].d[1] , \out.a , \out.v , reset_B);
input \in.d.d[0].d[0] ;
input \in.d.d[0].d[1] ;
input \in.d.d[1].d[0] ;
input \in.d.d[1].d[1] ;
input \in.d.d[2].d[0] ;
input \in.d.d[2].d[1] ;
input \in.d.d[3].d[0] ;
input \in.d.d[3].d[1] ;
input \in.d.d[4].d[0] ;
input \in.d.d[4].d[1] ;
input \in.d.d[5].d[0] ;
input \in.d.d[5].d[1] ;
input \in.d.d[6].d[0] ;
input \in.d.d[6].d[1] ;
input \in.d.d[7].d[0] ;
input \in.d.d[7].d[1] ;
input \in.d.d[8].d[0] ;
input \in.d.d[8].d[1] ;
input \in.d.d[9].d[0] ;
input \in.d.d[9].d[1] ;
input \in.d.d[10].d[0] ;
input \in.d.d[10].d[1] ;
input \in.d.d[11].d[0] ;
input \in.d.d[11].d[1] ;
input \in.d.d[12].d[0] ;
input \in.d.d[12].d[1] ;
input \in.d.d[13].d[0] ;
input \in.d.d[13].d[1] ;
input \in.d.d[14].d[0] ;
input \in.d.d[14].d[1] ;
output \in.a ;
output \in.v ;
output \out.d.d[0].d[0] ;
output \out.d.d[0].d[1] ;
output \out.d.d[1].d[0] ;
output \out.d.d[1].d[1] ;
output \out.d.d[2].d[0] ;
output \out.d.d[2].d[1] ;
output \out.d.d[3].d[0] ;
output \out.d.d[3].d[1] ;
output \out.d.d[4].d[0] ;
output \out.d.d[4].d[1] ;
output \out.d.d[5].d[0] ;
output \out.d.d[5].d[1] ;
output \out.d.d[6].d[0] ;
output \out.d.d[6].d[1] ;
output \out.d.d[7].d[0] ;
output \out.d.d[7].d[1] ;
output \out.d.d[8].d[0] ;
output \out.d.d[8].d[1] ;
output \out.d.d[9].d[0] ;
output \out.d.d[9].d[1] ;
output \out.d.d[10].d[0] ;
output \out.d.d[10].d[1] ;
output \out.d.d[11].d[0] ;
output \out.d.d[11].d[1] ;
output \out.d.d[12].d[0] ;
output \out.d.d[12].d[1] ;
output \out.d.d[13].d[0] ;
output \out.d.d[13].d[1] ;
output \out.d.d[14].d[0] ;
output \out.d.d[14].d[1] ;
input \out.a ;
input \out.v ;
input reset_B;
// -- signals ---
reg \out.d.d[8].d[0] ;
reg \out.d.d[6].d[1] ;
reg \out.d.d[5].d[1] ;
reg \_en_X_f[0] ;
wire \in.d.d[14].d[0] ;
wire \in.d.d[12].d[1] ;
reg \out.d.d[12].d[1] ;
wire \in.d.d[5].d[0] ;
reg \out.d.d[11].d[0] ;
reg \out.d.d[7].d[0] ;
reg _reset_BX;
reg \_reset_BXX[0] ;
wire \in.d.d[14].d[1] ;
wire \in.d.d[10].d[1] ;
wire \in.d.d[2].d[0] ;
wire \out.a ;
reg \out.d.d[0].d[0] ;
wire \in.d.d[0].d[0] ;
reg \out.d.d[10].d[1] ;
wire \in.d.d[11].d[0] ;
wire \in.d.d[7].d[1] ;
wire \in.d.d[3].d[1] ;
reg _in_v;
reg \in.v ;
reg _out_a_B;
wire \in.d.d[9].d[1] ;
wire \in.d.d[9].d[0] ;
wire \in.d.d[4].d[1] ;
reg \out.d.d[10].d[0] ;
wire \in.d.d[1].d[1] ;
wire \in.d.d[12].d[0] ;
wire \in.d.d[1].d[0] ;
reg \_out_a_BX_f[0] ;
reg \out.d.d[3].d[1] ;
reg \out.d.d[0].d[1] ;
reg \out.d.d[2].d[1] ;
reg \out.d.d[4].d[1] ;
wire reset_B;
wire \in.d.d[8].d[0] ;
reg \out.d.d[12].d[0] ;
wire \in.d.d[5].d[1] ;
reg \out.d.d[9].d[0] ;
reg \out.d.d[7].d[1] ;
reg \_out_a_BX_t[0] ;
wire \in.d.d[10].d[0] ;
reg \out.d.d[1].d[0] ;
wire \in.d.d[6].d[0] ;
wire \in.d.d[7].d[0] ;
wire \in.d.d[13].d[1] ;
wire \out.v ;
reg \out.d.d[2].d[0] ;
wire \in.d.d[13].d[0] ;
wire \in.d.d[11].d[1] ;
wire \in.d.d[6].d[1] ;
reg \out.d.d[3].d[0] ;
reg \out.d.d[11].d[1] ;
reg \out.d.d[9].d[1] ;
wire \in.d.d[3].d[0] ;
reg _en;
reg \out.d.d[13].d[0] ;
reg \out.d.d[5].d[0] ;
reg \in.a ;
reg \out.d.d[14].d[0] ;
reg \out.d.d[4].d[0] ;
wire \in.d.d[8].d[1] ;
reg \out.d.d[13].d[1] ;
reg \out.d.d[8].d[1] ;
reg \out.d.d[14].d[1] ;
wire \in.d.d[2].d[1] ;
reg \out.d.d[6].d[0] ;
wire \in.d.d[4].d[0] ;
reg \out.d.d[1].d[1] ;
reg \_en_X_t[0] ;
wire \in.d.d[0].d[1] ;
// --- instances
_0_0tmpl_0_0dataflow__neuro_0_0sigbuf_315_4 \out_a_B_buf_t (.in(_out_a_B), .\out[0] (\_out_a_BX_f[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__3C__RB__X4 \inack_ctl (.y(\in.a ), .c1(_en), .c2(\in.v ), .c3(\out.v ), .pr_B(_reset_BX), .sr_B(_reset_BX));
_0_0tmpl_0_0dataflow__neuro_0_0sigbuf_315_4 \reset_bufarray (.in(_reset_BX), .\out[0] (\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0BUF__X4 \in_v_buf (.y(\in.v ), .a(_in_v));
_0_0tmpl_0_0dataflow__neuro_0_0INV__X1 \out_a_inv (.y(_out_a_B), .a(\out.a ));
_0_0tmpl_0_0dataflow__neuro_0_0vtree_315_4 \vc (.\in.d[0].d[0] (\in.d.d[0].d[0] ), .\in.d[0].d[1] (\in.d.d[0].d[1] ), .\in.d[1].d[0] (\in.d.d[1].d[0] ), .\in.d[1].d[1] (\in.d.d[1].d[1] ), .\in.d[2].d[0] (\in.d.d[2].d[0] ), .\in.d[2].d[1] (\in.d.d[2].d[1] ), .\in.d[3].d[0] (\in.d.d[3].d[0] ), .\in.d[3].d[1] (\in.d.d[3].d[1] ), .\in.d[4].d[0] (\in.d.d[4].d[0] ), .\in.d[4].d[1] (\in.d.d[4].d[1] ), .\in.d[5].d[0] (\in.d.d[5].d[0] ), .\in.d[5].d[1] (\in.d.d[5].d[1] ), .\in.d[6].d[0] (\in.d.d[6].d[0] ), .\in.d[6].d[1] (\in.d.d[6].d[1] ), .\in.d[7].d[0] (\in.d.d[7].d[0] ), .\in.d[7].d[1] (\in.d.d[7].d[1] ), .\in.d[8].d[0] (\in.d.d[8].d[0] ), .\in.d[8].d[1] (\in.d.d[8].d[1] ), .\in.d[9].d[0] (\in.d.d[9].d[0] ), .\in.d[9].d[1] (\in.d.d[9].d[1] ), .\in.d[10].d[0] (\in.d.d[10].d[0] ), .\in.d[10].d[1] (\in.d.d[10].d[1] ), .\in.d[11].d[0] (\in.d.d[11].d[0] ), .\in.d[11].d[1] (\in.d.d[11].d[1] ), .\in.d[12].d[0] (\in.d.d[12].d[0] ), .\in.d[12].d[1] (\in.d.d[12].d[1] ), .\in.d[13].d[0] (\in.d.d[13].d[0] ), .\in.d[13].d[1] (\in.d.d[13].d[1] ), .\in.d[14].d[0] (\in.d.d[14].d[0] ), .\in.d[14].d[1] (\in.d.d[14].d[1] ), .out(_in_v));
_0_0tmpl_0_0dataflow__neuro_0_0sigbuf_315_4 \out_a_B_buf_f (.in(_out_a_B), .\out[0] (\_out_a_BX_t[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__1C1P__X1 \en_ctl (.y(_en), .c1(\in.a ), .p1(\out.v ));
_0_0tmpl_0_0dataflow__neuro_0_0BUF__X1 \reset_buf (.y(_reset_BX), .a(reset_B));
_0_0tmpl_0_0dataflow__neuro_0_0sigbuf_315_4 \en_buf_f (.in(_en), .\out[0] (\_en_X_f[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0sigbuf_315_4 \en_buf_t (.in(_en), .\out[0] (\_en_X_t[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \t_buf_func[0] (.y(\out.d.d[0].d[1] ), .c1(\_en_X_t[0] ), .c2(\_out_a_BX_t[0] ), .n1(\in.d.d[0].d[1] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \t_buf_func[1] (.y(\out.d.d[1].d[1] ), .c1(\_en_X_t[0] ), .c2(\_out_a_BX_t[0] ), .n1(\in.d.d[1].d[1] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \t_buf_func[2] (.y(\out.d.d[2].d[1] ), .c1(\_en_X_t[0] ), .c2(\_out_a_BX_t[0] ), .n1(\in.d.d[2].d[1] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \t_buf_func[3] (.y(\out.d.d[3].d[1] ), .c1(\_en_X_t[0] ), .c2(\_out_a_BX_t[0] ), .n1(\in.d.d[3].d[1] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \t_buf_func[4] (.y(\out.d.d[4].d[1] ), .c1(\_en_X_t[0] ), .c2(\_out_a_BX_t[0] ), .n1(\in.d.d[4].d[1] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \t_buf_func[5] (.y(\out.d.d[5].d[1] ), .c1(\_en_X_t[0] ), .c2(\_out_a_BX_t[0] ), .n1(\in.d.d[5].d[1] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \t_buf_func[6] (.y(\out.d.d[6].d[1] ), .c1(\_en_X_t[0] ), .c2(\_out_a_BX_t[0] ), .n1(\in.d.d[6].d[1] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \t_buf_func[7] (.y(\out.d.d[7].d[1] ), .c1(\_en_X_t[0] ), .c2(\_out_a_BX_t[0] ), .n1(\in.d.d[7].d[1] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \t_buf_func[8] (.y(\out.d.d[8].d[1] ), .c1(\_en_X_t[0] ), .c2(\_out_a_BX_t[0] ), .n1(\in.d.d[8].d[1] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \t_buf_func[9] (.y(\out.d.d[9].d[1] ), .c1(\_en_X_t[0] ), .c2(\_out_a_BX_t[0] ), .n1(\in.d.d[9].d[1] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \t_buf_func[10] (.y(\out.d.d[10].d[1] ), .c1(\_en_X_t[0] ), .c2(\_out_a_BX_t[0] ), .n1(\in.d.d[10].d[1] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \t_buf_func[11] (.y(\out.d.d[11].d[1] ), .c1(\_en_X_t[0] ), .c2(\_out_a_BX_t[0] ), .n1(\in.d.d[11].d[1] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \t_buf_func[12] (.y(\out.d.d[12].d[1] ), .c1(\_en_X_t[0] ), .c2(\_out_a_BX_t[0] ), .n1(\in.d.d[12].d[1] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \t_buf_func[13] (.y(\out.d.d[13].d[1] ), .c1(\_en_X_t[0] ), .c2(\_out_a_BX_t[0] ), .n1(\in.d.d[13].d[1] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \t_buf_func[14] (.y(\out.d.d[14].d[1] ), .c1(\_en_X_t[0] ), .c2(\_out_a_BX_t[0] ), .n1(\in.d.d[14].d[1] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \f_buf_func[0] (.y(\out.d.d[0].d[0] ), .c1(\_en_X_f[0] ), .c2(\_out_a_BX_f[0] ), .n1(\in.d.d[0].d[0] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \f_buf_func[1] (.y(\out.d.d[1].d[0] ), .c1(\_en_X_f[0] ), .c2(\_out_a_BX_f[0] ), .n1(\in.d.d[1].d[0] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \f_buf_func[2] (.y(\out.d.d[2].d[0] ), .c1(\_en_X_f[0] ), .c2(\_out_a_BX_f[0] ), .n1(\in.d.d[2].d[0] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \f_buf_func[3] (.y(\out.d.d[3].d[0] ), .c1(\_en_X_f[0] ), .c2(\_out_a_BX_f[0] ), .n1(\in.d.d[3].d[0] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \f_buf_func[4] (.y(\out.d.d[4].d[0] ), .c1(\_en_X_f[0] ), .c2(\_out_a_BX_f[0] ), .n1(\in.d.d[4].d[0] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \f_buf_func[5] (.y(\out.d.d[5].d[0] ), .c1(\_en_X_f[0] ), .c2(\_out_a_BX_f[0] ), .n1(\in.d.d[5].d[0] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \f_buf_func[6] (.y(\out.d.d[6].d[0] ), .c1(\_en_X_f[0] ), .c2(\_out_a_BX_f[0] ), .n1(\in.d.d[6].d[0] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \f_buf_func[7] (.y(\out.d.d[7].d[0] ), .c1(\_en_X_f[0] ), .c2(\_out_a_BX_f[0] ), .n1(\in.d.d[7].d[0] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \f_buf_func[8] (.y(\out.d.d[8].d[0] ), .c1(\_en_X_f[0] ), .c2(\_out_a_BX_f[0] ), .n1(\in.d.d[8].d[0] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \f_buf_func[9] (.y(\out.d.d[9].d[0] ), .c1(\_en_X_f[0] ), .c2(\_out_a_BX_f[0] ), .n1(\in.d.d[9].d[0] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \f_buf_func[10] (.y(\out.d.d[10].d[0] ), .c1(\_en_X_f[0] ), .c2(\_out_a_BX_f[0] ), .n1(\in.d.d[10].d[0] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \f_buf_func[11] (.y(\out.d.d[11].d[0] ), .c1(\_en_X_f[0] ), .c2(\_out_a_BX_f[0] ), .n1(\in.d.d[11].d[0] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \f_buf_func[12] (.y(\out.d.d[12].d[0] ), .c1(\_en_X_f[0] ), .c2(\_out_a_BX_f[0] ), .n1(\in.d.d[12].d[0] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \f_buf_func[13] (.y(\out.d.d[13].d[0] ), .c1(\_en_X_f[0] ), .c2(\_out_a_BX_f[0] ), .n1(\in.d.d[13].d[0] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
_0_0tmpl_0_0dataflow__neuro_0_0A__2C1N__RB__X4 \f_buf_func[14] (.y(\out.d.d[14].d[0] ), .c1(\_en_X_f[0] ), .c2(\_out_a_BX_f[0] ), .n1(\in.d.d[14].d[0] ), .pr_B(\_reset_BXX[0] ), .sr_B(\_reset_BXX[0] ));
endmodule
//
// Verilog module for: buffer_15<>
//
module buffer__15(\in.d.d[0].d[0] , \in.d.d[0].d[1] , \in.d.d[1].d[0] , \in.d.d[1].d[1] , \in.d.d[2].d[0] , \in.d.d[2].d[1] , \in.d.d[3].d[0] , \in.d.d[3].d[1] , \in.d.d[4].d[0] , \in.d.d[4].d[1] , \in.d.d[5].d[0] , \in.d.d[5].d[1] , \in.d.d[6].d[0] , \in.d.d[6].d[1] , \in.d.d[7].d[0] , \in.d.d[7].d[1] , \in.d.d[8].d[0] , \in.d.d[8].d[1] , \in.d.d[9].d[0] , \in.d.d[9].d[1] , \in.d.d[10].d[0] , \in.d.d[10].d[1] , \in.d.d[11].d[0] , \in.d.d[11].d[1] , \in.d.d[12].d[0] , \in.d.d[12].d[1] , \in.d.d[13].d[0] , \in.d.d[13].d[1] , \in.d.d[14].d[0] , \in.d.d[14].d[1] , \in.a , \in.v , \out.d.d[0].d[0] , \out.d.d[0].d[1] , \out.d.d[1].d[0] , \out.d.d[1].d[1] , \out.d.d[2].d[0] , \out.d.d[2].d[1] , \out.d.d[3].d[0] , \out.d.d[3].d[1] , \out.d.d[4].d[0] , \out.d.d[4].d[1] , \out.d.d[5].d[0] , \out.d.d[5].d[1] , \out.d.d[6].d[0] , \out.d.d[6].d[1] , \out.d.d[7].d[0] , \out.d.d[7].d[1] , \out.d.d[8].d[0] , \out.d.d[8].d[1] , \out.d.d[9].d[0] , \out.d.d[9].d[1] , \out.d.d[10].d[0] , \out.d.d[10].d[1] , \out.d.d[11].d[0] , \out.d.d[11].d[1] , \out.d.d[12].d[0] , \out.d.d[12].d[1] , \out.d.d[13].d[0] , \out.d.d[13].d[1] , \out.d.d[14].d[0] , \out.d.d[14].d[1] , \out.a , \out.v );
input \in.d.d[0].d[0] ;
input \in.d.d[0].d[1] ;
input \in.d.d[1].d[0] ;
input \in.d.d[1].d[1] ;
input \in.d.d[2].d[0] ;
input \in.d.d[2].d[1] ;
input \in.d.d[3].d[0] ;
input \in.d.d[3].d[1] ;
input \in.d.d[4].d[0] ;
input \in.d.d[4].d[1] ;
input \in.d.d[5].d[0] ;
input \in.d.d[5].d[1] ;
input \in.d.d[6].d[0] ;
input \in.d.d[6].d[1] ;
input \in.d.d[7].d[0] ;
input \in.d.d[7].d[1] ;
input \in.d.d[8].d[0] ;
input \in.d.d[8].d[1] ;
input \in.d.d[9].d[0] ;
input \in.d.d[9].d[1] ;
input \in.d.d[10].d[0] ;
input \in.d.d[10].d[1] ;
input \in.d.d[11].d[0] ;
input \in.d.d[11].d[1] ;
input \in.d.d[12].d[0] ;
input \in.d.d[12].d[1] ;
input \in.d.d[13].d[0] ;
input \in.d.d[13].d[1] ;
input \in.d.d[14].d[0] ;
input \in.d.d[14].d[1] ;
output \in.a ;
output \in.v ;
output \out.d.d[0].d[0] ;
output \out.d.d[0].d[1] ;
output \out.d.d[1].d[0] ;
output \out.d.d[1].d[1] ;
output \out.d.d[2].d[0] ;
output \out.d.d[2].d[1] ;
output \out.d.d[3].d[0] ;
output \out.d.d[3].d[1] ;
output \out.d.d[4].d[0] ;
output \out.d.d[4].d[1] ;
output \out.d.d[5].d[0] ;
output \out.d.d[5].d[1] ;
output \out.d.d[6].d[0] ;
output \out.d.d[6].d[1] ;
output \out.d.d[7].d[0] ;
output \out.d.d[7].d[1] ;
output \out.d.d[8].d[0] ;
output \out.d.d[8].d[1] ;
output \out.d.d[9].d[0] ;
output \out.d.d[9].d[1] ;
output \out.d.d[10].d[0] ;
output \out.d.d[10].d[1] ;
output \out.d.d[11].d[0] ;
output \out.d.d[11].d[1] ;
output \out.d.d[12].d[0] ;
output \out.d.d[12].d[1] ;
output \out.d.d[13].d[0] ;
output \out.d.d[13].d[1] ;
output \out.d.d[14].d[0] ;
output \out.d.d[14].d[1] ;
input \out.a ;
input \out.v ;
// -- signals ---
reg \out.d.d[2].d[1] ;
wire \in.d.d[10].d[0] ;
reg \out.d.d[1].d[0] ;
wire \in.d.d[10].d[1] ;
wire \in.d.d[4].d[0] ;
reg \out.d.d[10].d[1] ;
wire \in.d.d[13].d[0] ;
reg \out.d.d[13].d[0] ;
reg \out.d.d[9].d[1] ;
wire \in.d.d[2].d[1] ;
reg \out.d.d[2].d[0] ;
reg \out.d.d[0].d[0] ;
reg \out.d.d[14].d[0] ;
reg \out.d.d[5].d[0] ;
reg \in.a ;
reg _reset_B;
wire \out.v ;
wire \out.a ;
reg \out.d.d[4].d[0] ;
wire \in.d.d[9].d[1] ;
wire \in.d.d[3].d[0] ;
wire \in.d.d[11].d[0] ;
wire \in.d.d[2].d[0] ;
reg \out.d.d[6].d[0] ;
reg \out.d.d[13].d[1] ;
reg \out.d.d[10].d[0] ;
reg \out.d.d[7].d[1] ;
wire \in.d.d[12].d[1] ;
wire \in.d.d[6].d[1] ;
reg \out.d.d[7].d[0] ;
reg \out.d.d[3].d[0] ;
wire \in.d.d[1].d[0] ;
reg \out.d.d[14].d[1] ;
reg \out.d.d[8].d[0] ;
wire \in.d.d[13].d[1] ;
wire \in.d.d[7].d[0] ;
reg \out.d.d[12].d[0] ;
wire \in.d.d[8].d[1] ;
reg \out.d.d[4].d[1] ;
wire \in.d.d[14].d[0] ;
wire \in.d.d[5].d[1] ;
wire \in.d.d[1].d[1] ;
wire \in.d.d[9].d[0] ;
wire \in.d.d[14].d[1] ;
reg \out.d.d[11].d[0] ;
reg \out.d.d[6].d[1] ;
wire \in.d.d[12].d[0] ;
wire \in.d.d[7].d[1] ;
reg \out.d.d[0].d[1] ;
wire \in.d.d[11].d[1] ;
wire \in.d.d[8].d[0] ;
wire \in.d.d[5].d[0] ;
reg \out.d.d[1].d[1] ;
reg \in.v ;
wire \in.d.d[0].d[1] ;
wire \in.d.d[0].d[0] ;
reg \out.d.d[5].d[1] ;
reg \out.d.d[8].d[1] ;
reg \out.d.d[3].d[1] ;
wire \in.d.d[6].d[0] ;
reg \out.d.d[11].d[1] ;
wire \in.d.d[3].d[1] ;
reg \out.d.d[12].d[1] ;
wire \in.d.d[4].d[1] ;
reg \out.d.d[9].d[0] ;
// --- instances
_0_0tmpl_0_0dataflow__neuro_0_0buffer_315_4 \buffer_test (.\in.d.d[0].d[0] (\in.d.d[0].d[0] ), .\in.d.d[0].d[1] (\in.d.d[0].d[1] ), .\in.d.d[1].d[0] (\in.d.d[1].d[0] ), .\in.d.d[1].d[1] (\in.d.d[1].d[1] ), .\in.d.d[2].d[0] (\in.d.d[2].d[0] ), .\in.d.d[2].d[1] (\in.d.d[2].d[1] ), .\in.d.d[3].d[0] (\in.d.d[3].d[0] ), .\in.d.d[3].d[1] (\in.d.d[3].d[1] ), .\in.d.d[4].d[0] (\in.d.d[4].d[0] ), .\in.d.d[4].d[1] (\in.d.d[4].d[1] ), .\in.d.d[5].d[0] (\in.d.d[5].d[0] ), .\in.d.d[5].d[1] (\in.d.d[5].d[1] ), .\in.d.d[6].d[0] (\in.d.d[6].d[0] ), .\in.d.d[6].d[1] (\in.d.d[6].d[1] ), .\in.d.d[7].d[0] (\in.d.d[7].d[0] ), .\in.d.d[7].d[1] (\in.d.d[7].d[1] ), .\in.d.d[8].d[0] (\in.d.d[8].d[0] ), .\in.d.d[8].d[1] (\in.d.d[8].d[1] ), .\in.d.d[9].d[0] (\in.d.d[9].d[0] ), .\in.d.d[9].d[1] (\in.d.d[9].d[1] ), .\in.d.d[10].d[0] (\in.d.d[10].d[0] ), .\in.d.d[10].d[1] (\in.d.d[10].d[1] ), .\in.d.d[11].d[0] (\in.d.d[11].d[0] ), .\in.d.d[11].d[1] (\in.d.d[11].d[1] ), .\in.d.d[12].d[0] (\in.d.d[12].d[0] ), .\in.d.d[12].d[1] (\in.d.d[12].d[1] ), .\in.d.d[13].d[0] (\in.d.d[13].d[0] ), .\in.d.d[13].d[1] (\in.d.d[13].d[1] ), .\in.d.d[14].d[0] (\in.d.d[14].d[0] ), .\in.d.d[14].d[1] (\in.d.d[14].d[1] ), .\in.a (\in.a ), .\in.v (\in.v ), .\out.d.d[0].d[0] (\out.d.d[0].d[0] ), .\out.d.d[0].d[1] (\out.d.d[0].d[1] ), .\out.d.d[1].d[0] (\out.d.d[1].d[0] ), .\out.d.d[1].d[1] (\out.d.d[1].d[1] ), .\out.d.d[2].d[0] (\out.d.d[2].d[0] ), .\out.d.d[2].d[1] (\out.d.d[2].d[1] ), .\out.d.d[3].d[0] (\out.d.d[3].d[0] ), .\out.d.d[3].d[1] (\out.d.d[3].d[1] ), .\out.d.d[4].d[0] (\out.d.d[4].d[0] ), .\out.d.d[4].d[1] (\out.d.d[4].d[1] ), .\out.d.d[5].d[0] (\out.d.d[5].d[0] ), .\out.d.d[5].d[1] (\out.d.d[5].d[1] ), .\out.d.d[6].d[0] (\out.d.d[6].d[0] ), .\out.d.d[6].d[1] (\out.d.d[6].d[1] ), .\out.d.d[7].d[0] (\out.d.d[7].d[0] ), .\out.d.d[7].d[1] (\out.d.d[7].d[1] ), .\out.d.d[8].d[0] (\out.d.d[8].d[0] ), .\out.d.d[8].d[1] (\out.d.d[8].d[1] ), .\out.d.d[9].d[0] (\out.d.d[9].d[0] ), .\out.d.d[9].d[1] (\out.d.d[9].d[1] ), .\out.d.d[10].d[0] (\out.d.d[10].d[0] ), .\out.d.d[10].d[1] (\out.d.d[10].d[1] ), .\out.d.d[11].d[0] (\out.d.d[11].d[0] ), .\out.d.d[11].d[1] (\out.d.d[11].d[1] ), .\out.d.d[12].d[0] (\out.d.d[12].d[0] ), .\out.d.d[12].d[1] (\out.d.d[12].d[1] ), .\out.d.d[13].d[0] (\out.d.d[13].d[0] ), .\out.d.d[13].d[1] (\out.d.d[13].d[1] ), .\out.d.d[14].d[0] (\out.d.d[14].d[0] ), .\out.d.d[14].d[1] (\out.d.d[14].d[1] ), .\out.a (\out.a ), .\out.v (\out.v ), .reset_B(_reset_B));
endmodule

View File

@ -0,0 +1,9 @@
t.clk t.d t.q t.ff._qb t.ff._q_B t.ff.__clk t.ff._dl t.ff._clk
[0] start test
[1] reset completed
WRONG ASSERT: "t.q" has value 1 and not 0.
[2] setting d to 1
WRONG ASSERT: "t.q" has value 1 and not 0.
[3] setting clk to 1
[4] Finished

View File

@ -0,0 +1,29 @@
= "GND" "GND"
= "Vdd" "Vdd"
= "Reset" "Reset"
"Reset"->"t._reset_B"-
~("Reset")->"t._reset_B"+
"t.ff._q_B"->"t.ff.q"-
~"t.ff._q_B"->"t.ff.q"+
"t.ff.clk"->"t.ff._clk"-
~"t.ff.clk"->"t.ff._clk"+
"t.ff._clk"->"t.ff.__clk"-
~"t.ff._clk"->"t.ff.__clk"+
"t.ff.reset"->"t.ff._Ro"-
~"t.ff.reset"->"t.ff._Ro"+
"t.ff.d"&"t.ff._clk"->"t.ff._dl"-
~"t.ff.d"&~"t.ff.__clk"->"t.ff._dl"+
"t.ff.reset"&"t.ff._qb"->"t.ff._q_B"-
~"t.ff.reset"|~"t.ff._qb"->"t.ff._q_B"+
after 0 "t.ff.__clk" & ~"t.ff._Ro" -> "t.ff._dl"-
~"t.ff._clk" & "t.ff._Ro" -> "t.ff._dl"+
after 0 "t.ff.__clk" & ~"t.ff.reset" -> "t.ff._qb"-
~"t.ff._clk" & "t.ff.reset" -> "t.ff._qb"+
after 0 "t.ff._clk" & ~"t.ff.reset" -> "t.ff._qb"-
~"t.ff.__clk" & "t.ff.reset" -> "t.ff._qb"+
= "Reset" "t.ff.reset"
= "Vdd" "t.ff.vdd"
= "GND" "t.ff.vss"
= "t.q" "t.ff.q"
= "t.clk" "t.ff.clk"
= "t.d" "t.ff.d"

View File

@ -0,0 +1,48 @@
/*************************************************************************
*
* This file is part of ACT dataflow neuro library.
* It's the testing facility for cell_lib_std.act
*
* Copyright (c) 2022 University of Groningen - Ole Richter
* Copyright (c) 2022 University of Groningen - Hugh Greatorex
* Copyright (c) 2022 University of Groningen - Michele Mastella
* Copyright (c) 2022 University of Groningen - Madison Cotteret
*
* This source describes Open Hardware and is licensed under the CERN-OHL-W v2 or later
*
* You may redistribute and modify this documentation and make products
* using it under the terms of the CERN-OHL-W v2 (https:/cern.ch/cern-ohl).
* This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY
* AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-W v2
* for applicable conditions.
*
* Source location: https://git.web.rug.nl/bics/actlib_dataflow_neuro
*
* As per CERN-OHL-W v2 section 4.1, should You produce hardware based on
* these sources, You must maintain the Source Location visible in its
* documentation.
*
**************************************************************************
*/
import "../../dataflow_neuro/primitives.act";
import globals;
open tmpl::dataflow_neuro;
defproc flipflop_test (bool! q; bool? d,clk){
DFFQ_R_X1 ff(.d=d,.clk = clk, .q = q);
//Low active Reset
bool _reset_B;
prs {
Reset => _reset_B-
}
ff.vss = GND;
ff.vdd = Vdd;
ff.reset = Reset;
}
flipflop_test t;

View File

@ -0,0 +1,21 @@
set t.d 0
set t.clk 0
set Reset 0
cycle
assert t.q 0
system "echo '[0] start test'"
set Reset 1
cycle
status X
mode run
system "echo '[1] reset completed'"
system "echo '[2] setting d to 1'"
set t.clk 1
cycle
assert t.q 0
system "echo '[3] setting clk to 1'"
set t.clk 1
cycle
assert t.q 1
system "echo '[4] Finished'"

View File

@ -0,0 +1,17 @@
t.in.a t.lepu.nor_out t.lepu.__out t.lepu.buf1._y t.lepu._out t.out t.lepu.buf2._y
1 t.in.a : 0
7093 t.lepu.buf1._y : 1 [by t.in.a:=0]
17560 t.lepu._out : 0 [by t.lepu.buf1._y:=1]
17562 t.lepu.nor_out : 1 [by t.lepu._out:=0]
22313 t.lepu.buf2._y : 1 [by t.lepu._out:=0]
23450 t.lepu.__out : 0 [by t.lepu.buf2._y:=1]
yo man
23450 Reset : 0
23564 t._reset_B : 1 [by Reset:=0]
88930 t.lepu.nor_out : 0 [by t._reset_B:=1]
90656 t.out : 1 [by t.lepu.nor_out:=0]
90656 t.in.a : 1
90695 t.lepu.buf1._y : 0 [by t.in.a:=1]
90710 t.lepu._out : 1 [by t.lepu.buf1._y:=0]
91201 t.lepu.buf2._y : 0 [by t.lepu._out:=1]
91214 t.lepu.__out : 1 [by t.lepu.buf2._y:=0]

View File

@ -0,0 +1,42 @@
= "GND" "GND"
= "Vdd" "Vdd"
= "Reset" "Reset"
"Reset"->"t._reset_B"-
~("Reset")->"t._reset_B"+
= "t._reset_B" "t.lepu.reset_B"
~"t.lepu.pull_up.a"->"t.lepu.pull_up.y"+
"t.lepu.aenor.a"|"t.lepu.aenor.b"->"t.lepu.aenor.y"-
~("t.lepu.aenor.a"|"t.lepu.aenor.b")->"t.lepu.aenor.y"+
= "t.lepu._out" "t.lepu.aenor.a"
= "t.lepu._out" "t.lepu.buf2.a"
= "t.lepu._out" "t.lepu.buf1.y"
= "t.lepu.nor_out" "t.lepu.pull_up.a"
= "t.lepu.nor_out" "t.lepu.aenor.y"
"t.lepu.buf1.a"->"t.lepu.buf1._y"-
~("t.lepu.buf1.a")->"t.lepu.buf1._y"+
"t.lepu.buf1._y"->"t.lepu.buf1.y"-
~("t.lepu.buf1._y")->"t.lepu.buf1.y"+
= "t.lepu.reset_B" "t.lepu.aenor.b"
= "t.lepu.supply.vdd" "t.lepu.aenor.vdd"
= "t.lepu.supply.vdd" "t.lepu.buf2.vdd"
= "t.lepu.supply.vdd" "t.lepu.buf1.vdd"
= "t.lepu.supply.vss" "t.lepu.aenor.vss"
= "t.lepu.supply.vss" "t.lepu.buf2.vss"
= "t.lepu.supply.vss" "t.lepu.buf1.vss"
= "t.lepu.__out" "t.lepu.buf2.y"
"t.lepu.buf2.a"->"t.lepu.buf2._y"-
~("t.lepu.buf2.a")->"t.lepu.buf2._y"+
"t.lepu.buf2._y"->"t.lepu.buf2.y"-
~("t.lepu.buf2._y")->"t.lepu.buf2.y"+
= "t.lepu.in.d.d[0]" "t.lepu.in.r"
= "t.lepu.in.a" "t.lepu.buf1.a"
= "t.lepu.in.d.d[0]" "t.lepu.in.r"
= "t.lepu.out" "t.lepu.pull_up.y"
= "Vdd" "t.lepu.supply.vdd"
= "GND" "t.lepu.supply.vss"
= "t.out" "t.lepu.out"
= "t.in.d.d[0]" "t.in.r"
= "t.in.r" "t.lepu.in.r"
= "t.in.a" "t.lepu.in.a"
= "t.in.d.d[0]" "t.lepu.in.d.d[0]"
= "t.in.d.d[0]" "t.in.r"

View File

@ -0,0 +1,48 @@
/*************************************************************************
*
* This file is part of ACT dataflow neuro library.
* It's the testing facility for cell_lib_std.act
*
* Copyright (c) 2022 University of Groningen - Ole Richter
* Copyright (c) 2022 University of Groningen - Hugh Greatorex
* Copyright (c) 2022 University of Groningen - Michele Mastella
* Copyright (c) 2022 University of Groningen - Madison Cotteret
*
* This source describes Open Hardware and is licensed under the CERN-OHL-W v2 or later
*
* You may redistribute and modify this documentation and make products
* using it under the terms of the CERN-OHL-W v2 (https:/cern.ch/cern-ohl).
* This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY
* AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-W v2
* for applicable conditions.
*
* Source location: https://git.web.rug.nl/bics/actlib_dataflow_neuro
*
* As per CERN-OHL-W v2 section 4.1, should You produce hardware based on
* these sources, You must maintain the Source Location visible in its
* documentation.
*
**************************************************************************
*/
import "../../dataflow_neuro/primitives.act";
import globals;
open tmpl::dataflow_neuro;
defproc lepu (a1of1 in; bool! out){
line_end_pull_up lepu(.in=in, .out=out);
//Low active Reset
bool _reset_B;
prs {
Reset => _reset_B-
}
lepu.supply.vss = GND;
lepu.supply.vdd = Vdd;
lepu.reset_B = _reset_B;
}
lepu t;

View File

@ -0,0 +1,15 @@
watchall
set t.in.a 0
cycle
system "echo 'yo man'"
set Reset 0
cycle
set t.in.a 1
cycle
assert t.out 1