continued handshaking tree, not finished
This commit is contained in:
parent
9e144e1c17
commit
97732b2f72
|
@ -509,103 +509,118 @@ namespace tmpl {
|
|||
|
||||
// A tree composed by arbiters. The first layer takes N signals
|
||||
export template<pint N>
|
||||
defproc arbiter_tree(a1of1 in[N],a1of1 out; power supply)
|
||||
defproc arbiter_tree(a1of1 in[N]; a1of1 out; power supply)
|
||||
{
|
||||
|
||||
bool tout;
|
||||
bool tout;
|
||||
|
||||
{ N > 0 : "What?" };
|
||||
{ N > 0 : "Invalid N, should be greater than 0" };
|
||||
|
||||
/* We calculate here how many elements we need to create the full tree */
|
||||
pint i, end, j;
|
||||
i = 0;
|
||||
end = N-1;
|
||||
|
||||
pint lenTree2Count, lenTree3Count;
|
||||
pint odd_one_idx = 0;
|
||||
pbool odd_one_flag = 0;
|
||||
lenTree2Count = 0;
|
||||
*[ i != end ->
|
||||
j = 0;
|
||||
*[ i < end ->
|
||||
j = j + 1;
|
||||
[ i+1 >= end ->
|
||||
i = end;
|
||||
lenTree2Count = lenTree2Count +1;
|
||||
|
||||
[] i >= end ->
|
||||
i = end;
|
||||
odd_one_idx = i;
|
||||
odd_one_flag = 1;
|
||||
[] else ->
|
||||
i = i + 2;
|
||||
lenTree2Count = lenTree2Count +1;
|
||||
]
|
||||
]
|
||||
/*-- update range that has to be combined --*/
|
||||
i = end+1;
|
||||
end = end+j+odd_one_flag;
|
||||
]
|
||||
/* array that holds ALL the wires in the completion tree */
|
||||
a1of1 wire[end+1];
|
||||
// Connecting the first nodes to the input
|
||||
(l:N:
|
||||
wire[l] = in[l];
|
||||
)
|
||||
[lenTree2Count > 0 ->
|
||||
arbiter_handshake arb_array[lenTree2Count];
|
||||
]
|
||||
(h:lenTree2Count:arb_array[h].vdd = supply.vdd;)
|
||||
(h:lenTree2Count:arb_array[h].vss = supply.vss;)
|
||||
|
||||
/* Reset the variables before the assigmnent of the nodes to the cells */
|
||||
i = 0;
|
||||
/* We calculate here how many arbiters we need to create for the full tree */
|
||||
pint inputs_in_layer, end, elements_in_layer;
|
||||
pint odd_element_idx = 0;
|
||||
pint odd_element_flag = 0;
|
||||
inputs_in_layer = 0;
|
||||
end = N-1;
|
||||
j = 0;
|
||||
pint tree2Index = 0;
|
||||
pint tree3Index = 0;
|
||||
*[ i != end ->
|
||||
/*
|
||||
* Invariant: tmp[i..end] has the current signals that need to be
|
||||
* combined together, and "isinv" specifies if they are the inverted
|
||||
* sense or not
|
||||
*/
|
||||
j = 0;
|
||||
*[ i < end ->
|
||||
/*-- there are still signals that need to be combined --*/
|
||||
j = j + 1;
|
||||
[ i+1 >= end ->
|
||||
/*-- last piece: use either a 2 input C-element --*/
|
||||
C2Els[tree2Index].a = wire[i];
|
||||
C2Els[tree2Index].b = wire[i+1];
|
||||
C2Els[tree2Index].y = wire[end+j];
|
||||
tree2Index = tree2Index +1;
|
||||
i = end;
|
||||
[] i+2 >= end ->
|
||||
/*-- last piece: use either a 3 input C-element --*/
|
||||
C3Els[tree3Index].a = tmp[i];
|
||||
C3Els[tree3Index].b = tmp[i+1];
|
||||
C3Els[tree3Index].c = tmp[i+2];
|
||||
C3Els[tree3Index].y = tmp[end+j];
|
||||
|
||||
tree3Index = tree3Index +1;
|
||||
i = end;
|
||||
pint element_counter = 0;
|
||||
// Here we start a for loop to count the elements in the tree
|
||||
// The loop iterates for every successive layer
|
||||
// i is the variable used to iterate the inputs,
|
||||
// j counts the elements in the layer
|
||||
*[ inputs_in_layer != end ->
|
||||
elements_in_layer = 0; // At every layer the counter of the elements is resetted
|
||||
*[ inputs_in_layer < end ->
|
||||
[ inputs_in_layer + 1 >= end ->
|
||||
//In this case, the number of input is even: the layer finishes
|
||||
inputs_in_layer = end;
|
||||
odd_element_flag = 0;
|
||||
[] inputs_in_layer + 2 >= end ->
|
||||
//In this case, we arrived at the last input, this means the inputs are odd
|
||||
//We need to save the odd input index and move it to the next layer,
|
||||
//up to when the resulting number is even
|
||||
odd_element_idx = end;
|
||||
odd_element_flag = 1;
|
||||
inputs_in_layer = end;
|
||||
[] else ->
|
||||
/*-- more to come; so use a two input C-element --*/
|
||||
C2Els[tree2Index].a = tmp[i];
|
||||
C2Els[tree2Index].b = tmp[i+1];
|
||||
C2Els[tree2Index].y = tmp[end+j];
|
||||
tree2Index = tree2Index +1;
|
||||
i = i + 2;
|
||||
//If we are not close to the end, analyzes the next two inputs
|
||||
inputs_in_layer = inputs_in_layer +2;
|
||||
]
|
||||
]
|
||||
/*-- update range that has to be combined --*/
|
||||
i = end+1;
|
||||
end = end+j;
|
||||
j = 0;
|
||||
]
|
||||
|
||||
out = tmp[end];
|
||||
elements_in_layer = elements_in_layer + 1; //At every step the elements count is updated
|
||||
|
||||
]
|
||||
//Move the inputs_in_layer to the next layer
|
||||
//Increase the end to account for the next layer elements
|
||||
//If there was an odd element, count it also in the end
|
||||
inputs_in_layer = end + 1;
|
||||
end = end + elements_in_layer + odd_element_flag;
|
||||
element_counter = element_counter + elements_in_layer;
|
||||
]
|
||||
|
||||
{ element_counter = 4 : "Michele you did wrong" };
|
||||
|
||||
// Creating the elements of the tree
|
||||
arbiter_handshake arb_array[element_counter];
|
||||
(i:element_counter:arb_array[i].supply = supply;)
|
||||
// These are the wires that connect one element of the tree to the others
|
||||
a1of1 channels[element_counter*2];
|
||||
|
||||
//Connecting the first channels to the inputs
|
||||
(i:N:channels[i] = in[i];)
|
||||
channels[element_counter*2-1] = out;
|
||||
//Now we redo the for loop but here to assign the channels to the elements
|
||||
odd_element_idx = 0;
|
||||
odd_element_flag = 0;
|
||||
inputs_in_layer = 0;
|
||||
end = N-1;
|
||||
{ end=4 : "Michele you did wrong" };
|
||||
// Here we start a for loop to count the elements in the tree
|
||||
// The loop iterates for every successive layer
|
||||
// i is the variable used to iterate the inputs,
|
||||
// j counts the elements in the layer
|
||||
*[ inputs_in_layer != end ->
|
||||
elements_in_layer = 0; // At every layer the counter of the elements is resetted
|
||||
*[ inputs_in_layer < end ->
|
||||
[ inputs_in_layer + 1 >= end ->
|
||||
//In this case, the number of input is even: the layer finishes
|
||||
[ odd_element_flag >= 1 ->
|
||||
arb_array[elements_in_layer].in1 = channels[inputs_in_layer];
|
||||
arb_array[elements_in_layer].in2 = channels[odd_element_idx];
|
||||
[] else ->
|
||||
arb_array[elements_in_layer].in1 = channels[inputs_in_layer];
|
||||
arb_array[elements_in_layer].in2 = channels[inputs_in_layer+1];
|
||||
]
|
||||
inputs_in_layer = end;
|
||||
odd_element_flag = 0;
|
||||
[] inputs_in_layer + 2 >= end ->
|
||||
//In this case, we arrived at the last input, this means the inputs are odd
|
||||
//We need to save the odd input index and move it to the next layer,
|
||||
//up to when the resulting number is even
|
||||
odd_element_idx = end;
|
||||
odd_element_flag = 1;
|
||||
{ end<8 : "Michele you did wrong" };
|
||||
{ odd_element_idx=4 : "Michele you did wrong" };
|
||||
arb_array[elements_in_layer].in1 = channels[inputs_in_layer];
|
||||
arb_array[elements_in_layer].in2 = channels[inputs_in_layer+1];
|
||||
inputs_in_layer = end;
|
||||
[] else ->
|
||||
//If we are not close to the end, analyzes the next two inputs
|
||||
arb_array[elements_in_layer].in1 = channels[inputs_in_layer];
|
||||
arb_array[elements_in_layer].in2 = channels[inputs_in_layer+1];
|
||||
inputs_in_layer = inputs_in_layer +2;
|
||||
|
||||
]
|
||||
elements_in_layer = elements_in_layer + 1; //At every step the elements count is updated
|
||||
|
||||
]
|
||||
//Move the inputs_in_layer to the next layer
|
||||
//Increase the end to account for the next layer elements
|
||||
//If there was an odd element, count it also in the end
|
||||
inputs_in_layer = end + 1;
|
||||
end = end + elements_in_layer + odd_element_flag;
|
||||
element_counter = element_counter + elements_in_layer;
|
||||
]
|
||||
|
||||
|
||||
|
||||
}
|
||||
export template<pint N>
|
||||
|
@ -715,7 +730,7 @@ namespace tmpl {
|
|||
// reset buffers
|
||||
bool _reset_BX;
|
||||
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
||||
sigbuf<N> reset_bufarray(.in=_reset_BX, .out=_reset_BXX; power supply);
|
||||
sigbuf<N> reset_bufarray(.in=_reset_BX, .out=_reset_BXX, .supply = supply);
|
||||
}
|
||||
|
||||
// Programmable delay line.
|
||||
|
|
Loading…
Reference in New Issue