actlib_dataflow_neuro/dataflow_neuro/coders.act

780 lines
24 KiB
Plaintext

/*************************************************************************
*
* This file is part of ACT dataflow neuro library
*
* Copyright (c) 2022 University of Groningen - Ole Richter
* Copyright (c) 2022 University of Groningen - Michele Mastella
* Copyright (c) 2022 University of Groningen - Hugh Greatorex
* Copyright (c) 2022 University of Groningen - Madison Cotteret
*
*
* This source describes Open Hardware and is licensed under the CERN-OHL-W v2 or later
*
* You may redistribute and modify this documentation and make products
* using it under the terms of the CERN-OHL-W v2 (https:/cern.ch/cern-ohl).
* This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY
* AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-W v2
* for applicable conditions.
*
* Source location: https://git.web.rug.nl/bics/actlib_dataflow_neuro
*
* As per CERN-OHL-W v2 section 4.1, should You produce hardware based on
* these sources, You must maintain the Source Location visible in its
* documentation.
*
**************************************************************************
*/
import "../../dataflow_neuro/cell_lib_async.act";
import "../../dataflow_neuro/cell_lib_std.act";
import "../../dataflow_neuro/treegates.act";
import "../../dataflow_neuro/primitives.act";
// import tmpl::dataflow_neuro;
// import tmpl::dataflow_neuro;
import std::channel;
open std::channel;
// import std::func;
open std;
import std::data;
open std::data;
// import dev::channel;
// open dev::channel;
namespace tmpl {
namespace dataflow_neuro {
/**
* Dualrail decoder.
* Nc is the number of dualrail input channels.
* Then builds N output AND gates, connecting to the right input wires.
*/
export template<pint Nc, N>
defproc decoder_dualrail (Mx1of2<Nc> in; bool? out[N]; power supply) {
// signal buffers
sigbuf<N> in_tX[Nc];
sigbuf<N> in_fX[Nc];
(i:Nc:
in_tX[i].supply = supply;
in_tX[i].in = in.d[i].t;
in_fX[i].supply = supply;
in_fX[i].in = in.d[i].f;
)
// AND trees
pint bitval;
andtree<Nc> atree[N];
(k:0..N-1:atree[k].supply = supply;)
(i:0..N-1:
(j:0..Nc-1:
bitval = (i & ( 1 << j )) >> j; // Get binary digit of integer i, column j
[bitval = 1 ->
atree[i].in[j] = in_tX[j].out[i];
// atree[i].in[j] = addr_buf.out.d.d[j].t;
[]bitval = 0 ->
atree[i].in[j] = in_fX[j].out[i];
// atree[i].in[j] = addr_buf.out.d.d[j].f;
[]bitval >= 2 -> {false : "fuck"};
]
atree[i].out = out[i];
)
)
}
/**
* 2D decoder which uses a configurable delay from the VCtrees to buffer ack.
* Nx is the x size of the decoder array
* NxC is the number of wires in the x channel.
* Thus NxC should be something like NxC = ceil(log2(Nx))
* but my guess is that we can't do logs...
* N_dly_cfg is the number of config bits in the ACK delay line,
* with all bits high corresponding to 2**N_dly_cfg -1 DLY4_X1 cells.
*/
export template<pint NxC, NyC, Nx, Ny, N_dly_cfg>
defproc decoder_2d_dly (avMx1of2<NxC+NyC> in; bool? outx[Nx], outy[Ny],
dly_cfg[N_dly_cfg], reset_B; power supply) {
// Buffer to recieve concat(x,y) address packet
buffer<NxC+NyC> addr_buf(.in = in, .reset_B = reset_B, .supply = supply);
// Validity trees
vtree<NxC> vtree_x (.supply = supply);
vtree<NyC> vtree_y (.supply = supply);
(i:0..NxC-1:vtree_x.in.d[i].t = addr_buf.out.d.d[i].t;)
(i:0..NxC-1:vtree_x.in.d[i].f = addr_buf.out.d.d[i].f;)
(i:0..NyC-1:vtree_y.in.d[i].t = addr_buf.out.d.d[i+NxC].t;)
(i:0..NyC-1:vtree_y.in.d[i].f = addr_buf.out.d.d[i+NxC].f;)
// Delay ack line. Ack line is delayed (but not the val)
A_2C_B_X1 C2el(.c1 = vtree_x.out, .c2 = vtree_y.out, .vdd = supply.vdd, .vss = supply.vss);
addr_buf.out.v = C2el.y;
// delayprog<N_dly_cfg> dly(.in = tielow.y, .s = dly_cfg, .supply = supply);
delayprog<N_dly_cfg> dly(.in = C2el.y, .s = dly_cfg, .supply = supply);
// ACK MAY HAVE BEEN DISCONNECTED HERE
// FOR TESTING PURPOSES
// !!!!!!!!!!!!!!!!
dly.out = addr_buf.out.a;
// ACK MAY HAVE BEEN DISCONNECTED HERE
// FOR TESTING PURPOSES
// !!!!!!!!!!!!!!!!
// Decoder X/Y And trees
decoder_dualrail<NxC,Nx> d_dr_x(.out = outx, .supply = supply);
(i:0..NxC-1:d_dr_x.in.d[i] = addr_buf.out.d.d[i];)
decoder_dualrail<NyC,Ny> d_dr_y(.out = outy, .supply = supply);
(i:0..NyC-1:d_dr_y.in.d[i] = addr_buf.out.d.d[i+NxC];)
}
export template<pint Nx, Ny>
defproc and_grid(bool! out[Nx*Ny]; bool? inx[Nx], iny[Ny]; power supply) {
AND2_X1 ands[Nx*Ny];
(i:0..Nx*Ny-1:ands[i].vss = supply.vss; ands[i].vdd = supply.vdd;)
(x:0..Nx-1:
(y:0..Ny-1:
ands[x + y*Nx].a = inx[x];
ands[x + y*Nx].b = iny[y];
ands[x + y*Nx].y = out[x + y*Nx];
)
)
}
/**
* 2D decoder which uses synapse handshaking using line pulldowns.
* Nx is the x size of the decoder array
* NxC is the number of wires in the x channel.
* but my guess is that we can't do logs...
* the req on a1of1 out is the req to each synapse.
* The ack back from each line should go high when the synapse is charged.
* N_dly is a hard coded delay of the pull down circuit.
* It can be set to 0.
*/
export template<pint NxC, NyC, Nx, Ny, N_dly>
defproc decoder_2d_hs (avMx1of2<NxC+NyC> in; a1of1 out[Nx*Ny]; bool? reset_B; power supply) {
// Buffer to recieve concat(x,y) address packet
buffer<NxC+NyC> addr_buf(.in = in, .reset_B = reset_B, .supply = supply);
// Decoder X/Y And trees
decoder_dualrail<NxC,Nx> d_dr_x(.supply = supply);
(i:0..NxC-1:d_dr_x.in.d[i] = addr_buf.out.d.d[i];)
decoder_dualrail<NyC,Ny> d_dr_y(.supply = supply);
(i:0..NyC-1:d_dr_y.in.d[i] = addr_buf.out.d.d[i+NxC];)
// Validity
vtree<NxC> vtree_x (.supply = supply);
vtree<NyC> vtree_y (.supply = supply);
(i:0..NxC-1:vtree_x.in.d[i].t = addr_buf.out.d.d[i].t;)
(i:0..NxC-1:vtree_x.in.d[i].f = addr_buf.out.d.d[i].f;)
(i:0..NyC-1:vtree_y.in.d[i].t = addr_buf.out.d.d[i+NxC].t;)
(i:0..NyC-1:vtree_y.in.d[i].f = addr_buf.out.d.d[i+NxC].f;)
A_2C_B_X1 C2el(.c1 = vtree_x.out, .c2 = vtree_y.out, .y = addr_buf.out.v,
.vdd = supply.vdd, .vss = supply.vss);
// and grid for reqs into synapses
and_grid<Nx, Ny> _and_grid(.inx = d_dr_x.out, .iny = d_dr_y.out, .supply = supply);
(i:Nx*Ny: out[i].r = _and_grid.out[i];)
// Acknowledge pull down time
// Pull UPs on the reqB lines by synapses (easier to invert).
bool _out_reqsB[Nx], _out_acksB[Nx]; // The vertical output ack lines from each syn.
PULLDOWN2_X4 req_pulldowns[Nx*Ny];
pint index;
(i:Nx:
(j:Ny:
index = i + Nx*j;
req_pulldowns[index].a = out[index].a;
req_pulldowns[index].b = _out_acksB[i];
req_pulldowns[index].y = _out_reqsB[i];
req_pulldowns[index].vss = supply.vss;
req_pulldowns[index].vdd = supply.vdd;
)
)
// ReqB keep cells
KEEP_X1 req_keeps[Nx];
(i:Nx:
req_keeps[i].y = _out_reqsB[i];
req_keeps[i].vdd = supply.vdd;
req_keeps[i].vss = supply.vss;
)
// req-ack buffers
sigbuf<Ny> req_bufs[Nx];
(i:Nx:
req_bufs[i].in = _out_reqsB[i];
req_bufs[i].out[0] = _out_acksB[i]; // DANGER DANGER
req_bufs[i].supply = supply;
)
// Line end pull UPs (triggered once synapse reqs removed)
delay_fifo<N_dly> pu_dlys[Nx];
OR2_X1 pu_ORs[Nx];
PULLUP_X4 pu[Nx]; // TODO probably replace this with variable strength PU
AND2_X1 pu_ANDs[Nx];
(i:Nx:
pu_dlys[i].in = _out_acksB[i];
pu_dlys[i].supply = supply;
pu_ORs[i].a = pu_dlys[i].out;
pu_ORs[i].b = d_dr_x.out[i];
pu_ORs[i].vdd = supply.vdd;
pu_ORs[i].vss = supply.vss;
pu_ANDs[i].a = pu_ORs[i].y;
pu_ANDs[i].b = reset_B; // TODO buffer
pu_ANDs[i].vdd = supply.vdd;
pu_ANDs[i].vss = supply.vss;
pu[i].a = pu_ANDs[i].y;
pu[i].y = _out_reqsB[i];
pu[i].vdd = supply.vdd;
pu[i].vss = supply.vss;
)
// ORtree from all output reqs, back to the buffer ack.
// This is instead of the ack that came from the delayed validity trees,
// in decoder_2d_dly.
ortree<Nx> _ortree(.out = addr_buf.out.a, .supply = supply);
INV_X1 out_req_invs[Nx];
(i:Nx:
out_req_invs[i].a = _out_reqsB[i];
out_req_invs[i].vdd = supply.vdd;
out_req_invs[i].vss = supply.vss;
_ortree.in[i] = out_req_invs[i].y;
)
}
/*
* Build an arbiter_handshake tree.
*/
export template<pint N>
defproc arbtree (a1of1 in[N]; a1of1 out; power supply)
{
bool tout;
{ N > 0 : "What?" };
pint i, end, j;
i = 0;
end = N-1;
pint arbCount;
arbCount = 0;
/* Pre"calculate" the number of C cells required, look below if confused */
*[ i != end ->
j = 0;
*[ i <= end ->
j = j + 1;
[i = end ->
i = end+1;
[] i+1 = end ->
i = end+1;
arbCount = arbCount +1;
[] else ->
i = i + 2;
arbCount = arbCount +1;
]
]
/*-- update range that has to be combined --*/
// i = end+1;
end = end+j;
]
/* array that holds ALL the nodes in the completion tree */
a1of1 tmp[end+1];
// Connecting the first nodes to the input
(l:N:
tmp[l] = in[l];
)
/* array to hold the actual C-elments, either A2C or A3C */
[arbCount > 0 ->
arbiter_handshake arbs[arbCount];
]
(h:arbCount:arbs[h].supply = supply;)
/* Reset the variables we just stole lol */
i = 0;
end = N-1;
j = 0;
pint arbIndex = 0;
/* Invariant: i <= end */
*[ i != end ->
/*
* Invariant: tmp[i..end] has the current signals that need to be
* combined together, and "isinv" specifies if they are the inverted
* sense or not
*/
j = 0;
*[ i <= end ->
/*-- there are still signals that need to be combined --*/
j = j + 1;
[ i = end ->
/*-- last piece: pipe input through to next layer --*/
tmp[end+j] = tmp[i];
i = end+1;
[] i+1 = end ->
/*-- last piece: use either a 2 input C-element --*/
arbs[arbIndex].in1 = tmp[i];
arbs[arbIndex].in2 = tmp[i+1];
arbs[arbIndex].out = tmp[end+j];
arbIndex = arbIndex +1;
i = end+1;
[] else ->
/*-- more to come; so use a two input C-element --*/
arbs[arbIndex].in1 = tmp[i];
arbs[arbIndex].in2 = tmp[i+1];
arbs[arbIndex].out = tmp[end+j];
arbIndex = arbIndex +1;
i = i + 2;
]
]
/*-- update range that has to be combined --*/
i = end+1;
end = end+j;
j = 0;
]
out = tmp[end];
}
// Generates the OR-trees required to go from
// N one-hot inputs to Nc dual rail binary encoding.
export template<pint Nc, N>
defproc dualrail_encoder(bool? in[N]; Mx1of2<Nc> out; power supply) {
{N <= 1<<Nc : "Num inputs too wide for encoding channel!"};
// For each output line, need to precalculate how big of an OR tree it needs
// since can't presume that N = 2**Nc
// First version however, just be hella lazy and presume N=2**Nc,
// connect extra nodes to ground (sorry)
pint _N; // N rounded up to a power of 2
_N = (1<<Nc);
ortree<_N/2> ors_t[Nc];
ortree<_N/2> ors_f[Nc];
(i:Nc:ors_t[i].supply = supply; ors_t[i].out = out.d[i].t;)
(i:Nc:ors_f[i].supply = supply; ors_f[i].out = out.d[i].f;)
pint num_connected_t; // Number of guys already connected to the current OR tree
pint num_connected_f;
TIELO_X1 tielo(.vdd = supply.vdd, .vss = supply.vss); // I'm sorry
pint bitval;
(i:0..Nc-1: // For each output line
num_connected_t = 0;
num_connected_f = 0;
(j:0.. _N-1:
bitval = (j & ( 1 << i )) >> i; // Get binary digit of integer j, column i
[bitval = 1 & j <= N-1->
ors_t[i].in[num_connected_t] = in[j];
num_connected_t = num_connected_t + 1;
[] bitval = 0 & j <= N-1->
ors_f[i].in[num_connected_f] = in[j];
num_connected_f = num_connected_f + 1;
[] bitval = 1 & j > N-1->
ors_t[i].in[num_connected_t] = tielo.y;
num_connected_t = num_connected_t + 1;
[] bitval = 0 & j > N-1->
ors_f[i].in[num_connected_f] = tielo.y;
num_connected_f = num_connected_f + 1;
]
)
)
}
/**
* Buffer function code.
* Is the function block ripped from the buffer_s.
* Used in the encoder2d.
*/
export template<pint N>
defproc buffer_s_func (Mx1of2<N> in; avMx1of2<N> out; bool? in_v, en, reset_B; power supply) {
//function
bool _out_a_BX_t[N],_out_a_BX_f[N],_out_a_B,_en_X_t[N],_en_X_f[N], _in_vX, _in_vXX_t[N],_in_vXX_f[N];
A_2C2N_RB_X4 f_buf_func[N];
A_2C2N_RB_X4 t_buf_func[N];
// reset buffers
bool _reset_BX,_reset_BXX[N];
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
sigbuf<N> reset_bufarray(.in=_reset_BX, .out=_reset_BXX, .supply=supply);
// Enable signal buffers
sigbuf<N> en_buf_t(.in=en, .out=_en_X_t, .supply=supply);
sigbuf<N> en_buf_f(.in=en, .out=_en_X_f, .supply=supply);
// out ack signal buffers
INV_X1 out_a_inv(.a=out.a,.y=_out_a_B, .vss = supply.vss, .vdd = supply.vdd);
sigbuf<N> out_a_B_buf_f(.in=_out_a_B,.out=_out_a_BX_t, .supply=supply);
sigbuf<N> out_a_B_buf_t(.in=_out_a_B,.out=_out_a_BX_f, .supply=supply);
// in val signal buffers
BUF_X4 in_v_prebuf(.a = in_v, .y = _in_vX, .vss = supply.vss, .vdd = supply.vdd);
sigbuf<N> in_v_buf_t(.in=_in_vX, .out=_in_vXX_t, .supply=supply);
sigbuf<N> in_v_buf_f(.in=_in_vX, .out=_in_vXX_f, .supply=supply);
(i:N:
f_buf_func[i].y=out.d.d[i].f;
t_buf_func[i].y=out.d.d[i].t;
f_buf_func[i].c1=_en_X_f[i];
t_buf_func[i].c1=_en_X_t[i];
f_buf_func[i].c2=_out_a_BX_f[i];
t_buf_func[i].c2=_out_a_BX_t[i];
f_buf_func[i].n1=in.d[i].f;
t_buf_func[i].n1=in.d[i].t;
f_buf_func[i].n2=_in_vXX_f[i];
t_buf_func[i].n2=_in_vXX_t[i];
f_buf_func[i].vdd=supply.vdd;
t_buf_func[i].vdd=supply.vdd;
f_buf_func[i].vss=supply.vss;
t_buf_func[i].vss=supply.vss;
t_buf_func[i].pr_B = _reset_BXX[i];
t_buf_func[i].sr_B = _reset_BXX[i];
f_buf_func[i].pr_B = _reset_BXX[i];
f_buf_func[i].sr_B = _reset_BXX[i];
)
}
export template<pint NxC, NyC, Nx, Ny, ACK_STRENGTH>
defproc encoder2D(a1of1 inx[Nx]; a1of1 iny[Ny]; avMx1of2<(NxC + NyC)> out; power supply; bool reset_B) {
// Reset buffers
pint H = 2*(NxC + NyC); //Reset strength? to be investigated
bool _reset_BX,_reset_BXX[H];
BUF_X4 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
sigbuf<2*(NxC + NyC)> reset_bufarray(.in=_reset_BX, .out=_reset_BXX,.supply=supply);
// Arbiters
a1of1 _arb_out_x, _arb_out_y;
a1of1 _x_temp[Nx],_y_temp[Ny]; // For wiring the reqs to the arbtrees
(i:Nx:
_x_temp[i].r = inx[i].r;
)
(i:Ny:
_y_temp[i].r = iny[i].r;
)
arbtree<Nx> Xarb(.in = _x_temp,.out = _arb_out_x,.supply = supply);
arbtree<Ny> Yarb(.in = _y_temp,.out = _arb_out_y,.supply = supply);
// Sigbufs for strong ackowledge signals from arb_in's
sigbuf_1output<ACK_STRENGTH> x_ack_arb[Nx];
sigbuf_1output<ACK_STRENGTH> y_ack_arb[Ny];
(i:Nx:
x_ack_arb[i].in = _x_temp[i].a;
x_ack_arb[i].out = inx[i].a;
x_ack_arb[i].supply = supply;
)
(i:Ny:
y_ack_arb[i].in = _y_temp[i].a;
y_ack_arb[i].out = iny[i].a;
y_ack_arb[i].supply = supply;
)
// This block checks that the input is valid and that the arbiter made a choice
// Then activates the ack of the arbiter
bool _x_v,_in_x_v,_in_y_v,_x_a_B,_x_a;
A_2C2P_RB_X1 Y_ack_confirm();
Y_ack_confirm.p1 = _x_v;
Y_ack_confirm.p2 =_in_x_v;
Y_ack_confirm.c1 = _arb_out_y.r;
Y_ack_confirm.c2 = _x_a_B;
Y_ack_confirm.y = _arb_out_y.a;
Y_ack_confirm.vdd = supply.vdd;
Y_ack_confirm.vss = supply.vss;
Y_ack_confirm.reset_B = _reset_BX;
// This block checks that the input is valid and that the arbiter made a choice
// Then activates the ack of the arbiter
A_2C_RB_X1 X_ack_confirm();
X_ack_confirm.c1 = _arb_out_x.r;
X_ack_confirm.c2 = _x_a_B;
X_ack_confirm.vdd = supply.vdd;
X_ack_confirm.vss = supply.vss;
X_ack_confirm.pr_B = _reset_BX;
X_ack_confirm.sr_B = _reset_BX;
X_ack_confirm.y = _arb_out_x.a;
// X_req ORtree
bool _x_req_array[Nx], _x_v_B;
(i:Nx:_x_req_array[i] = inx[i].r;)
ortree<Nx> x_req_ortree(.in = _x_req_array,.out = _x_v,.supply = supply); //todo BUFF
INV_X1 not_x_req_ortree(.a = _x_v,.y = _x_v_B);
//X_REQ validation
// bool _x_req_array[Nx],_x_v_B, _en;
// (i:Nx:_x_req_array[i] = x[i].r;)
// ortree x_req_ortree(.in = _x_req_array,.out = _x_v,.supply = supply);
// INV_X1 not_x_req_ortree(.a = _x_v,.y = _x_v_B);
bool _en;
A_1C3P2P2N_R_X1 x_ack(); // NEEDS BUFFERING TO X4
//branch1
x_ack.p4 = _in_x_v;
x_ack.p5 = _x_v_B;
//branch2
x_ack.p1 = _in_x_v;
x_ack.p2 = _in_y_v;
x_ack.p3 = _x_v;
//
x_ack.c1 = _en;
x_ack.n1 = out.v;
x_ack.n2 = _in_x_v;
//
x_ack.y = _x_a_B;
//
x_ack.vdd = supply.vdd;
x_ack.vss = supply.vss;
x_ack.pr_B = _reset_BX;
x_ack.sr_B = _reset_BX;
INV_X1 not_x_ack(.a = _x_a_B, .y = _x_a, .vdd = supply.vdd, .vss = supply.vss);
A_1C2P_X1 enabling(.p1 = out.a, .p2 = out.v, .c1 = _x_a, .y = _en, .vdd = supply.vdd, .vss = supply.vss);
avMx1of2<(NxC + NyC)> _in_x;
// Encoders
bool x_acks[Nx];
Mx1of2<NxC> x_enc_out;
(i:Nx:x_acks[i] = inx[i].a;)
dualrail_encoder<NxC, Nx> x_encoder(.in = x_acks, .out = x_enc_out, .supply = supply);
bool y_acks[Ny];
Mx1of2<NyC> y_enc_out;
(i:Ny:y_acks[i] = iny[i].a;)
dualrail_encoder<NyC, Ny> y_encoder(.in = y_acks, .out = y_enc_out, .supply = supply);
// Valid trees
vtree<NxC> vtree_x(.in = x_enc_out, .out = _in_x_v, .supply = supply);
vtree<NyC> vtree_y(.in = y_enc_out, .out = _in_y_v, .supply = supply);
// Buffer func thing
Mx1of2<NxC + NyC> into_buffer;
(i:0..NxC-1:into_buffer.d[i] = x_enc_out.d[i];)
(i:0..NyC-1:into_buffer.d[i+NxC] = y_enc_out.d[i];)
AND2_X1 _in_xy_v(.a = _in_x_v, .b = _in_y_v, .vss = supply.vss, .vdd = supply.vdd);
buffer_s_func<NxC + NyC> buf_s_func(.in = into_buffer, .out = out,
.en = _en, .in_v = _in_xy_v.y, .supply = supply, .reset_B = reset_B);
}
/**
* Neuron handshaking.
* Looks for a rising edge on the neuron req.
* Then performs a 2d handshake out outy then outx.
*/
export
defproc nrn_hs_2D(a1of1 in; a1of1 outx; a1of1 outy; power supply; bool reset_B) {
bool _reset_BX;
BUF_X2 reset_buf(.a = reset_B, .y = _reset_BX, .vdd = supply.vdd, .vss = supply.vss);
bool _en, _req;
// A_1C2N_RB_X1 A_ack(.c1 = _en, .n1 = _req, .n2 = in.r, .y = in.a,
// .pr_B = _reset_BX, .sr_B = _reset_BX, .vss = supply.vss, .vdd = supply.vdd);
// Switched it back
// Because had the problem that if the req was not removed in time,
// it would be recounted as a double spike,
// since in.req is still high after the out has been dealt with.
A_2C1N_RB_X1 A_ack(.c1 = _en, .c2 = in.r, .n1 = _req, .y = in.a,
.pr_B = _reset_BX, .sr_B = _reset_BX, .vss = supply.vss, .vdd = supply.vdd);
A_1C1P_X1 A_en(.p1 = _req, .c1 = in.a, .y = _en,
.vss = supply.vss, .vdd = supply.vdd);
bool _y_a_B, _x_a_B;
INV_X2 inv_x(.a = outx.a, .y = _x_a_B, .vss = supply.vss, .vdd = supply.vdd);
INV_X2 inv_y(.a = outy.a, .y = _y_a_B, .vss = supply.vss, .vdd = supply.vdd);
A_2C1P1N_RB_X1 A_req(.p1 = _x_a_B, .c1 = _en, .c2 = _y_a_B, .n1 = in.r, .y = _req,
.pr_B = _reset_BX, .sr_B = _reset_BX, .vdd = supply.vdd, .vss = supply.vss);
// y_req pull up
NAND2_X1 nand_y(.a = _y_a_B, .b = _req, .vdd = supply.vdd, .vss = supply.vss);
PULLUP_X4 pu_y(.a = nand_y.y, .y = outy.r, .vdd = supply.vdd, .vss = supply.vss);
// x_req pull up
NAND3_X1 nand_x(.a = _x_a_B, .b = _req, .c = outy.a, .vdd = supply.vdd, .vss = supply.vss);
PULLUP_X4 pu_x(.a = nand_x.y, .y = outx.r, .vdd = supply.vdd, .vss = supply.vss);
}
export
defproc nrn_line_end_pull_down (bool? in; bool? reset_B; power supply; bool! out)
{
bool _out, __out, nand_out;
BUF_X1 buf1(.a=in, .y=_out, .vdd=supply.vdd,.vss=supply.vss);
BUF_X1 buf2(.a=_out, .y=__out, .vdd=supply.vdd,.vss=supply.vss);
INV_X1 inv(.a = __out, .vdd=supply.vdd,.vss =supply.vss);
NAND2_X1 aenor(.a=inv.y, .b=reset_B, .y = nand_out, .vdd=supply.vdd,.vss=supply.vss);
PULLDOWN_X4 pull_down(.a=nand_out, .y=out);
}
/**
* A 2d grid of neuron handshakers.
* Should then slot into the encoder.
* Each neuron has an a1of1 channel (in), which is tripped when a neuron spikes.
* N_dly is number of delay elements to add to line pull down,
* for the purpose of running ACT sims.
* It should probably be set to 0 though.
*/
export template<pint Nx, Ny, N_dly>
defproc nrn_hs_2D_array(a1of1 in[Nx*Ny]; a1of1 outx[Nx], outy[Ny];
power supply; bool reset_B) {
// Make hella signal buffers
sigbuf<Ny> rsbx(.in = reset_B, .supply = supply);
sigbuf<Nx> rsb[Ny]; // ResetSigBuf
(j:Ny:
rsb[j].in = rsbx.out[j];
rsb[j].supply = supply;
)
// Add buffers on output req lines
a1of1 _outx[Nx], _outy[Ny];
BUF_X4 out_req_buf_x[Nx];
(i:Nx:
out_req_buf_x[i].vss = supply.vss;
out_req_buf_x[i].vdd = supply.vdd;
out_req_buf_x[i].a = _outx[i].r;
out_req_buf_x[i].y = outx[i].r;
)
BUF_X4 out_req_buf_y[Ny];
(i:Ny:
out_req_buf_y[i].vss = supply.vss;
out_req_buf_y[i].vdd = supply.vdd;
out_req_buf_y[i].a = _outy[i].r;
out_req_buf_y[i].y = outy[i].r;
)
// Add buffers on output ack lines
// Note that this should be generalised.
// And probably won't even be done by ACT/innovus anwyay
// TODO: do it properly with sigbufs?
BUF_X4 out_ack_buf_x[Nx];
(i:Nx:
out_ack_buf_x[i].vss = supply.vss;
out_ack_buf_x[i].vdd = supply.vdd;
out_ack_buf_x[i].a = outx[i].a;
out_ack_buf_x[i].y = _outx[i].a;
)
BUF_X4 out_ack_buf_y[Ny];
(i:Ny:
out_ack_buf_y[i].vss = supply.vss;
out_ack_buf_y[i].vdd = supply.vdd;
out_ack_buf_y[i].a = outy[i].a;
out_ack_buf_y[i].y = _outy[i].a;
)
// Create handshake grid
pint index;
nrn_hs_2D neurons[Nx*Ny];
(i:0..Nx-1:
(j:0..Ny-1:
index = i + j*Nx;
neurons[index].supply = supply;
neurons[index].reset_B = rsb[j].out[i];
neurons[index].in = in[index];
neurons[index].outx = _outx[i];
neurons[index].outy = _outy[j];
)
)
// Create delay fifos to emulate the fact that the line pull downs
// are at the end of the line, and thus slow.
// Note that if N_dly = 0, delay fifo is just a pipe.
delay_fifo<N_dly> dly_x[Nx];
delay_fifo<N_dly> dly_y[Ny];
// Create x line req pull downs
nrn_line_end_pull_down pd_x[Nx];
sigbuf<Nx> rsb_pd_x(.in = reset_B, .supply = supply);
(i:0..Nx-1:
dly_x[i].supply = supply;
dly_x[i].in = _outx[i].a;
pd_x[i].in = dly_x[i].out;
pd_x[i].out = _outx[i].r;
pd_x[i].reset_B = rsb_pd_x.out[i];
pd_x[i].supply = supply;
)
// Create y line req pull downs
nrn_line_end_pull_down pd_y[Ny];
sigbuf<Ny> rsb_pd_y(.in = reset_B, .supply = supply);
(j:0..Ny-1:
dly_y[j].supply = supply;
dly_y[j].in = _outy[j].a;
pd_y[j].in = dly_y[j].out;
pd_y[j].out = _outy[j].r;
pd_y[j].reset_B = rsb_pd_y.out[j];
pd_y[j].supply = supply;
)
// Add keeps
KEEP_X1 keep_x[Nx];
(i:Nx:
keep_x[i].vdd = supply.vdd;
keep_x[i].vss = supply.vss;
keep_x[i].y = _outx[i].r;
)
KEEP_X1 keep_y[Ny];
(j:Ny:
keep_y[j].vdd = supply.vdd;
keep_y[j].vss = supply.vss;
keep_y[j].y = _outy[j].r;
)
}
}
}