Compare commits

...

5 Commits

12 changed files with 708 additions and 234 deletions

Binary file not shown.

View File

@ -4,7 +4,7 @@
<SchemaVersion>2.0</SchemaVersion>
<ProjectGuid>4d8c8573-32f0-4a62-9e62-3ce5cc680390</ProjectGuid>
<ProjectHome>.</ProjectHome>
<StartupFile>fame_hmm.py</StartupFile>
<StartupFile>check_novoapi.py</StartupFile>
<SearchPath>
</SearchPath>
<WorkingDirectory>.</WorkingDirectory>
@ -51,6 +51,9 @@
<Compile Include="fame_hmm.py" />
<Compile Include="phoneset\fame_asr.py" />
<Compile Include="phoneset\fame_ipa.py" />
<Compile Include="phoneset\fame_phonetics.py">
<SubType>Code</SubType>
</Compile>
<Compile Include="stimmen_functions.py" />
<Compile Include="stimmen_test.py" />
</ItemGroup>

View File

@ -29,48 +29,47 @@ forced_alignment_novo70 = True
## ===== load novo phoneset =====
phoneset_ipa, phoneset_novo70, translation_key_ipa2novo70, translation_key_novo702ipa = novoapi_functions.load_phonset()
phoneset_ipa, phoneset_novo70, translation_key_ipa2novo70, translation_key_novo702ipa = novoapi_functions.load_novo70_phoneset()
## ===== extract pronunciations written in novo70 only (not_in_novo70) =====
# As per Nederlandse phoneset_aki.xlsx recieved from David
# [ɔː] oh / ohr
# [ɪː] ih / ihr
# [iː] iy
# [œː] uh
# [ɛː] eh
# [w] wv in IPA written as ʋ.
david_suggestion = ['ɔː', 'ɪː', 'iː', 'œː', 'ɛː', 'w']
## read pronunciation variants.
stimmen_transcription_ = pd.ExcelFile(default.stimmen_transcription_xlsx)
df = pd.read_excel(stimmen_transcription_, 'frequency')
transcription_ipa = list(df['IPA'])
#stimmen_transcription_ = pd.ExcelFile(default.stimmen_transcription_xlsx)
#df = pd.read_excel(stimmen_transcription_, 'frequency')
#transcription_ipa = list(df['IPA'])
# transcription mistake?
transcription_ipa = [ipa.replace(';', 'ː') for ipa in transcription_ipa if not ipa=='pypɪl' and not pd.isnull(ipa)]
transcription_ipa = [ipa.replace('ˑ', '') for ipa in transcription_ipa] # only one case.
not_in_novo70 = []
all_in_novo70 = []
for ipa in transcription_ipa:
ipa = ipa.replace(':', 'ː')
ipa = convert_phone_set.split_ipa(ipa)
stimmen_test_dir = r'c:\OneDrive\Research\rug\_data\stimmen_test'
df = stimmen_functions.load_transcriptions_novo70(stimmen_test_dir)
# list of phones not in novo70 phoneset.
not_in_novo70_ = [phone for phone in ipa
if not phone in phoneset_ipa and not phone in david_suggestion]
not_in_novo70_ = [phone.replace('sp', '') for phone in not_in_novo70_]
not_in_novo70_ = [phone.replace(':', '') for phone in not_in_novo70_]
not_in_novo70_ = [phone.replace('ː', '') for phone in not_in_novo70_]
if len(not_in_novo70_) == 0:
all_in_novo70.append(''.join(ipa))
## transcription mistake?
#transcription_ipa = [ipa.replace(';', 'ː') for ipa in transcription_ipa if not ipa=='pypɪl' and not pd.isnull(ipa)]
#transcription_ipa = [ipa.replace('ˑ', '') for ipa in transcription_ipa] # only one case.
#translation_key.get(phone, phone)
not_in_novo70.extend(not_in_novo70_)
not_in_novo70_list = list(set(not_in_novo70))
#not_in_novo70 = []
#all_in_novo70 = []
#for ipa in transcription_ipa:
# ipa = ipa.replace(':', 'ː')
# ipa = convert_phone_set.split_ipa(ipa)
# # list of phones not in novo70 phoneset.
# not_in_novo70_ = [phone for phone in ipa
# if not phone in phoneset_ipa and not phone in david_suggestion]
# not_in_novo70_ = [phone.replace('sp', '') for phone in not_in_novo70_]
# not_in_novo70_ = [phone.replace(':', '') for phone in not_in_novo70_]
# not_in_novo70_ = [phone.replace('ː', '') for phone in not_in_novo70_]
# if len(not_in_novo70_) == 0:
# all_in_novo70.append(''.join(ipa))
# #translation_key.get(phone, phone)
# not_in_novo70.extend(not_in_novo70_)
#not_in_novo70_list = list(set(not_in_novo70))
## check which phones used in stimmen but not in novo70
@ -85,41 +84,43 @@ not_in_novo70_list = list(set(not_in_novo70))
# [ʊ] 'ʊ'(1) --> can be ʏ (uh)??
# [χ] --> can be x??
def search_phone_ipa(x, phone_list):
x_in_item = []
for ipa in phone_list:
ipa_original = ipa
ipa = ipa.replace(':', 'ː')
ipa = convert_phone_set.split_ipa(ipa)
if x in ipa and not x+':' in ipa:
x_in_item.append(ipa_original)
return x_in_item
#def search_phone_ipa(x, phone_list):
# x_in_item = []
# for ipa in phone_list:
# ipa_original = ipa
# ipa = ipa.replace(':', 'ː')
# ipa = convert_phone_set.split_ipa(ipa)
# if x in ipa and not x+':' in ipa:
# x_in_item.append(ipa_original)
# return x_in_item
#search_phone_ipa('ø', transcription_ipa)
## ===== load all transcriptions (df) =====
df = stimmen_functions.load_transcriptions()
#df = stimmen_functions.load_transcriptions()
word_list = [i for i in list(set(df['word'])) if not pd.isnull(i)]
word_list = sorted(word_list)
## check frequency of each pronunciation variants
cols = ['word', 'ipa', 'frequency']
df_samples = pd.DataFrame(index=[], columns=cols)
for ipa in all_in_novo70:
ipa = ipa.replace('ː', ':')
samples = df[df['ipa'] == ipa]
word = list(set(samples['word']))[0]
samples_Series = pd.Series([word, ipa, len(samples)], index=df_samples.columns)
df_samples = df_samples.append(samples_Series, ignore_index=True)
#cols = ['word', 'ipa', 'frequency']
#df_samples = pd.DataFrame(index=[], columns=cols)
#for ipa in all_in_novo70:
# ipa = ipa.replace('ː', ':')
# samples = df[df['ipa'] == ipa]
# word = list(set(samples['word']))[0]
# samples_Series = pd.Series([word, ipa, len(samples)], index=df_samples.columns)
# df_samples = df_samples.append(samples_Series, ignore_index=True)
# each word
df_per_word = pd.DataFrame(index=[], columns=df_samples.keys())
#df_per_word = pd.DataFrame(index=[], columns=df_samples.keys())
for word in word_list:
df_samples_ = df_samples[df_samples['word']==word]
df_samples_ = df_samples_[df_samples_['frequency']>2]
df_per_word = df_per_word.append(df_samples_, ignore_index=True)
#for word in word_list:
word = word_list[2]
df_ = df[df['word']==word]
np.unique(list(df_['ipa']))
#df_samples_ = df_samples_[df_samples_['frequency']>2]
#df_per_word = df_per_word.append(df_samples_, ignore_index=True)
#df_per_word.to_excel(os.path.join(default.stimmen_dir, 'pronunciation_variants_novo70.xlsx'), encoding="utf-8")

View File

@ -14,18 +14,20 @@ def multi_character_tokenize(line, multi_character_tokens):
line = line[1:]
def split_word(word, multi_character_phones):
def split_word(word, phoneset):
"""
split a line by given phoneset.
Args:
word (str): a word written in given phoneset.
multi_character_phones (list): the list of multicharacter phones which is considered as one phone. this can be obtained with phoneset definition such as fame_ipa.py.
#multi_character_phones (list): the list of multicharacter phones which is considered as one phone. this can be obtained with phoneset definition such as fame_ipa.py.
phoneset (list): the list of phones.
Returns:
(word_seperated) (list): the word splitted in given phoneset.
"""
multi_character_phones = extract_multi_character_phones(phoneset)
return [phone
for phone in multi_character_tokenize(word.strip(), multi_character_phones)
]
@ -43,4 +45,14 @@ def convert_phoneset(word_list, translation_key):
def phone_reduction(phones, reduction_key):
multi_character_tokenize(wo.strip(), multi_character_phones)
return [reduction_key.get(i, i) for i in phones
if not i in phones_to_be_removed]
if not i in phones_to_be_removed]
def extract_multi_character_phones(phoneset):
"""
Args:
phoneset (list):
"""
multi_character_phones = [i for i in phoneset if len(i) > 1]
multi_character_phones.sort(key=len, reverse=True)
return multi_character_phones

View File

@ -345,6 +345,7 @@ def fix_lexicon(lexicon_file):
for i in lex[lex['word'].str.startswith('\'')].index.values:
lex.iat[i, 0] = lex.iat[i, 0].replace('\'', '\\\'')
# to_csv does not work with space seperator. therefore all tabs should manually be replaced.
#lex.to_csv(lexicon_file, index=False, header=False, encoding="utf-8", sep=' ', quoting=csv.QUOTE_NONE, escapechar='\\')
lex.to_csv(lexicon_file, index=False, header=False, sep='\t', encoding='utf-8')
@ -369,7 +370,8 @@ def ipa2asr(ipa):
def ipa2htk(ipa):
curr_dir = os.path.dirname(os.path.abspath(__file__))
translation_key_ipa2asr = np.load(os.path.join(curr_dir, 'phoneset', 'fame_ipa2asr.npy')).item(0)
#translation_key_ipa2asr = np.load(r'c:\Users\Aki\source\repos\acoustic_model\acoustic_model\phoneset\fame_ipa2asr.npy').item(0)
ipa_splitted = convert_phoneset.split_word(ipa, fame_ipa.multi_character_phones)
ipa_splitted = fame_ipa.phone_reduction(ipa_splitted)
asr_splitted = convert_phoneset.convert_phoneset(ipa_splitted, translation_key_ipa2asr)

View File

@ -11,54 +11,59 @@ import numpy as np
import pandas as pd
import fame_functions
from phoneset import fame_ipa, fame_asr
from phoneset import fame_ipa, fame_asr, fame_phonetics
import defaultfiles as default
sys.path.append(default.toolbox_dir)
import file_handling as fh
from htk import pyhtk
#from scripts import run_command
## ======================= user define =======================
# procedure
combine_all = 1
make_lexicon = 0
make_label = 0 # it takes roughly 4800 sec on Surface pro 2.
make_mlf = 0
extract_features = 0
flat_start = 0
train_model_without_sp = 0
add_sp = 0
train_model_with_re_aligned_mlf = 1
flat_start = 1
train_monophone_without_sp = 1
add_sp = 1
train_monophone_with_re_aligned_mlf = 1
increase_mixture = 1
train_triphone = 0
train_triphone_tied = 0
# pre-defined values.
dataset_list = ['devel', 'test', 'train']
feature_size = 39
feature_size = 30
improvement_threshold = 0.3
hmmdefs_name = 'hmmdefs'
proto_name = 'proto'
lexicon_asr = os.path.join(default.fame_dir, 'lexicon', 'lex.asr')
lexicon_oov = os.path.join(default.fame_dir, 'lexicon', 'lex.oov')
config_dir = os.path.join(default.htk_dir, 'config')
sil_hed = os.path.join(config_dir, 'sil.hed')
prototype = os.path.join(config_dir, proto_name)
phonelist_full_txt = os.path.join(config_dir, 'phonelist_full.txt')
tree_hed = os.path.join(config_dir, 'tree.hed')
quests_hed = os.path.join(config_dir, 'quests.hed')
model_dir = os.path.join(default.htk_dir, 'model')
model0_dir = os.path.join(model_dir, 'hmm0')
model1_dir = os.path.join(model_dir, 'hmm1')
model1sp_dir = os.path.join(model_dir, 'hmm1sp')
model1sp2_dir = os.path.join(model_dir, 'hmm1sp2')
model_mono0_dir = os.path.join(model_dir, 'mono0')
model_mono1_dir = os.path.join(model_dir, 'mono1')
model_mono1sp_dir = os.path.join(model_dir, 'mono1sp')
model_mono1sp2_dir = os.path.join(model_dir, 'mono1sp2')
model_tri1_dir = os.path.join(model_dir, 'tri1')
model_tri1tied_dir = os.path.join(model_dir, 'tri1tied')
# directories / files to be made.
lexicon_dir = os.path.join(default.htk_dir, 'lexicon')
lexicon_htk_asr = os.path.join(lexicon_dir, 'lex.htk_asr')
lexicon_htk_oov = os.path.join(lexicon_dir, 'lex.htk_oov')
lexicon_htk = os.path.join(lexicon_dir, 'lex.htk')
lexicon_htk_with_sp = os.path.join(lexicon_dir, 'lex_with_sp.htk')
lexicon_htk_triphone = os.path.join(lexicon_dir, 'lex_triphone.htk')
feature_dir = os.path.join(default.htk_dir, 'mfc')
fh.make_new_directory(feature_dir, existing_dir='leave')
@ -69,9 +74,21 @@ fh.make_new_directory(label_dir, existing_dir='leave')
## training
hcompv_scp_train = os.path.join(tmp_dir, 'train.scp')
mlf_file_train = os.path.join(label_dir, 'train_phone.mlf')
mlf_file_train_aligned = os.path.join(label_dir, 'train_phone_aligned.mlf')
if combine_all:
hcompv_scp_train = os.path.join(tmp_dir, 'all.scp')
mlf_file_train = os.path.join(label_dir, 'all_phone.mlf')
mlf_file_train_word = os.path.join(label_dir, 'all_word.mlf')
mlf_file_train_with_sp = os.path.join(label_dir, 'all_phone_with_sp.mlf')
mlf_file_train_aligned = os.path.join(label_dir, 'all_phone_aligned.mlf')
triphone_mlf = os.path.join(label_dir, 'all_triphone.mlf')
else:
hcompv_scp_train = os.path.join(tmp_dir, 'train.scp')
mlf_file_train = os.path.join(label_dir, 'train_phone.mlf')
mlf_file_train_word = os.path.join(label_dir, 'train_word.mlf')
mlf_file_train_with_sp = os.path.join(label_dir, 'train_phone_with_sp.mlf')
mlf_file_train_aligned = os.path.join(label_dir, 'train_phone_aligned.mlf')
triphone_mlf = os.path.join(label_dir, 'train_triphone.mlf')
hcompv_scp_train_updated = hcompv_scp_train.replace('.scp', '_updated.scp')
## testing
htk_stimmen_dir = os.path.join(default.htk_dir, 'stimmen')
@ -99,11 +116,19 @@ if make_lexicon:
# http://electroblaze.blogspot.nl/2013/03/understanding-htk-error-messages.html
print('>>> fixing the lexicon...')
fame_functions.fix_lexicon(lexicon_htk)
print("elapsed time: {}".format(time.time() - timer_start))
## adding sp to the lexicon for HTK.
print('>>> adding sp to the lexicon...')
with open(lexicon_htk) as f:
lines = f.read().split('\n')
with open(lexicon_htk_with_sp, 'wb') as f:
f.write(bytes(' sp\n'.join(lines), 'ascii'))
print("elapsed time: {}".format(time.time() - timer_start))
## intialize the instance for HTK.
chtk = pyhtk.HTK(config_dir, fame_asr.phoneset_htk, lexicon_htk, feature_size)
chtk = pyhtk.HTK(config_dir, fame_asr.phoneset_htk, lexicon_htk_with_sp, feature_size)
## ======================= make label files =======================
@ -139,7 +164,7 @@ if make_label:
shutil.move(dictionary_file, os.path.join(label_dir_, filename + '.dic'))
label_file = os.path.join(label_dir_, filename + '.lab')
chtk.create_label_file(sentence_htk, label_file)
chtk.make_label_file(sentence_htk, label_file)
else:
os.remove(dictionary_file)
@ -161,16 +186,18 @@ if make_mlf:
os.remove(empty_dic_file)
for dataset in dataset_list:
#wav_dir_ = os.path.join(default.fame_dir, 'fame', 'wav', dataset)
feature_dir_ = os.path.join(feature_dir, dataset)
label_dir_ = os.path.join(label_dir, dataset)
mlf_word = os.path.join(label_dir, dataset + '_word.mlf')
mlf_phone = os.path.join(label_dir, dataset + '_phone.mlf')
mlf_phone_with_sp = os.path.join(label_dir, dataset + '_phone_with_sp.mlf')
print(">>> generating a word level mlf file for {}...".format(dataset))
chtk.label2mlf(label_dir_, mlf_word)
print(">>> generating a phone level mlf file for {}...".format(dataset))
chtk.mlf_word2phone(mlf_phone, mlf_word)
chtk.mlf_word2phone(mlf_phone, mlf_word, with_sp=False)
chtk.mlf_word2phone(mlf_phone_with_sp, mlf_word, with_sp=True)
print("elapsed time: {}".format(time.time() - timer_start))
@ -181,7 +208,7 @@ if extract_features:
timer_start = time.time()
print('==== extract features on dataset {} ===='.format(dataset))
wav_dir_ = os.path.join(default.fame_dir, 'fame', 'wav', dataset)
wav_dir_ = os.path.join(default.fame_dir, 'fame', 'wav', dataset)
label_dir_ = os.path.join(label_dir, dataset)
feature_dir_ = os.path.join(feature_dir, dataset)
fh.make_new_directory(feature_dir_, existing_dir='delete')
@ -201,8 +228,8 @@ if extract_features:
+ os.path.join(feature_dir_, os.path.basename(lab_file).replace('.lab', '.mfc'))
for lab_file in lab_list]
if os.path.exists(empty_mfc_file):
os.remove(empty_mfc_file)
#if os.path.exists(empty_mfc_file):
# os.remove(empty_mfc_file)
with open(hcopy_scp.name, 'wb') as f:
f.write(bytes('\n'.join(feature_list), 'ascii'))
@ -219,45 +246,97 @@ if extract_features:
with open(hcompv_scp, 'wb') as f:
f.write(bytes('\n'.join(mfc_list) + '\n', 'ascii'))
print(">>> extracting features on stimmen...")
chtk.wav2mfc(os.path.join(htk_stimmen_dir, 'hcopy.scp'))
print("elapsed time: {}".format(time.time() - timer_start))
## ======================= flat start monophones =======================
if combine_all:
# script files.
fh.concatenate(
os.path.join(tmp_dir, 'devel.scp'),
os.path.join(tmp_dir, 'test.scp'),
hcompv_scp_train
)
fh.concatenate(
hcompv_scp_train,
os.path.join(tmp_dir, 'train.scp'),
hcompv_scp_train
)
# phone level mlfs.
fh.concatenate(
os.path.join(label_dir, 'devel_phone.mlf'),
os.path.join(label_dir, 'test_phone.mlf'),
mlf_file_train
)
fh.concatenate(
mlf_file_train,
os.path.join(label_dir, 'train_phone.mlf'),
mlf_file_train
)
# phone level mlfs with sp.
fh.concatenate(
os.path.join(label_dir, 'devel_phone_with_sp.mlf'),
os.path.join(label_dir, 'test_phone_with_sp.mlf'),
mlf_file_train_with_sp
)
fh.concatenate(
mlf_file_train_with_sp,
os.path.join(label_dir, 'train_phone_with_sp.mlf'),
mlf_file_train_with_sp
)
# word level mlfs.
fh.concatenate(
os.path.join(label_dir, 'devel_word.mlf'),
os.path.join(label_dir, 'test_word.mlf'),
mlf_file_train_word
)
fh.concatenate(
mlf_file_train_word,
os.path.join(label_dir, 'train_word.mlf'),
mlf_file_train_word
)
## ======================= flat start monophones =======================
if flat_start:
timer_start = time.time()
print('==== flat start ====')
fh.make_new_directory(model0_dir, existing_dir='leave')
fh.make_new_directory(model_mono0_dir, existing_dir='leave')
chtk.flat_start(hcompv_scp_train, model0_dir)
chtk.flat_start(hcompv_scp_train, model_mono0_dir)
# create macros.
vFloors = os.path.join(model0_dir, 'vFloors')
# make macros.
vFloors = os.path.join(model_mono0_dir, 'vFloors')
if os.path.exists(vFloors):
chtk.create_macros(vFloors)
chtk.make_macros(vFloors)
# allocate mean & variance to all phones in the phone list
print('>>> allocating mean & variance to all phones in the phone list...')
chtk.create_hmmdefs(
os.path.join(model0_dir, proto_name),
os.path.join(model0_dir, 'hmmdefs')
)
chtk.make_hmmdefs(model_mono0_dir)
print("elapsed time: {}".format(time.time() - timer_start))
## ======================= train model without short pause =======================
if train_model_without_sp:
print('==== train model without sp ====')
if train_monophone_without_sp:
print('==== train monophone without sp ====')
timer_start = time.time()
niter = chtk.re_estimation_until_saturated(
model1_dir,
model0_dir, improvement_threshold, hcompv_scp_train,
model_mono1_dir,
model_mono0_dir, improvement_threshold, hcompv_scp_train,
os.path.join(htk_stimmen_dir, 'mfc'),
'mfc',
os.path.join(htk_stimmen_dir, 'word_lattice.ltc'),
mlf_file=mlf_file_train,
lexicon_file=os.path.join(htk_stimmen_dir, 'lexicon_recognition.dic')
lexicon=os.path.join(htk_stimmen_dir, 'lexicon_recognition.dic')
)
print("elapsed time: {}".format(time.time() - timer_start))
@ -272,74 +351,216 @@ if add_sp:
# make model with sp.
print('>>> adding sp state to the last model in the previous step...')
fh.make_new_directory(model1sp_dir, existing_dir='leave')
niter = chtk.get_niter_max(model1_dir)
modeln_dir_pre = os.path.join(model1_dir, 'iter'+str(niter))
modeln_dir = os.path.join(model1sp_dir, 'iter0')
chtk.add_sp(modeln_dir_pre, modeln_dir)
print("elapsed time: {}".format(time.time() - timer_start))
fh.make_new_directory(model_mono1sp_dir, existing_dir='leave')
niter = chtk.get_niter_max(model_mono1_dir)
modeln_dir_pre = os.path.join(model_mono1_dir, 'iter'+str(niter))
modeln_dir = os.path.join(model_mono1sp_dir, 'iter0')
chtk.add_sp(modeln_dir_pre, modeln_dir)
print('>>> re-estimation...')
niter = chtk.re_estimation_until_saturated(
model1sp_dir, modeln_dir, improvement_threshold, hcompv_scp_train,
model_mono1sp_dir, modeln_dir, improvement_threshold, hcompv_scp_train,
os.path.join(htk_stimmen_dir, 'mfc'),
'mfc',
os.path.join(htk_stimmen_dir, 'word_lattice.ltc'),
mlf_file=mlf_file_train,
lexicon_file=os.path.join(htk_stimmen_dir, 'lexicon_recognition.dic'),
mlf_file=mlf_file_train_with_sp,
lexicon=os.path.join(htk_stimmen_dir, 'lexicon_recognition.dic'),
model_type='monophone_with_sp'
)
print("elapsed time: {}".format(time.time() - timer_start))
## ======================= train model with re-aligned mlf =======================
if train_model_with_re_aligned_mlf:
print('==== traina model with re-aligned mlf ====')
if train_monophone_with_re_aligned_mlf:
print('==== traina monophone with re-aligned mlf ====')
timer_start = time.time()
print('>>> re-aligning the training data... ')
timer_start = time.time()
niter = chtk.get_niter_max(model1sp_dir)
modeln_dir = os.path.join(model1sp_dir, 'iter'+str(niter))
niter = chtk.get_niter_max(model_mono1sp_dir)
modeln_dir = os.path.join(model_mono1sp_dir, 'iter'+str(niter))
chtk.make_aligned_label(
os.path.join(modeln_dir, 'macros'),
os.path.join(modeln_dir, 'hmmdefs'),
mlf_file_train_aligned,
os.path.join(label_dir, 'train_word.mlf'),
mlf_file_train_word,
hcompv_scp_train)
print("elapsed time: {}".format(time.time() - timer_start))
chtk.fix_mlf(mlf_file_train_aligned)
print('>>> updating the script file... ')
chtk.update_script_file(
mlf_file_train_aligned,
mlf_file_train_with_sp,
hcompv_scp_train,
hcompv_scp_train_updated)
print('>>> re-estimation... ')
timer_start = time.time()
fh.make_new_directory(model1sp2_dir, existing_dir='leave')
niter = chtk.get_niter_max(model1sp_dir)
fh.make_new_directory(model_mono1sp2_dir, existing_dir='leave')
niter = chtk.get_niter_max(model_mono1sp_dir)
niter = chtk.re_estimation_until_saturated(
model1sp2_dir,
os.path.join(model1sp_dir, 'iter'+str(niter)),
model_mono1sp2_dir,
os.path.join(model_mono1sp_dir, 'iter'+str(niter)),
improvement_threshold,
hcompv_scp_train,
hcompv_scp_train_updated,
os.path.join(htk_stimmen_dir, 'mfc'),
'mfc',
os.path.join(htk_stimmen_dir, 'word_lattice.ltc'),
mlf_file=mlf_file_train,
lexicon_file=os.path.join(htk_stimmen_dir, 'lexicon_recognition.dic'),
mlf_file=mlf_file_train_aligned,
lexicon=os.path.join(htk_stimmen_dir, 'lexicon_recognition.dic'),
model_type='monophone_with_sp'
)
print("elapsed time: {}".format(time.time() - timer_start))
## ======================= increase mixture =======================
if increase_mixture:
print('==== increase mixture ====')
timer_start = time.time()
for nmix in [2, 4, 8, 16]:
if nmix == 2:
modeln_dir_ = model_mono1sp2_dir
else:
modeln_dir_ = os.path.join(model_dir, 'mono'+str(nmix_))
modeln_dir = os.path.join(model_dir, 'mono'+str(nmix))
print('mixture: {}'.format(nmix))
fh.make_new_directory(modeln_dir, existing_dir='delete')
niter = chtk.get_niter_max(modeln_dir_)
chtk.increase_mixture(
os.path.join(modeln_dir_, 'iter'+str(niter), 'hmmdefs'),
nmix,
os.path.join(modeln_dir, 'iter0'),
model_type='monophone_with_sp')
shutil.copy2(os.path.join(modeln_dir_, 'iter'+str(niter), 'macros'),
os.path.join(modeln_dir, 'iter0', 'macros'))
#improvement_threshold = -10
niter = chtk.re_estimation_until_saturated(
modeln_dir,
os.path.join(modeln_dir_, 'iter0'),
improvement_threshold,
hcompv_scp_train_updated,
os.path.join(htk_stimmen_dir, 'mfc'),
'mfc',
os.path.join(htk_stimmen_dir, 'word_lattice.ltc'),
mlf_file=mlf_file_train_aligned,
lexicon=os.path.join(htk_stimmen_dir, 'lexicon_recognition.dic'),
model_type='monophone_with_sp'
)
nmix_ = nmix
print("elapsed time: {}".format(time.time() - timer_start))
## ======================= train triphone =======================
print('>>> making triphone list... ')
chtk.make_triphonelist(
mlf_file_train_aligned,
triphone_mlf)
if train_triphone:
triphone_mlf = os.path.join(default.htk_dir, 'label', 'train_triphone.mlf')
macros = os.path.join(model_dir, 'hmm1_tri', 'iter0', 'macros')
hmmdefs = os.path.join(model_dir, 'hmm1_tri', 'iter0', 'hmmdefs')
model_out_dir = os.path.join(model_dir, 'hmm1_tri', 'iter1')
run_command([
'HERest', '-B',
'-C', config_train,
'-I', triphone_mlf,
'-t', '250.0', '150.0', '1000.0',
'-s', 'stats'
'-S', hcompv_scp_train,
'-H', macros,
'-H', hmmdefs,
'-M', model_out_dir,
os.path.join(config_dir, 'triphonelist.txt')
])
print('==== train triphone model ====')
timer_start = time.time()
print('>>> init triphone model... ')
niter = chtk.get_niter_max(model_mono1sp2_dir)
fh.make_new_directory(os.path.join(model_tri1_dir, 'iter0'), existing_dir='leave')
chtk.init_triphone(
os.path.join(model_mono1sp2_dir, 'iter'+str(niter)),
os.path.join(model_tri1_dir, 'iter0')
)
print('>>> re-estimation... ')
## I wanted to train until satulated:
#niter = chtk.re_estimation_until_saturated(
# model_tri1_dir,
# os.path.join(model_tri1_dir, 'iter0'),
# improvement_threshold,
# hcompv_scp_train_updated,
# os.path.join(htk_stimmen_dir, 'mfc'),
# 'mfc',
# os.path.join(htk_stimmen_dir, 'word_lattice.ltc'),
# mlf_file=triphone_mlf,
# lexicon=os.path.join(htk_stimmen_dir, 'lexicon_recognition.dic'),
# model_type='triphone'
# )
#
# but because the data size is limited, some triphone cannot be trained and received the error:
# ERROR [+8231] GetHCIModel: Cannot find hmm [i:-]r[+???]
# therefore only two times re-estimation is performed.
output_dir = model_tri1_dir
for niter in range(1, 4):
hmm_n = 'iter' + str(niter)
hmm_n_pre = 'iter' + str(niter-1)
_modeln_dir = os.path.join(output_dir, hmm_n)
_modeln_dir_pre = os.path.join(output_dir, hmm_n_pre)
fh.make_new_directory(_modeln_dir, 'leave')
chtk.re_estimation(
os.path.join(_modeln_dir_pre, 'hmmdefs'),
_modeln_dir,
hcompv_scp_train_updated,
mlf_file=triphone_mlf,
macros=os.path.join(_modeln_dir_pre, 'macros'),
model_type='triphone')
print("elapsed time: {}".format(time.time() - timer_start))
## ======================= train tied-state triphones =======================
if train_triphone_tied:
print('==== train tied-state triphones ====')
timer_start = time.time()
print('>>> making lexicon for triphone... ')
chtk.make_lexicon_triphone(phonelist_full_txt, lexicon_htk_triphone)
chtk.combine_phonelists(phonelist_full_txt)
print('>>> making a tree header... ')
fame_phonetics.make_quests_hed(quests_hed)
stats = os.path.join(r'c:\OneDrive\Research\rug\experiments\acoustic_model\fame\htk\model\tri1\iter3', 'stats')
chtk.make_tree_header(tree_hed, quests_hed, stats, config_dir)
print('>>> init triphone model... ')
niter = chtk.get_niter_max(model_tri1_dir)
fh.make_new_directory(os.path.join(model_tri1tied_dir, 'iter0'), existing_dir='leave')
chtk.init_triphone(
os.path.join(model_tri1_dir, 'iter'+str(niter)),
os.path.join(model_tri1tied_dir, 'iter0'),
tied=True)
# I wanted to train until satulated:
#niter = chtk.re_estimation_until_saturated(
# model_tri1tied_dir,
# os.path.join(model_tri1tied_dir, 'iter0'),
# improvement_threshold,
# hcompv_scp_train_updated,
# os.path.join(htk_stimmen_dir, 'mfc'),
# 'mfc',
# os.path.join(htk_stimmen_dir, 'word_lattice.ltc'),
# mlf_file=triphone_mlf,
# lexicon=os.path.join(htk_stimmen_dir, 'lexicon_recognition.dic'),
# model_type='triphone'
# )
#
# but because the data size is limited, some triphone cannot be trained and received the error:
# ERROR [+8231] GetHCIModel: Cannot find hmm [i:-]r[+???]
# therefore only 3 times re-estimation is performed.
output_dir = model_tri1tied_dir
for niter in range(1, 4):
hmm_n = 'iter' + str(niter)
hmm_n_pre = 'iter' + str(niter-1)
_modeln_dir = os.path.join(output_dir, hmm_n)
_modeln_dir_pre = os.path.join(output_dir, hmm_n_pre)
fh.make_new_directory(_modeln_dir, 'leave')
chtk.re_estimation(
os.path.join(_modeln_dir_pre, 'hmmdefs'),
_modeln_dir,
hcompv_scp_train_updated,
mlf_file=triphone_mlf,
macros=os.path.join(_modeln_dir_pre, 'macros'),
model_type='triphone')
print("elapsed time: {}".format(time.time() - timer_start))

View File

@ -109,30 +109,30 @@ np.save(os.path.join('phoneset', 'fame_ipa2asr.npy'), translation_key_ipa2asr)
## check which letters are not coded in ascii.
print('asr phones which cannot be coded in ascii:\n')
for i in fame_asr.phoneset_short:
try:
i_encoded = i.encode("ascii")
#print("{0} --> {1}".format(i, i.encode("ascii")))
except UnicodeEncodeError:
print(">>> {}".format(i))
#print('asr phones which cannot be coded in ascii:\n')
#for i in fame_asr.phoneset_short:
# try:
# i_encoded = i.encode("ascii")
# #print("{0} --> {1}".format(i, i.encode("ascii")))
# except UnicodeEncodeError:
# print(">>> {}".format(i))
print("letters in the scripts which is not coded in ascii:\n")
for dataset in ['train', 'devel', 'test']:
timer_start = time.time()
#print("letters in the scripts which is not coded in ascii:\n")
#for dataset in ['train', 'devel', 'test']:
# timer_start = time.time()
script_list = os.path.join(default.fame_dir, 'data', dataset, 'text')
with open(script_list, "rt", encoding="utf-8") as fin:
scripts = fin.read().split('\n')
# script_list = os.path.join(default.fame_dir, 'data', dataset, 'text')
# with open(script_list, "rt", encoding="utf-8") as fin:
# scripts = fin.read().split('\n')
for line in scripts:
sentence = ' '.join(line.split(' ')[1:])
sentence_htk = fame_functions.word2htk(sentence)
# for line in scripts:
# sentence = ' '.join(line.split(' ')[1:])
# sentence_htk = fame_functions.word2htk(sentence)
#if len(re.findall(r'[âêôûč\'àéèúćäëïöü]', sentence))==0:
try:
sentence_htk = bytes(sentence_htk, 'ascii')
except UnicodeEncodeError:
print(sentence)
print(sentence_htk)
# #if len(re.findall(r'[âêôûč\'àéèúćäëïöü]', sentence))==0:
# try:
# sentence_htk = bytes(sentence_htk, 'ascii')
# except UnicodeEncodeError:
# print(sentence)
# print(sentence_htk)

View File

@ -1,20 +1,19 @@
## this script should be used only by Aki Kunikoshi.
import os
import numpy as np
import pandas as pd
import argparse
import json
from novoapi.backend import session
import os
#os.chdir(r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model')
import defaultfiles as default
import convert_phoneset
def load_phonset():
translation_key_ipa2novo70 = dict()
translation_key_novo702ipa = dict()
def load_novo70_phoneset():
#phonelist_novo70_ = pd.ExcelFile(default.phonelist_novo70_xlsx)
#df = pd.read_excel(phonelist_novo70_, 'list')
## *_simple includes columns which has only one phone in.
@ -23,21 +22,23 @@ def load_phonset():
# print('{0}:{1}'.format(ipa, novo70))
# translation_key[ipa] = novo70
#phonelist_novo70 = np.unique(list(df['novo70_simple']))
novo70_phoneset = pd.read_csv(default.novo70_phoneset, delimiter='\t', header=None, encoding="utf-8")
novo70_phoneset.rename(columns={0: 'novo70', 1: 'ipa', 2: 'description'}, inplace=True)
phoneset_ipa = []
phoneset_novo70 = []
with open(default.novo70_phoneset, "rt", encoding="utf-8") as fin:
lines = fin.read()
lines = lines.split('\n')
for line in lines:
words = line.split('\t')
if len(words) > 1:
novo70 = words[0]
ipa = words[1]
phoneset_ipa.append(ipa)
phoneset_novo70.append(novo70)
translation_key_ipa2novo70[ipa] = novo70
translation_key_novo702ipa[novo70] = ipa
#phoneset_ipa = []
#phoneset_novo70 = []
#with open(default.novo70_phoneset, "rt", encoding="utf-8") as fin:
# lines = fin.read()
# lines = lines.split('\n')
# for line in lines:
# words = line.split('\t')
# if len(words) > 1:
# novo70 = words[0]
# ipa = words[1]
# phoneset_ipa.append(ipa)
# phoneset_novo70.append(novo70)
# translation_key_ipa2novo70[ipa] = novo70
# translation_key_novo702ipa[novo70] = ipa
# As per Nederlandse phoneset_aki.xlsx recieved from David
# [ɔː] oh / ohr # from ipa->novo70, only oh is used.
@ -47,15 +48,26 @@ def load_phonset():
# [ɛː] eh
# [w] wv in IPA written as ʋ.
extra_ipa = ['ɔː', 'ɪː', 'iː', 'œː', 'ɛː', 'ʋ']
extra_novo70 = ['oh', 'ih', 'iy', 'uh', 'eh', 'wv']
for ipa, novo70 in zip(extra_ipa, extra_novo70):
phoneset_ipa.append(ipa)
phoneset_novo70.append(novo70)
extra_novo70 = ['oh', 'ih', 'iy', 'uh', 'eh', 'wv']
phoneset_ipa = list(novo70_phoneset['ipa'])
phoneset_ipa.extend(extra_ipa)
phoneset_ipa = [i.replace('ː', ':') for i in phoneset_ipa]
phoneset_novo70 = list(novo70_phoneset['novo70'])
phoneset_novo70.extend(extra_novo70)
phoneset_novo70 = [i.replace('ː', ':') for i in phoneset_novo70]
translation_key_ipa2novo70 = dict()
translation_key_novo702ipa = dict()
for ipa, novo70 in zip(phoneset_ipa, phoneset_novo70):
#phoneset_ipa.append(ipa)
#phoneset_novo70.append(novo70)
translation_key_ipa2novo70[ipa] = novo70
translation_key_novo702ipa[novo70] = ipa
translation_key_novo702ipa['ohr'] = 'ɔː'
translation_key_novo702ipa['ihr'] = 'ɪː'
translation_key_novo702ipa['ohr'] = 'ɔ:'
translation_key_novo702ipa['ihr'] = 'ɪ:'
phoneset_ipa = np.unique(phoneset_ipa)
phoneset_novo70 = np.unique(phoneset_novo70)
@ -63,25 +75,6 @@ def load_phonset():
return phoneset_ipa, phoneset_novo70, translation_key_ipa2novo70, translation_key_novo702ipa
def multi_character_tokenize(line, multi_character_tokens):
"""
Tries to match one of the tokens in multi_character_tokens at each position of line,
starting at position 0,
if so tokenizes and eats that token. Otherwise tokenizes a single character.
Copied from forced_alignment.convert_phone_set.py
"""
while line != '':
for token in multi_character_tokens:
if line.startswith(token) and len(token) > 0:
yield token
line = line[len(token):]
break
else:
yield line[:1]
line = line[1:]
def split_ipa(line):
"""
Split a line by IPA phones.
@ -89,13 +82,16 @@ def split_ipa(line):
:param string line: one line written in IPA.
:return string lineSeperated: the line splitted in IPA phone.
"""
phoneset_ipa, _, _, _ = load_novo70_phoneset()
#multi_character_phones = [i for i in phoneset_ipa if len(i) > 1]
#multi_character_phones.sort(key=len, reverse=True)
#multi_character_phones = [
# # IPAs in CGN.
# u'ʌu', u'ɛi', u'œy', u'aː', u'eː', u'iː', u'oː', u'øː', u'ɛː', u'œː', u'ɔː', u'ɛ̃ː', u'ɑ̃ː', u'ɔ̃ː', u'œ̃', u'ɪː'
# ]
#return [phone for phone in multi_character_tokenize(line.strip(), multi_character_phones)]
multi_character_phones = [
# IPAs in CGN.
u'ʌu', u'ɛi', u'œy', u'aː', u'eː', u'iː', u'oː', u'øː', u'ɛː', u'œː', u'ɔː', u'ɛ̃ː', u'ɑ̃ː', u'ɔ̃ː', u'œ̃', u'ɪː'
]
return [phone for phone in multi_character_tokenize(line.strip(), multi_character_phones)]
return convert_phoneset.split_word(line, phoneset_ipa)
def split_novo70(line):
@ -104,30 +100,33 @@ def split_novo70(line):
:param string line: one line written in novo70.
:return string lineSeperated: the line splitted by novo70 phones.
"""
_, phoneset_novo70, _, _ = load_phonset()
multi_character_phones = [p for p in phoneset_novo70 if len(p) > 1]
multi_character_phones = sorted(multi_character_phones, key=len, reverse=True)
_, phoneset_novo70, _, _ = load_novo70_phoneset()
#multi_character_phones = [p for p in phoneset_novo70 if len(p) > 1]
#multi_character_phones = sorted(multi_character_phones, key=len, reverse=True)
multi_character_phones = convert_phoneset.extract_multi_character_phones(phoneset_novo70)
return ['sp' if phone == ' ' else phone
for phone in multi_character_tokenize(line.strip(), multi_character_phones)]
def novo702ipa(tokens):
pronunciation = []
_, _, _, translation_key = load_phonset()
for phone in split_novo70(tokens):
pronunciation.append(translation_key.get(phone, phone))
return ' '.join(pronunciation)
def novo702ipa(line):
#pronunciation = []
_, _, _, translation_key = load_novo70_phoneset()
#for phone in split_novo70(tokens):
# pronunciation.append(translation_key.get(phone, phone))
#return ' '.join(pronunciation)
return ' '.join(convert_phoneset.convert_phoneset(split_novo70(line), translation_key))
# numbering of novo70 should be checked.
def ipa2novo70(tokens):
pronunciation = []
_, _, translation_key, _ = load_phonset()
for phone in split_ipa(tokens):
pronunciation.append(translation_key.get(phone, phone))
return ' '.join(pronunciation)
def ipa2novo70(line):
#pronunciation = []
_, _, translation_key, _ = load_novo70_phoneset()
#for phone in split_ipa(tokens):
# pronunciation.append(translation_key.get(phone, phone))
#return ' '.join(pronunciation)
return ' '.join(convert_phoneset.convert_phoneset(split_ipa(line), translation_key))
def make_grammar(word, pronunciation_ipa):
"""
@ -174,6 +173,9 @@ def forced_alignment(wav_file, word, pronunciation_ipa):
p = argparse.ArgumentParser()
p.add_argument("--user", default='martijn.wieling')
p.add_argument("--password", default='xxxxxx')
args = p.parse_args()
rec = session.Recognizer(grammar_version="1.0", lang="nl", snodeid=101, user=args.user, password=args.password, keepopen=True) # , modeldir=modeldir)
@ -194,6 +196,25 @@ def result2pronunciation(result, word):
return pronunciation_ipa, pronunciation_novo70, llh
def phones_not_in_novo70(ipa):
""" extract phones which is not in novo70 phoneset. """
phoneset_ipa, _, _, _ = load_novo70_phoneset()
# As per Nederlandse phoneset_aki.xlsx recieved from David
# [ɔː] oh / ohr
# [ɪː] ih / ihr
# [iː] iy
# [œː] uh
# [ɛː] eh
# [w] wv in IPA written as ʋ.
david_suggestion = ['ɔː', 'ɪː', 'iː', 'œː', 'ɛː', 'w']
return [phone for phone in split_ipa(ipa)
if not phone in phoneset_ipa and not phone in david_suggestion]
if __name__ == 'main':
pronunciation_ipa = ['rø:s', 'mɑn', 'mɑntsjə']
grammar = make_grammar('reus', pronunciation_ipa)
#grammar = make_grammar('reus', pronunciation_ipa)
phoneset_ipa, phoneset_novo70, translation_key_ipa2novo70, translation_key_novo702ipa = load_novo70_phoneset()

View File

@ -80,8 +80,11 @@ def phone_reduction(phones):
Args:
phones (list): list of phones.
"""
if sum([phone in phones for phone in phones_to_be_removed]) != 0:
print('input includes phone(s) which is not defined in fame_asr.')
print('those phone(s) are removed.')
return [reduction_key.get(i, i) for i in phones
if not i in phones_to_be_removed]
if i not in phones_to_be_removed]
phoneset_short = list(set(phone_reduction(phoneset)))
phoneset_short.sort()
@ -96,7 +99,7 @@ translation_key_asr2htk = {
'': 'u_',
# on the analogy of German umlaut, 'e' is used.
'ö': 'oe', 'ö:': 'oe:',
'ö': 'oe', 'ö:': 'oe:', ''
'ü': 'ue', 'ü:': 'ue:',
# on the analogy of Chinese...

View File

@ -61,7 +61,7 @@ phoneset = [
'ɔⁿ',
'ɔ:',
'ɔ:ⁿ',
#'ɔ̈', # not included in lex.ipa
'ɔ̈', # not included in lex.ipa
'ɔ̈.',
'ɔ̈:',

View File

@ -0,0 +1,197 @@
import sys
import os
os.chdir(r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model')
import fame_functions
from phoneset import fame_ipa, fame_asr
import convert_phoneset
## general
stop = 'p, b, t, d, k, g'
nasal = 'm, n, ŋ'
fricative = 's, z, f, v, h, x, j'
liquid = 'l, r'
vowel = 'a, a:, e:, i, i:, i̯, o, o:, u, u:, ṷ, ö, ö:, ü, ü:, ɔ, ɔ:, ɔ̈, ə, ɛ, ɛ:, ɪ, ɪ:'
## consonant
c_front = 'p, b, m, f, v'
c_central = 't, d, n, s, z, l, r'
c_back = 'k, g, ŋ, h, x, j'
fortis = 'p, t, k, f, s'
lenis = 'b, d, g, v, z, j'
neither_fortis_nor_lenis = 'm, n, ŋ, h, l, r, x'
coronal = 't, d, n, s, z, l, r, j'
non_coronal = 'p, b, m, k, g, ŋ, f, v, h, x'
anterior = 'p, b, m, t, d, n, f, v, s, z, l'
non_anterior = 'k, g, ŋ, h, x, j, r'
continuent = 'm, n, ŋ, f, v, s, z, h, l, r'
non_continuent = 'p, b, t, d, k, g, x, j'
strident = 's, z, j'
non_strident = 'f, v, h'
unstrident = 'p, b, t, d, m, n, ŋ, k, g, r, x'
glide = 'h, l, r'
syllabic = 'm, l, ŋ'
unvoiced = 'p, t, k, s, f, x, h'
voiced = 'b, d, g, z, v, m, n, ŋ, l, r, j'
#affricate: ???
non_affricate = 's, z, f, v'
voiced_stop = 'b, d, g'
unvoiced_stop = 'p, t, k'
front_stop = 'p, b'
central_stop = 't, d'
back_stop = 'k, g'
voiced_fricative = 'z, v'
unvoiced_fricative = 's, f'
front_fricative = 'f, v'
central_fricative = 's, z'
back_fricative = 'j'
## vowel
v_front = 'i, i:, i̯, ɪ, ɪ:, e:, ə, ɛ, ɛ:, a, a:'
v_central = 'ə, ɛ, ɛ:, a, a:'
v_back = 'u, u:, ü, ü:, ṷ, ɔ, ɔ:, ɔ̈, ö, ö:, o, o:'
long = 'a:, e:, i:, o:, u:, ö:, ü:, ɔ:, ɛ:, ɪ:'
short = 'a, i, i̯, o, u, ṷ, ö, ü, ɔ, ɔ̈, ə, ɛ, ɪ'
#Dipthong: ???
#Front-Start: ???
#Fronting: ???
high = 'i, i:, i̯, ɪ, ɪ: u, u:, ṷ, ə, e:, o, o:, ö, ö:, ü, ü:'
medium = 'e:, ə, ɛ, ɛ:, ɔ, ɔ:, ɔ̈, o, o:, ö, ö:'
low = 'a, a:, ɛ, ɛ:, ɔ, ɔ:, ɔ̈'
rounded = 'a, a:, o, o:, u, u:, ṷ, ö, ö:, ü, ü:, ɔ, ɔ:, ɔ̈'
unrounded = 'i, i:, i̯, e:, ə, ɛ, ɛ:, ɪ, ɪ:'
i_vowel = 'i, i:, i̯, ɪ, ɪ:'
e_vowel = 'e:,ə, ɛ, ɛ:'
a_vowel = 'a, a:'
o_vowel = 'o, o:, ö, ö:, ɔ, ɔ:, ɔ̈'
u_vowel = 'u, u:, ṷ, ü, ü:'
## htk phoneset
phoneset = fame_asr.phoneset_htk
## convert ipa group to htk format for quests.hed.
def _ipa2quest(R_or_L, ipa_text):
assert R_or_L in ['R', 'L'], print('the first argument should be either R or L.')
ipa_list = ipa_text.replace(' ', '').split(',')
if R_or_L == 'R':
quests_list = ['*+' + fame_functions.ipa2htk(ipa) for ipa in ipa_list]
else:
quests_list = [fame_functions.ipa2htk(ipa) + '-*' for ipa in ipa_list]
return ','.join(quests_list)
def make_quests_hed(quest_hed):
def _add_quests_item(R_or_L, item_name_, ipa_text):
assert R_or_L in ['R', 'L'], print('the first argument should be either R or L.')
item_name = R_or_L + '_' + item_name_
with open(quest_hed, 'ab') as f:
f.write(bytes('QS "' + item_name + '"\t{ ' + _ipa2quest(R_or_L, ipa_text) + ' }\n', 'ascii'))
if os.path.exists(quest_hed):
os.remove(quest_hed)
for R_or_L in ['R', 'L']:
_add_quests_item(R_or_L, 'NonBoundary', '*')
_add_quests_item(R_or_L, 'Silence', 'sil')
_add_quests_item(R_or_L, 'Stop', stop)
_add_quests_item(R_or_L, 'Nasal', nasal)
_add_quests_item(R_or_L, 'Fricative', fricative)
_add_quests_item(R_or_L, 'Liquid', liquid)
_add_quests_item(R_or_L, 'Vowel', vowel)
_add_quests_item(R_or_L, 'C-Front', c_front)
_add_quests_item(R_or_L, 'C-Central', c_central)
_add_quests_item(R_or_L, 'C-Back', c_back)
_add_quests_item(R_or_L, 'V-Front', v_front)
_add_quests_item(R_or_L, 'V-Central', v_central)
_add_quests_item(R_or_L, 'V-Back', v_back)
_add_quests_item(R_or_L, 'Front', c_front + v_front)
_add_quests_item(R_or_L, 'Central', c_central + v_central)
_add_quests_item(R_or_L, 'Back', c_front + v_back)
_add_quests_item(R_or_L, 'Fortis', fortis)
_add_quests_item(R_or_L, 'Lenis', lenis)
_add_quests_item(R_or_L, 'UnFortLenis', neither_fortis_nor_lenis)
_add_quests_item(R_or_L, 'Coronal', coronal)
_add_quests_item(R_or_L, 'NonCoronal', non_coronal)
_add_quests_item(R_or_L, 'Anterior', anterior)
_add_quests_item(R_or_L, 'NonAnterior', non_anterior)
_add_quests_item(R_or_L, 'Continuent', continuent)
_add_quests_item(R_or_L, 'NonContinuent', non_continuent)
_add_quests_item(R_or_L, 'Strident', strident)
_add_quests_item(R_or_L, 'NonStrident', non_strident)
_add_quests_item(R_or_L, 'UnStrident', unstrident)
_add_quests_item(R_or_L, 'Glide', glide)
_add_quests_item(R_or_L, 'Syllabic', syllabic)
_add_quests_item(R_or_L, 'Unvoiced-Cons', unvoiced)
_add_quests_item(R_or_L, 'Voiced-Cons', voiced)
_add_quests_item(R_or_L, 'Unvoiced-All', unvoiced + ', sil')
_add_quests_item(R_or_L, 'Long', long)
_add_quests_item(R_or_L, 'Short', short)
#_add_quests_item(R_or_L, 'Dipthong', xxx)
#_add_quests_item(R_or_L, 'Front-Start', xxx)
#_add_quests_item(R_or_L, 'Fronting', xxx)
_add_quests_item(R_or_L, 'High', high)
_add_quests_item(R_or_L, 'Medium', medium)
_add_quests_item(R_or_L, 'Low', low)
_add_quests_item(R_or_L, 'Rounded', rounded)
_add_quests_item(R_or_L, 'UnRounded', unrounded)
#_add_quests_item(R_or_L, 'Affricative', rounded)
_add_quests_item(R_or_L, 'NonAffricative', non_affricate)
_add_quests_item(R_or_L, 'IVowel', i_vowel)
_add_quests_item(R_or_L, 'EVowel', e_vowel)
_add_quests_item(R_or_L, 'AVowel', a_vowel)
_add_quests_item(R_or_L, 'OVowel', o_vowel)
_add_quests_item(R_or_L, 'UVowel', u_vowel)
_add_quests_item(R_or_L, 'Voiced-Stop', voiced_stop)
_add_quests_item(R_or_L, 'UnVoiced-Stop', unvoiced_stop)
_add_quests_item(R_or_L, 'Front-Stop', front_stop)
_add_quests_item(R_or_L, 'Central-Stop', central_stop)
_add_quests_item(R_or_L, 'Back-Stop', back_stop)
_add_quests_item(R_or_L, 'Voiced-Fric', voiced_fricative)
_add_quests_item(R_or_L, 'UnVoiced-Fric', unvoiced_fricative)
_add_quests_item(R_or_L, 'Front-Fric', front_fricative)
_add_quests_item(R_or_L, 'Central-Fric', central_fricative)
_add_quests_item(R_or_L, 'Back-Fric', back_fricative)
for p in phoneset:
_add_quests_item(R_or_L, p, p)
return

View File

@ -7,6 +7,7 @@ import pandas as pd
import convert_xsampa2ipa
import defaultfiles as default
import fame_functions
import novoapi_functions
def _load_transcriptions():
@ -67,6 +68,19 @@ def load_transcriptions_clean(clean_wav_dir):
return df_clean
def load_transcriptions_novo70(clean_wav_dir):
""" extract rows of which ipa is written in novo70 phonset. """
df = load_transcriptions_clean(clean_wav_dir)
df_novo70 = pd.DataFrame(index=[], columns=list(df.keys()))
for index, row in df.iterrows():
not_in_novo70 = novoapi_functions.phones_not_in_novo70(row['ipa'])
if len(not_in_novo70) == 0:
df_novo70 = df_novo70.append(row, ignore_index=True)
return df_novo70
def add_row_htk(df):
""" df['htk'] is made from df['ipa'] and added. """
htk = []