1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-25 01:44:33 +01:00
AMR/R/rsi_calc.R

366 lines
16 KiB
R
Raw Normal View History

2018-08-23 00:40:36 +02:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Data Analysis for R #
2018-08-23 00:40:36 +02:00
# #
2019-01-02 23:24:07 +01:00
# SOURCE #
2020-07-08 14:48:06 +02:00
# https://github.com/msberends/AMR #
2018-08-23 00:40:36 +02:00
# #
# LICENCE #
2020-12-27 00:30:28 +01:00
# (c) 2018-2021 Berends MS, Luz CF et al. #
2020-10-08 11:16:03 +02:00
# Developed at the University of Groningen, the Netherlands, in #
# collaboration with non-profit organisations Certe Medical #
# Diagnostics & Advice, and University Medical Center Groningen. #
2018-08-23 00:40:36 +02:00
# #
2019-01-02 23:24:07 +01:00
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
2020-10-08 11:16:03 +02:00
# #
# Visit our website for the full manual and a complete tutorial about #
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
2018-08-23 00:40:36 +02:00
# ==================================================================== #
2019-06-27 11:57:45 +02:00
dots2vars <- function(...) {
2019-08-20 11:40:54 +02:00
# this function is to give more informative output about
# variable names in count_* and proportion_* functions
2020-05-16 13:05:47 +02:00
dots <- substitute(list(...))
as.character(dots)[2:length(dots)]
2019-06-27 11:57:45 +02:00
}
2018-08-23 00:40:36 +02:00
rsi_calc <- function(...,
ab_result,
minimum = 0,
as_percent = FALSE,
only_all_tested = FALSE,
only_count = FALSE) {
meet_criteria(ab_result, allow_class = c("character", "numeric", "integer"), has_length = c(1, 2, 3), .call_depth = 1)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_finite = TRUE, .call_depth = 1)
meet_criteria(as_percent, allow_class = "logical", has_length = 1, .call_depth = 1)
meet_criteria(only_all_tested, allow_class = "logical", has_length = 1, .call_depth = 1)
meet_criteria(only_count, allow_class = "logical", has_length = 1, .call_depth = 1)
data_vars <- dots2vars(...)
2020-07-13 09:17:24 +02:00
2020-05-19 12:08:49 +02:00
dots_df <- switch(1, ...)
if (is.data.frame(dots_df)) {
# make sure to remove all other classes like tibbles, data.tables, etc
dots_df <- as.data.frame(dots_df, stringsAsFactors = FALSE)
}
dots <- eval(substitute(alist(...)))
stop_if(length(dots) == 0, "no variables selected", call = -2)
2020-07-13 09:17:24 +02:00
stop_if("also_single_tested" %in% names(dots),
"`also_single_tested` was replaced by `only_all_tested`.\n",
"Please read Details in the help page (`?proportion`) as this may have a considerable impact on your analysis.", call = -2)
ndots <- length(dots)
2020-06-26 10:21:22 +02:00
if (is.data.frame(dots_df)) {
# data.frame passed with other columns, like: example_isolates %pm>% proportion_S(AMC, GEN)
2020-07-13 09:17:24 +02:00
dots <- as.character(dots)
2020-06-26 10:21:22 +02:00
# remove first element, it's the data.frame
if (length(dots) == 1) {
dots <- character(0)
} else {
dots <- dots[2:length(dots)]
}
if (length(dots) == 0 | all(dots == "df")) {
# for complete data.frames, like example_isolates %pm>% select(AMC, GEN) %pm>% proportion_S()
2020-12-22 00:51:17 +01:00
# and the old rsi function, which has "df" as name of the first argument
x <- dots_df
} else {
# get dots that are in column names already, and the ones that will be once evaluated using dots_df or global env
# this is to support susceptibility(example_isolates, AMC, any_of(some_vector_with_AB_names))
dots <- c(dots[dots %in% colnames(dots_df)],
eval(parse(text = dots[!dots %in% colnames(dots_df)]), envir = dots_df, enclos = globalenv()))
2020-06-26 10:21:22 +02:00
dots_not_exist <- dots[!dots %in% colnames(dots_df)]
stop_if(length(dots_not_exist) > 0, "column(s) not found: ", vector_and(dots_not_exist, quotes = TRUE), call = -2)
2020-06-26 10:21:22 +02:00
x <- dots_df[, dots, drop = FALSE]
2018-08-23 00:40:36 +02:00
}
} else if (ndots == 1) {
# only 1 variable passed (can also be data.frame), like: proportion_S(example_isolates$AMC) and example_isolates$AMC %pm>% proportion_S()
x <- dots_df
2018-08-23 00:40:36 +02:00
} else {
2020-05-19 12:08:49 +02:00
# multiple variables passed without pipe, like: proportion_S(example_isolates$AMC, example_isolates$GEN)
x <- NULL
try(x <- as.data.frame(dots, stringsAsFactors = FALSE), silent = TRUE)
if (is.null(x)) {
# support for example_isolates %pm>% group_by(hospital_id) %pm>% summarise(amox = susceptibility(GEN, AMX))
x <- as.data.frame(list(...), stringsAsFactors = FALSE)
}
2018-08-23 00:40:36 +02:00
}
2019-05-10 16:44:59 +02:00
if (is.null(x)) {
2020-11-10 16:35:56 +01:00
warning_("argument is NULL (check if columns exist): returning NA", call = FALSE)
2020-12-17 16:22:25 +01:00
if (as_percent == TRUE) {
return(NA_character_)
} else {
return(NA_real_)
}
2019-05-10 16:44:59 +02:00
}
2018-08-23 00:40:36 +02:00
print_warning <- FALSE
ab_result <- as.rsi(ab_result)
2018-08-23 00:40:36 +02:00
if (is.data.frame(x)) {
rsi_integrity_check <- character(0)
2019-10-11 17:21:02 +02:00
for (i in seq_len(ncol(x))) {
# check integrity of columns: force <rsi> class
if (!is.rsi(x[, i, drop = TRUE])) {
rsi_integrity_check <- c(rsi_integrity_check, as.character(x[, i, drop = TRUE]))
x[, i] <- suppressWarnings(as.rsi(x[, i, drop = TRUE])) # warning will be given later
2018-08-23 00:40:36 +02:00
print_warning <- TRUE
}
}
if (length(rsi_integrity_check) > 0) {
# this will give a warning for invalid results, of all input columns (so only 1 warning)
rsi_integrity_check <- as.rsi(rsi_integrity_check)
}
2020-07-13 09:17:24 +02:00
x_transposed <- as.list(as.data.frame(t(x), stringsAsFactors = FALSE))
if (only_all_tested == TRUE) {
# no NAs in any column
y <- apply(X = as.data.frame(lapply(x, as.integer), stringsAsFactors = FALSE),
MARGIN = 1,
FUN = min)
numerator <- sum(as.integer(y) %in% as.integer(ab_result), na.rm = TRUE)
denominator <- sum(vapply(FUN.VALUE = logical(1), x_transposed, function(y) !(any(is.na(y)))))
} else {
# may contain NAs in any column
other_values <- setdiff(c(NA, levels(ab_result)), ab_result)
numerator <- sum(vapply(FUN.VALUE = logical(1), x_transposed, function(y) any(y %in% ab_result, na.rm = TRUE)))
denominator <- sum(vapply(FUN.VALUE = logical(1), x_transposed, function(y) !(all(y %in% other_values) & any(is.na(y)))))
}
2018-08-23 00:40:36 +02:00
} else {
# x is not a data.frame
2018-08-23 00:40:36 +02:00
if (!is.rsi(x)) {
x <- as.rsi(x)
print_warning <- TRUE
}
numerator <- sum(x %in% ab_result, na.rm = TRUE)
denominator <- sum(x %in% levels(ab_result), na.rm = TRUE)
2018-08-23 00:40:36 +02:00
}
2018-08-23 00:40:36 +02:00
if (print_warning == TRUE) {
2020-12-27 00:07:00 +01:00
if (message_not_thrown_before("rsi_calc")) {
warning_("Increase speed by transforming to class <rsi> on beforehand:\n",
" your_data %>% mutate_if(is.rsi.eligible, as.rsi)\n",
2021-05-13 15:56:12 +02:00
" your_data %>% mutate(across(where(is.rsi.eligible), as.rsi))",
call = FALSE)
2020-12-27 00:07:00 +01:00
remember_thrown_message("rsi_calc")
}
2018-08-23 00:40:36 +02:00
}
2018-08-23 00:40:36 +02:00
if (only_count == TRUE) {
return(numerator)
2018-08-23 00:40:36 +02:00
}
if (denominator < minimum) {
if (data_vars != "") {
data_vars <- paste(" for", data_vars)
# also add group name if used in dplyr::group_by()
cur_group <- import_fn("cur_group", "dplyr", error_on_fail = FALSE)
if (!is.null(cur_group)) {
group_df <- tryCatch(cur_group(), error = function(e) data.frame())
if (NCOL(group_df) > 0) {
# transform factors to characters
group <- vapply(FUN.VALUE = character(1), group_df, function(x) {
if (is.numeric(x)) {
format(x)
} else if (is.logical(x)) {
as.character(x)
} else {
paste0('"', x, '"')
}
})
data_vars <- paste0(data_vars, " in group: ", paste0(names(group), " = ", group, collapse = ", "))
}
}
}
warning_("Introducing NA: ",
ifelse(denominator == 0, "no", paste("only", denominator)),
" results available",
data_vars,
" (`minimum` = ", minimum, ").", call = FALSE)
2020-09-28 01:08:55 +02:00
fraction <- NA_real_
2018-10-12 16:35:18 +02:00
} else {
fraction <- numerator / denominator
2020-09-28 01:08:55 +02:00
fraction[is.nan(fraction)] <- NA_real_
2018-08-23 00:40:36 +02:00
}
2018-08-23 00:40:36 +02:00
if (as_percent == TRUE) {
percentage(fraction, digits = 1)
2018-08-23 00:40:36 +02:00
} else {
fraction
2018-08-23 00:40:36 +02:00
}
}
2019-05-13 10:10:16 +02:00
2020-05-16 13:05:47 +02:00
rsi_calc_df <- function(type, # "proportion", "count" or "both"
2019-05-13 10:10:16 +02:00
data,
translate_ab = "name",
language = get_locale(),
minimum = 30,
as_percent = FALSE,
combine_SI = TRUE,
combine_IR = FALSE,
combine_SI_missing = FALSE) {
meet_criteria(type, is_in = c("proportion", "count", "both"), has_length = 1, .call_depth = 1)
meet_criteria(data, allow_class = "data.frame", contains_column_class = "rsi", .call_depth = 1)
meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE, .call_depth = 1)
meet_criteria(language, has_length = 1, is_in = c(LANGUAGES_SUPPORTED, ""), allow_NULL = TRUE, allow_NA = TRUE, .call_depth = 1)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_finite = TRUE, .call_depth = 1)
meet_criteria(as_percent, allow_class = "logical", has_length = 1, .call_depth = 1)
meet_criteria(combine_SI, allow_class = "logical", has_length = 1, .call_depth = 1)
meet_criteria(combine_SI_missing, allow_class = "logical", has_length = 1, .call_depth = 1)
2020-02-14 19:54:13 +01:00
check_dataset_integrity()
2019-05-13 10:10:16 +02:00
if (isTRUE(combine_IR) & isTRUE(combine_SI_missing)) {
combine_SI <- FALSE
}
stop_if(isTRUE(combine_SI) & isTRUE(combine_IR), "either `combine_SI` or `combine_IR` can be TRUE, not both", call = -2)
2020-06-25 17:34:50 +02:00
translate_ab <- get_translate_ab(translate_ab)
2020-07-13 09:17:24 +02:00
2020-05-16 13:05:47 +02:00
# select only groups and antibiotics
if (is_null_or_grouped_tbl(data)) {
2020-05-16 13:05:47 +02:00
data_has_groups <- TRUE
groups <- setdiff(names(attributes(data)$groups), ".rows")
data <- data[, c(groups, colnames(data)[vapply(FUN.VALUE = logical(1), data, is.rsi)]), drop = FALSE]
2020-05-16 13:05:47 +02:00
} else {
data_has_groups <- FALSE
data <- data[, colnames(data)[vapply(FUN.VALUE = logical(1), data, is.rsi)], drop = FALSE]
2020-05-16 13:05:47 +02:00
}
2020-05-16 13:05:47 +02:00
data <- as.data.frame(data, stringsAsFactors = FALSE)
if (isTRUE(combine_SI) | isTRUE(combine_IR)) {
for (i in seq_len(ncol(data))) {
if (is.rsi(data[, i, drop = TRUE])) {
data[, i] <- as.character(data[, i, drop = TRUE])
if (isTRUE(combine_SI)) {
data[, i] <- gsub("(I|S)", "SI", data[, i, drop = TRUE])
} else if (isTRUE(combine_IR)) {
data[, i] <- gsub("(I|R)", "IR", data[, i, drop = TRUE])
}
}
2020-05-16 13:05:47 +02:00
}
2019-05-13 10:10:16 +02:00
}
2020-05-16 13:05:47 +02:00
sum_it <- function(.data) {
out <- data.frame(antibiotic = character(0),
interpretation = character(0),
value = double(0),
2020-07-28 18:39:57 +02:00
isolates = integer(0),
2020-05-16 13:05:47 +02:00
stringsAsFactors = FALSE)
if (data_has_groups) {
group_values <- unique(.data[, which(colnames(.data) %in% groups), drop = FALSE])
rownames(group_values) <- NULL
.data <- .data[, which(!colnames(.data) %in% groups), drop = FALSE]
}
for (i in seq_len(ncol(.data))) {
2020-06-09 16:18:03 +02:00
values <- .data[, i, drop = TRUE]
if (isTRUE(combine_SI)) {
values <- factor(values, levels = c("SI", "R"), ordered = TRUE)
} else if (isTRUE(combine_IR)) {
values <- factor(values, levels = c("S", "IR"), ordered = TRUE)
} else {
values <- factor(values, levels = c("S", "I", "R"), ordered = TRUE)
}
col_results <- as.data.frame(as.matrix(table(values)), stringsAsFactors = FALSE)
2020-05-16 13:05:47 +02:00
col_results$interpretation <- rownames(col_results)
col_results$isolates <- col_results[, 1, drop = TRUE]
2020-06-09 16:18:03 +02:00
if (NROW(col_results) > 0 && sum(col_results$isolates, na.rm = TRUE) > 0) {
2020-05-16 13:05:47 +02:00
if (sum(col_results$isolates, na.rm = TRUE) >= minimum) {
col_results$value <- col_results$isolates / sum(col_results$isolates, na.rm = TRUE)
} else {
col_results$value <- rep(NA_real_, NROW(col_results))
}
2020-05-16 20:08:21 +02:00
out_new <- data.frame(antibiotic = ifelse(isFALSE(translate_ab),
colnames(.data)[i],
ab_property(colnames(.data)[i], property = translate_ab, language = language)),
2020-05-16 13:05:47 +02:00
interpretation = col_results$interpretation,
value = col_results$value,
isolates = col_results$isolates,
stringsAsFactors = FALSE)
if (data_has_groups) {
2020-06-09 16:18:03 +02:00
if (nrow(group_values) < nrow(out_new)) {
# repeat group_values for the number of rows in out_new
repeated <- rep(seq_len(nrow(group_values)),
each = nrow(out_new) / nrow(group_values))
group_values <- group_values[repeated, , drop = FALSE]
}
2020-05-16 13:05:47 +02:00
out_new <- cbind(group_values, out_new)
}
out <- rbind(out, out_new, stringsAsFactors = FALSE)
2020-05-16 13:05:47 +02:00
}
}
out
}
# based on pm_apply_grouped_function
apply_group <- function(.data, fn, groups, drop = FALSE, ...) {
grouped <- pm_split_into_groups(.data, groups, drop)
2020-05-16 13:05:47 +02:00
res <- do.call(rbind, unname(lapply(grouped, fn, ...)))
if (any(groups %in% colnames(res))) {
class(res) <- c("grouped_data", class(res))
2020-09-19 11:54:01 +02:00
res <- pm_set_groups(res, groups[groups %in% colnames(res)])
2020-05-16 13:05:47 +02:00
}
res
2019-05-13 10:10:16 +02:00
}
2020-05-16 13:05:47 +02:00
if (data_has_groups) {
out <- apply_group(data, "sum_it", groups)
} else {
out <- sum_it(data)
}
2020-05-16 13:05:47 +02:00
# apply factors for right sorting in interpretation
if (isTRUE(combine_SI)) {
out$interpretation <- factor(out$interpretation, levels = c("SI", "R"), ordered = TRUE)
} else if (isTRUE(combine_IR)) {
out$interpretation <- factor(out$interpretation, levels = c("S", "IR"), ordered = TRUE)
} else {
2020-06-17 01:39:30 +02:00
# don't use as.rsi() here, as it would add the class <rsi> and we would like
# the same data structure as output, regardless of input
out$interpretation <- factor(out$interpretation, levels = c("S", "I", "R"), ordered = TRUE)
2019-05-13 10:10:16 +02:00
}
2020-05-16 13:05:47 +02:00
if (data_has_groups) {
# ordering by the groups and two more: "antibiotic" and "interpretation"
out <- pm_ungroup(out[do.call("order", out[, seq_len(length(groups) + 2)]), ])
2020-05-16 13:05:47 +02:00
} else {
out <- out[order(out$antibiotic, out$interpretation), ]
}
if (type == "proportion") {
out <- subset(out, select = -c(isolates))
} else if (type == "count") {
out$value <- out$isolates
out <- subset(out, select = -c(isolates))
}
rownames(out) <- NULL
out
2019-05-13 10:10:16 +02:00
}
2020-06-25 17:34:50 +02:00
get_translate_ab <- function(translate_ab) {
translate_ab <- as.character(translate_ab)[1L]
if (translate_ab %in% c("TRUE", "official")) {
return("name")
} else if (translate_ab %in% c(NA_character_, "FALSE")) {
return(FALSE)
} else {
translate_ab <- tolower(translate_ab)
stop_ifnot(translate_ab %in% colnames(AMR::antibiotics),
"invalid value for 'translate_ab', this must be a column name of the antibiotics data set\n",
"or TRUE (equals 'name') or FALSE to not translate at all.",
call = FALSE)
translate_ab
}
}