\item{Becker}{a \link{logical} to indicate whether staphylococci should be categorised into coagulase-negative staphylococci ("CoNS") and coagulase-positive staphylococci ("CoPS") instead of their own species, according to Karsten Becker \emph{et al.} (see Source).
\item{Lancefield}{a \link{logical} to indicate whether a beta-haemolytic \emph{Streptococcus} should be categorised into Lancefield groups instead of their own species, according to Rebecca C. Lancefield (see Source). These streptococci will be categorised in their first group, e.g. \emph{Streptococcus dysgalactiae} will be group C, although officially it was also categorised into groups G and L.
\item{minimum_matching_score}{a numeric value to set as the lower limit for the \link[=mo_matching_score]{MO matching score}. When left blank, this will be determined automatically based on the character length of \code{x}, its \link[=microorganisms]{taxonomic kingdom} and \link[=mo_matching_score]{human pathogenicity}.}
\item{allow_uncertain}{a number between \code{0} (or \code{"none"}) and \code{3} (or \code{"all"}), or \code{TRUE} (= \code{2}) or \code{FALSE} (= \code{0}) to indicate whether the input should be checked for less probable results, see \emph{Details}}
\item{keep_synonyms}{a \link{logical} to indicate if old, previously valid taxonomic names must be preserved and not be corrected to currently accepted names. The default is \code{FALSE}, which will return a note if old taxonomic names were processed. The default can be set with \code{options(AMR_keep_synonyms = TRUE)} or \code{options(AMR_keep_synonyms = FALSE)}.}
\item{reference_df}{a \link{data.frame} to be used for extra reference when translating \code{x} to a valid \code{\link{mo}}. See \code{\link[=set_mo_source]{set_mo_source()}} and \code{\link[=get_mo_source]{get_mo_source()}} to automate the usage of your own codes (e.g. used in your analysis or organisation).}
\item{ignore_pattern}{a regular expression (case-insensitive) of which all matches in \code{x} must return \code{NA}. This can be convenient to exclude known non-relevant input and can also be set with the option \code{AMR_ignore_pattern}, e.g. \code{options(AMR_ignore_pattern = "(not reported|contaminated flora)")}.}
\item{language}{language to translate text like "no growth", which defaults to the system language (see \code{\link[=get_AMR_locale]{get_AMR_locale()}})}
\item{info}{a \link{logical} to indicate if a progress bar should be printed if more than 25 items are to be coerced, defaults to \code{TRUE} only in interactive mode}
Use this function to determine a valid microorganism code (\code{\link{mo}}). Determination is done using intelligent rules and the complete taxonomic kingdoms Animalia, Archaea, Bacteria and Protozoa, and most microbial species from the kingdom Fungi (see \emph{Source}). The input can be almost anything: a full name (like \code{"Staphylococcus aureus"}), an abbreviated name (such as \code{"S. aureus"}), an abbreviation known in the field (such as \code{"MRSA"}), or just a genus. See \emph{Examples}.
The algorithm uses data from the List of Prokaryotic names with Standing in Nomenclature (LPSN) and the Global Biodiversity Information Facility (GBIF) (see \link{microorganisms}).
The \code{\link[=as.mo]{as.mo()}} function uses several coercion rules for fast and logical results. It assesses the input matching criteria in the following order:
\enumerate{
\item Human pathogenic prevalence: the function starts with more prevalent microorganisms, followed by less prevalent ones;
\item Taxonomic kingdom: the function starts with determining Bacteria, then Fungi, then Protozoa, then others;
\item Breakdown of input values to identify possible matches.
This will lead to the effect that e.g. \code{"E. coli"} (a microorganism highly prevalent in humans) will return the microbial ID of \emph{Escherichia coli} and not \emph{Entamoeba coli} (a microorganism less prevalent in humans), although the latter would alphabetically come first.
Users can control the coercion rules by setting the \code{allow_uncertain} argument in the \code{\link[=as.mo]{as.mo()}} function. The following values or levels can be used:
\item \code{1}: allow previously accepted (but now invalid) taxonomic names
\item \code{2}: allow all of \code{1}, strip values between brackets, inverse the words of the input, strip off text elements from the end keeping at least two elements;
\item \code{3}: allow all of level \code{1} and \code{2}, strip off text elements from the end, allow any part of a taxonomic name;
\item \code{TRUE} (default): equivalent to \code{2};
The default is \code{allow_uncertain = TRUE}, which is equal to uncertainty level 2. Using \code{allow_uncertain = FALSE} is equal to uncertainty level 0 and will skip all rules. You can also use e.g. \code{as.mo(..., allow_uncertain = 1)} to only allow up to level 1 uncertainty.
There are three helper functions that can be run after using the \code{\link[=as.mo]{as.mo()}} function:
\itemize{
\item Use \code{\link[=mo_uncertainties]{mo_uncertainties()}} to get a \link{data.frame} that prints in a pretty format with all taxonomic names that were guessed. The output contains the matching score for all matches (see \emph{Matching Score for Microorganisms} below).
\item Use \code{\link[=mo_failures]{mo_failures()}} to get a \link{character} \link{vector} with all values that could not be coerced to a valid value.
\item Use \code{\link[=mo_renamed]{mo_renamed()}} to get a \link{data.frame} with all values that could be coerced based on old, previously accepted taxonomic names.
The coercion rules consider the prevalence of microorganisms in humans grouped into three groups, which is available as the \code{prevalence} columns in the \link{microorganisms} data set. The grouping into human pathogenic prevalence is explained in the section \emph{Matching Score for Microorganisms} below.
\item Berends MS \emph{et al.} (2022). \strong{AMR: An R Package for Working with Antimicrobial Resistance Data}. \emph{Journal of Statistical Software}, 104(3), 1-31; \doi{10.18637/jss.v104.i03}
\item Becker K \emph{et al.} (2019). \strong{Implications of identifying the recently defined members of the \emph{S. aureus} complex, \emph{S. argenteus} and \emph{S. schweitzeri}: A position paper of members of the ESCMID Study Group for staphylococci and Staphylococcal Diseases (ESGS).} \emph{Clin Microbiol Infect}; \doi{10.1016/j.cmi.2019.02.028}
\item Becker K \emph{et al.} (2020). \strong{Emergence of coagulase-negative staphylococci} \emph{Expert Rev Anti Infect Ther.} 18(4):349-366; \doi{10.1080/14787210.2020.1730813}
\item Lancefield RC (1933). \strong{A serological differentiation of human and other groups of hemolytic streptococci}. \emph{J Exp Med.} 57(4): 571-95; \doi{10.1084/jem.57.4.571}
\item Berends MS \emph{et al.} (2022). \strong{Trends in Occurrence and Phenotypic Resistance of Coagulase-Negative Staphylococci (CoNS) Found in Human Blood in the Northern Netherlands between 2013 and 2019} \emph{Microorganisms} 10(9), 1801; \doi{10.3390/microorganisms10091801}
\item Parte, AC \emph{et al.} (2020). \strong{List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ.} International Journal of Systematic and Evolutionary Microbiology, 70, 5607-5612; \doi{10.1099/ijsem.0.004332}. Accessed from \url{https://lpsn.dsmz.de} on 12 September, 2022.
\item GBIF Secretariat (November 26, 2021). GBIF Backbone Taxonomy. Checklist dataset \doi{10.15468/39omei}. Accessed from \url{https://www.gbif.org} on 12 September, 2022.
\item Public Health Information Network Vocabulary Access and Distribution System (PHIN VADS). US Edition of SNOMED CT from 1 September 2020. Value Set Name 'Microoganism', OID 2.16.840.1.114222.4.11.1009 (v12). URL: \url{https://phinvads.cdc.gov}
With ambiguous user input in \code{\link[=as.mo]{as.mo()}} and all the \code{\link[=mo_property]{mo_*}} functions, the returned results are chosen based on their matching score using \code{\link[=mo_matching_score]{mo_matching_score()}}. This matching score \eqn{m}, is calculated as:
\item \ifelse{html}{\out{<i>x</i> is the user input;}}{\eqn{x} is the user input;}
\item \ifelse{html}{\out{<i>n</i> is a taxonomic name (genus, species, and subspecies);}}{\eqn{n} is a taxonomic name (genus, species, and subspecies);}
\item \ifelse{html}{\out{<i>l<sub>n</sub></i> is the length of <i>n</i>;}}{l_n is the length of \eqn{n};}
\item \ifelse{html}{\out{<i>lev</i> is the <a href="https://en.wikipedia.org/wiki/Levenshtein_distance">Levenshtein distance function</a>, which counts any insertion, deletion and substitution as 1 that is needed to change <i>x</i> into <i>n</i>;}}{lev is the Levenshtein distance function, which counts any insertion, deletion and substitution as 1 that is needed to change \eqn{x} into \eqn{n};}
\item \ifelse{html}{\out{<i>p<sub>n</sub></i> is the human pathogenic prevalence group of <i>n</i>, as described below;}}{p_n is the human pathogenic prevalence group of \eqn{n}, as described below;}
\item \ifelse{html}{\out{<i>k<sub>n</sub></i> is the taxonomic kingdom of <i>n</i>, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5.}}{l_n is the taxonomic kingdom of \eqn{n}, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5.}
The grouping into human pathogenic prevalence (\eqn{p}) is based on experience from several microbiological laboratories in the Netherlands in conjunction with international reports on pathogen prevalence:
\strong{Group 1} (most prevalent microorganisms) consists of all microorganisms where the taxonomic class is Gammaproteobacteria or where the taxonomic genus is \emph{Enterococcus}, \emph{Staphylococcus} or \emph{Streptococcus}. This group consequently contains all common Gram-negative bacteria, such as \emph{Pseudomonas} and \emph{Legionella} and all species within the order Enterobacterales.
All matches are sorted descending on their matching score and for all user input values, the top match will be returned. This will lead to the effect that e.g., \code{"E. coli"} will return the microbial ID of \emph{Escherichia coli} (\eqn{m = 0.688}, a highly prevalent microorganism found in humans) and not \emph{Entamoeba coli} (\eqn{m = 0.119}, a less prevalent microorganism in humans), although the latter would alphabetically come first.
All data sets in this \code{AMR} package (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.) are publicly and freely available for download in the following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, SAS, and Stata. We also provide tab-separated plain text files that are machine-readable and suitable for input in any software program, such as laboratory information systems. Please visit \href{https://msberends.github.io/AMR/articles/datasets.html}{our website for the download links}. The actual files are of course available on \href{https://github.com/msberends/AMR/tree/main/data-raw}{our GitHub repository}.
The \code{\link[=mo_property]{mo_*}} functions (such as \code{\link[=mo_genus]{mo_genus()}}, \code{\link[=mo_gramstain]{mo_gramstain()}}) to get properties based on the returned code.