2020-06-17 01:39:30 +02:00
# ==================================================================== #
# TITLE #
2021-02-02 23:57:35 +01:00
# Antimicrobial Resistance (AMR) Data Analysis for R #
2020-06-17 01:39:30 +02:00
# #
# SOURCE #
2020-07-08 14:48:06 +02:00
# https://github.com/msberends/AMR #
2020-06-17 01:39:30 +02:00
# #
# LICENCE #
2020-12-27 00:30:28 +01:00
# (c) 2018-2021 Berends MS, Luz CF et al. #
2020-10-08 11:16:03 +02:00
# Developed at the University of Groningen, the Netherlands, in #
# collaboration with non-profit organisations Certe Medical #
# Diagnostics & Advice, and University Medical Center Groningen. #
2020-06-17 01:39:30 +02:00
# #
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
2020-10-08 11:16:03 +02:00
# #
# Visit our website for the full manual and a complete tutorial about #
2021-02-02 23:57:35 +01:00
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
2020-06-17 01:39:30 +02:00
# ==================================================================== #
2021-01-18 16:57:56 +01:00
#' Antibiotic Class Selectors
2020-06-17 01:39:30 +02:00
#'
2021-05-19 22:55:42 +02:00
#' These functions help to filter and select columns with antibiotic test results that are of a specific antibiotic class, without the need to define the columns or antibiotic abbreviations. \strong{\Sexpr{ifelse(as.double(R.Version()$major) + (as.double(R.Version()$minor) / 10) < 3.2, paste0("NOTE: THESE FUNCTIONS DO NOT WORK ON YOUR CURRENT R VERSION. These functions require R version 3.2 or later - you have ", R.version.string, "."), "")}}
2021-01-18 16:57:56 +01:00
#' @inheritSection lifecycle Stable Lifecycle
2021-05-19 22:55:42 +02:00
#' @param ab_class an antimicrobial class, like `"carbapenems"`. The columns `group`, `atc_group1` and `atc_group2` of the [antibiotics] data set will be searched (case-insensitive) for this value.
2021-05-12 18:15:03 +02:00
#' @param only_rsi_columns a [logical] to indicate whether only columns of class `<rsi>` must be selected (defaults to `FALSE`), see [as.rsi()]
2021-01-06 11:16:17 +01:00
#' @details \strong{\Sexpr{ifelse(as.double(R.Version()$major) + (as.double(R.Version()$minor) / 10) < 3.2, paste0("NOTE: THESE FUNCTIONS DO NOT WORK ON YOUR CURRENT R VERSION. These functions require R version 3.2 or later - you have ", R.version.string, "."), "")}}
2021-01-04 12:29:25 +01:00
#'
2021-05-19 22:55:42 +02:00
#'
#' These functions can be used in data set calls for selecting columns and filtering rows, see *Examples*. They support base R, but work more convenient in dplyr functions such as [`select()`][dplyr::select()], [`filter()`][dplyr::filter()] and [`summarise()`][dplyr::summarise()].
#'
#' All columns in the data in which these functions are called will be searched for known antibiotic names, abbreviations, brand names, and codes (ATC, EARS-Net, WHO, etc.) in the [antibiotics] data set. This means that a selector like e.g. [aminoglycosides()] will pick up column names like 'gen', 'genta', 'J01GB03', 'tobra', 'Tobracin', etc.
2021-05-18 00:53:04 +02:00
#'
#' The group of betalactams consists of all carbapenems, cephalosporins and penicillins.
2020-06-17 01:39:30 +02:00
#' @rdname antibiotic_class_selectors
#' @name antibiotic_class_selectors
#' @export
2021-01-18 16:57:56 +01:00
#' @inheritSection AMR Reference Data Publicly Available
#' @inheritSection AMR Read more on Our Website!
2020-06-17 01:39:30 +02:00
#' @examples
2021-01-24 14:48:56 +01:00
#' # `example_isolates` is a data set available in the AMR package.
2020-12-27 20:32:40 +01:00
#' # See ?example_isolates.
#'
2021-05-19 22:55:42 +02:00
#' # Base R ------------------------------------------------------------------
#'
#' # select columns 'IPM' (imipenem) and 'MEM' (meropenem)
2021-02-17 10:58:13 +01:00
#' example_isolates[, carbapenems()]
2021-05-19 22:55:42 +02:00
#'
#' # select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB'
2020-12-27 20:32:40 +01:00
#' example_isolates[, c("mo", aminoglycosides())]
#'
2021-05-19 22:55:42 +02:00
#' # filter using any() or all()
#' example_isolates[any(carbapenems() == "R"), ]
#' subset(example_isolates, any(carbapenems() == "R"))
#'
#' # filter on any or all results in the carbapenem columns (i.e., IPM, MEM):
#' example_isolates[any(carbapenems()), ]
#' example_isolates[all(carbapenems()), ]
#'
#' # filter with multiple antibiotic selectors using c()
#' example_isolates[all(c(carbapenems(), aminoglycosides()) == "R"), ]
#'
#' # filter + select in one go: get penicillins in carbapenems-resistant strains
#' example_isolates[any(carbapenems() == "R"), penicillins()]
#'
#'
#' # dplyr -------------------------------------------------------------------
#'
2020-09-29 23:35:46 +02:00
#' if (require("dplyr")) {
2020-06-17 01:39:30 +02:00
#'
#' # this will select columns 'IPM' (imipenem) and 'MEM' (meropenem):
#' example_isolates %>%
#' select(carbapenems())
#'
#' # this will select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB':
#' example_isolates %>%
#' select(mo, aminoglycosides())
#'
2021-05-19 22:55:42 +02:00
#' # any() and all() work in dplyr's filter() too:
#' example_isolates %>%
#' filter(any(aminoglycosides() == "R"),
#' all(cephalosporins_2nd() == "R"))
#'
#' # also works with c():
#' example_isolates %>%
#' filter(any(c(carbapenems(), aminoglycosides()) == "R"))
#'
#' # not setting any/all will automatically apply all():
#' example_isolates %>%
#' filter(aminoglycosides() == "R")
#' #> i Assuming a filter on all 4 aminoglycosides.
#'
2020-06-17 15:14:37 +02:00
#' # this will select columns 'mo' and all antimycobacterial drugs ('RIF'):
#' example_isolates %>%
#' select(mo, ab_class("mycobact"))
#'
#'
#' # get bug/drug combinations for only macrolides in Gram-positives:
#' example_isolates %>%
2020-11-16 11:03:24 +01:00
#' filter(mo_is_gram_positive()) %>%
2020-06-17 15:14:37 +02:00
#' select(mo, macrolides()) %>%
#' bug_drug_combinations() %>%
#' format()
#'
2020-06-17 01:39:30 +02:00
#'
2020-09-29 23:35:46 +02:00
#' data.frame(some_column = "some_value",
2020-06-17 01:39:30 +02:00
#' J01CA01 = "S") %>% # ATC code of ampicillin
2020-09-29 23:35:46 +02:00
#' select(penicillins()) # only the 'J01CA01' column will be selected
2020-12-27 23:19:41 +01:00
#'
#'
2021-05-19 22:55:42 +02:00
#' # with dplyr 1.0.0 and higher (that adds 'across()'), this is all equal:
2020-12-27 23:19:41 +01:00
#' # (though the row names on the first are more correct)
2021-05-19 22:55:42 +02:00
#' example_isolates[carbapenems() == "R", ]
#' example_isolates %>% filter(carbapenems() == "R")
#' example_isolates %>% filter(across(carbapenems(), ~.x == "R"))
2020-06-17 01:39:30 +02:00
#' }
2021-02-02 23:57:35 +01:00
ab_class <- function ( ab_class ,
2021-02-08 14:18:42 +01:00
only_rsi_columns = FALSE ) {
2021-02-04 16:48:16 +01:00
ab_selector ( ab_class , function_name = " ab_class" , only_rsi_columns = only_rsi_columns )
2020-06-17 15:14:37 +02:00
}
#' @rdname antibiotic_class_selectors
#' @export
2021-02-08 14:18:42 +01:00
aminoglycosides <- function ( only_rsi_columns = FALSE ) {
2021-02-04 16:48:16 +01:00
ab_selector ( " aminoglycoside" , function_name = " aminoglycosides" , only_rsi_columns = only_rsi_columns )
2020-06-17 01:39:30 +02:00
}
2021-05-18 00:53:04 +02:00
#' @rdname antibiotic_class_selectors
#' @export
betalactams <- function ( only_rsi_columns = FALSE ) {
ab_selector ( " carbapenem|cephalosporin|penicillin" , function_name = " betalactams" , only_rsi_columns = only_rsi_columns )
}
2020-06-17 01:39:30 +02:00
#' @rdname antibiotic_class_selectors
#' @export
2021-02-08 14:18:42 +01:00
carbapenems <- function ( only_rsi_columns = FALSE ) {
2021-02-02 23:57:35 +01:00
ab_selector ( " carbapenem" , function_name = " carbapenems" , only_rsi_columns = only_rsi_columns )
2020-06-17 01:39:30 +02:00
}
#' @rdname antibiotic_class_selectors
#' @export
2021-02-08 14:18:42 +01:00
cephalosporins <- function ( only_rsi_columns = FALSE ) {
2021-02-02 23:57:35 +01:00
ab_selector ( " cephalosporin" , function_name = " cephalosporins" , only_rsi_columns = only_rsi_columns )
2020-06-17 01:39:30 +02:00
}
#' @rdname antibiotic_class_selectors
#' @export
2021-02-08 14:18:42 +01:00
cephalosporins_1st <- function ( only_rsi_columns = FALSE ) {
2021-02-02 23:57:35 +01:00
ab_selector ( " cephalosporins.*1" , function_name = " cephalosporins_1st" , only_rsi_columns = only_rsi_columns )
2020-06-17 01:39:30 +02:00
}
#' @rdname antibiotic_class_selectors
#' @export
2021-02-08 14:18:42 +01:00
cephalosporins_2nd <- function ( only_rsi_columns = FALSE ) {
2021-02-02 23:57:35 +01:00
ab_selector ( " cephalosporins.*2" , function_name = " cephalosporins_2nd" , only_rsi_columns = only_rsi_columns )
2020-06-17 01:39:30 +02:00
}
#' @rdname antibiotic_class_selectors
#' @export
2021-02-08 14:18:42 +01:00
cephalosporins_3rd <- function ( only_rsi_columns = FALSE ) {
2021-02-02 23:57:35 +01:00
ab_selector ( " cephalosporins.*3" , function_name = " cephalosporins_3rd" , only_rsi_columns = only_rsi_columns )
2020-06-17 01:39:30 +02:00
}
#' @rdname antibiotic_class_selectors
#' @export
2021-02-08 14:18:42 +01:00
cephalosporins_4th <- function ( only_rsi_columns = FALSE ) {
2021-02-02 23:57:35 +01:00
ab_selector ( " cephalosporins.*4" , function_name = " cephalosporins_4th" , only_rsi_columns = only_rsi_columns )
2020-06-17 01:39:30 +02:00
}
#' @rdname antibiotic_class_selectors
#' @export
2021-02-08 14:18:42 +01:00
cephalosporins_5th <- function ( only_rsi_columns = FALSE ) {
2021-02-02 23:57:35 +01:00
ab_selector ( " cephalosporins.*5" , function_name = " cephalosporins_5th" , only_rsi_columns = only_rsi_columns )
2020-06-17 01:39:30 +02:00
}
#' @rdname antibiotic_class_selectors
#' @export
2021-02-08 14:18:42 +01:00
fluoroquinolones <- function ( only_rsi_columns = FALSE ) {
2021-02-02 23:57:35 +01:00
ab_selector ( " fluoroquinolone" , function_name = " fluoroquinolones" , only_rsi_columns = only_rsi_columns )
2020-06-17 01:39:30 +02:00
}
#' @rdname antibiotic_class_selectors
#' @export
2021-02-08 14:18:42 +01:00
glycopeptides <- function ( only_rsi_columns = FALSE ) {
2021-02-02 23:57:35 +01:00
ab_selector ( " glycopeptide" , function_name = " glycopeptides" , only_rsi_columns = only_rsi_columns )
2020-06-17 01:39:30 +02:00
}
#' @rdname antibiotic_class_selectors
#' @export
2021-02-08 14:18:42 +01:00
macrolides <- function ( only_rsi_columns = FALSE ) {
2021-02-02 23:57:35 +01:00
ab_selector ( " macrolide" , function_name = " macrolides" , only_rsi_columns = only_rsi_columns )
2020-06-17 01:39:30 +02:00
}
#' @rdname antibiotic_class_selectors
#' @export
2021-02-08 14:18:42 +01:00
oxazolidinones <- function ( only_rsi_columns = FALSE ) {
ab_selector ( " oxazolidinone" , function_name = " oxazolidinones" , only_rsi_columns = only_rsi_columns )
}
#' @rdname antibiotic_class_selectors
#' @export
penicillins <- function ( only_rsi_columns = FALSE ) {
2021-02-02 23:57:35 +01:00
ab_selector ( " penicillin" , function_name = " penicillins" , only_rsi_columns = only_rsi_columns )
2020-06-17 01:39:30 +02:00
}
#' @rdname antibiotic_class_selectors
#' @export
2021-02-08 14:18:42 +01:00
tetracyclines <- function ( only_rsi_columns = FALSE ) {
2021-02-02 23:57:35 +01:00
ab_selector ( " tetracycline" , function_name = " tetracyclines" , only_rsi_columns = only_rsi_columns )
2020-06-17 01:39:30 +02:00
}
2021-02-02 23:57:35 +01:00
ab_selector <- function ( ab_class ,
function_name ,
only_rsi_columns ) {
2020-10-19 17:09:19 +02:00
meet_criteria ( ab_class , allow_class = " character" , has_length = 1 , .call_depth = 1 )
meet_criteria ( function_name , allow_class = " character" , has_length = 1 , .call_depth = 1 )
2021-02-08 14:18:42 +01:00
meet_criteria ( only_rsi_columns , allow_class = " logical" , has_length = 1 , .call_depth = 1 )
2021-01-04 12:29:25 +01:00
2021-05-18 11:29:31 +02:00
if ( current_R_older_than ( 3.2 ) ) {
2021-01-06 11:16:17 +01:00
warning_ ( " antibiotic class selectors such as " , function_name ,
" () require R version 3.2 or later - you have " , R.version.string ,
call = FALSE )
2021-01-04 12:29:25 +01:00
return ( NULL )
}
2021-01-03 23:40:05 +01:00
vars_df <- get_current_data ( arg_name = NA , call = -3 )
2021-02-08 14:18:42 +01:00
2021-01-22 10:20:41 +01:00
# improve speed here so it will only run once when e.g. in one select call
if ( ! identical ( pkg_env $ ab_selector , unique_call_id ( ) ) ) {
2021-05-18 00:53:04 +02:00
ab_in_data <- get_column_abx ( vars_df , info = FALSE , only_rsi_columns = only_rsi_columns , sort = FALSE )
2021-01-22 10:20:41 +01:00
pkg_env $ ab_selector <- unique_call_id ( )
pkg_env $ ab_selector_cols <- ab_in_data
} else {
ab_in_data <- pkg_env $ ab_selector_cols
}
2020-06-17 15:14:37 +02:00
2020-06-17 01:39:30 +02:00
if ( length ( ab_in_data ) == 0 ) {
2020-10-27 15:56:51 +01:00
message_ ( " No antimicrobial agents found." )
2020-06-17 01:39:30 +02:00
return ( NULL )
}
2020-06-17 15:14:37 +02:00
2020-06-17 01:39:30 +02:00
ab_reference <- subset ( antibiotics ,
group %like% ab_class |
atc_group1 %like% ab_class |
atc_group2 %like% ab_class )
ab_group <- find_ab_group ( ab_class )
2020-06-17 15:14:37 +02:00
if ( ab_group == " " ) {
ab_group <- paste0 ( " '" , ab_class , " '" )
examples <- " "
} else {
examples <- paste0 ( " (such as " , find_ab_names ( ab_class , 2 ) , " )" )
}
2020-06-17 01:39:30 +02:00
# get the columns with a group names in the chosen ab class
agents <- ab_in_data [names ( ab_in_data ) %in% ab_reference $ ab ]
2021-05-18 00:53:04 +02:00
2020-12-27 23:19:41 +01:00
if ( message_not_thrown_before ( function_name ) ) {
if ( length ( agents ) == 0 ) {
message_ ( " No antimicrobial agents of class " , ab_group , " found" , examples , " ." )
} else {
2021-02-08 14:18:42 +01:00
agents_formatted <- paste0 ( " '" , font_bold ( agents , collapse = NULL ) , " '" )
2021-01-06 11:16:17 +01:00
agents_names <- ab_name ( names ( agents ) , tolower = TRUE , language = NULL )
2021-01-24 23:27:11 +01:00
need_name <- tolower ( gsub ( " [^a-zA-Z]" , " " , agents ) ) != tolower ( gsub ( " [^a-zA-Z]" , " " , agents_names ) )
2021-01-22 10:20:41 +01:00
agents_formatted [need_name ] <- paste0 ( agents_formatted [need_name ] ,
" (" , agents_names [need_name ] , " )" )
2021-05-19 22:55:42 +02:00
message_ ( " For `" , function_name , " (" , ifelse ( function_name == " ab_class" , paste0 ( " \"" , ab_class , " \"" ) , " " ) , " )` using " ,
ifelse ( length ( agents ) == 1 , " column: " , " columns: " ) ,
2021-05-18 11:29:31 +02:00
vector_and ( agents_formatted , quotes = FALSE ) )
2020-12-27 23:19:41 +01:00
}
2021-01-22 10:20:41 +01:00
remember_thrown_message ( function_name )
}
2021-05-19 22:55:42 +02:00
if ( ! is.null ( attributes ( vars_df ) $ type ) &&
attributes ( vars_df ) $ type %in% c ( " dplyr_cur_data_all" , " base_R" ) &&
! any ( as.character ( sys.calls ( ) ) %like% paste0 ( " (across|if_any|if_all)\\((c\\()?[a-z(), ]*" , function_name ) ) ) {
structure ( unname ( agents ) ,
class = c ( " ab_selector" , " character" ) )
} else {
# don't return with "ab_selector" class if method is a dplyr selector,
# dplyr::select() will complain:
# > Subscript has the wrong type `ab_selector`.
# > It must be numeric or character.
unname ( agents )
}
}
#' @method c ab_selector
#' @export
#' @noRd
c.ab_selector <- function ( ... ) {
structure ( unlist ( lapply ( list ( ... ) , as.character ) ) ,
class = c ( " ab_selector" , " character" ) )
}
all_any_ab_selector <- function ( type , ... , na.rm = TRUE ) {
cols_ab <- c ( ... )
result <- cols_ab [toupper ( cols_ab ) %in% c ( " R" , " S" , " I" ) ]
if ( length ( result ) == 0 ) {
2021-05-20 00:07:27 +02:00
message_ ( " Filtering " , type , " of columns " , vector_and ( font_bold ( cols_ab , collapse = NULL ) , quotes = " '" ) , ' to contain value "R", "S" or "I"' )
2021-05-19 22:55:42 +02:00
result <- c ( " R" , " S" , " I" )
}
cols_ab <- cols_ab [ ! cols_ab %in% result ]
df <- get_current_data ( arg_name = NA , call = -3 )
if ( type == " all" ) {
scope_fn <- all
} else {
scope_fn <- any
}
x_transposed <- as.list ( as.data.frame ( t ( df [ , cols_ab , drop = FALSE ] ) , stringsAsFactors = FALSE ) )
vapply ( FUN.VALUE = logical ( 1 ) ,
X = x_transposed ,
FUN = function ( y ) scope_fn ( y %in% result , na.rm = na.rm ) ,
USE.NAMES = FALSE )
}
#' @method all ab_selector
#' @export
#' @noRd
all.ab_selector <- function ( ... , na.rm = FALSE ) {
# this is all() for
all_any_ab_selector ( " all" , ... , na.rm = na.rm )
}
#' @method any ab_selector
#' @export
#' @noRd
any.ab_selector <- function ( ... , na.rm = FALSE ) {
all_any_ab_selector ( " any" , ... , na.rm = na.rm )
}
#' @method all ab_selector_any_all
#' @export
#' @noRd
all.ab_selector_any_all <- function ( ... , na.rm = FALSE ) {
# this is all() on a logical vector from `==.ab_selector` or `!=.ab_selector`
# e.g., example_isolates %>% filter(all(carbapenems() == "R"))
# so just return the vector as is, only correcting for na.rm
out <- unclass ( c ( ... ) )
if ( na.rm == TRUE ) {
out <- out [ ! is.na ( out ) ]
}
out
}
#' @method any ab_selector_any_all
#' @export
#' @noRd
any.ab_selector_any_all <- function ( ... , na.rm = FALSE ) {
# this is any() on a logical vector from `==.ab_selector` or `!=.ab_selector`
# e.g., example_isolates %>% filter(any(carbapenems() == "R"))
# so just return the vector as is, only correcting for na.rm
out <- unclass ( c ( ... ) )
if ( na.rm == TRUE ) {
out <- out [ ! is.na ( out ) ]
}
out
}
#' @method == ab_selector
#' @export
#' @noRd
`==.ab_selector` <- function ( e1 , e2 ) {
calls <- as.character ( match.call ( ) )
fn_name <- calls [2 ]
# keep only the ... in c(...)
fn_name <- gsub ( " ^(c\\()(.*)(\\))$" , " \\2" , fn_name )
if ( is_any ( fn_name ) ) {
type <- " any"
} else if ( is_all ( fn_name ) ) {
type <- " all"
} else {
type <- " all"
if ( length ( e1 ) > 1 ) {
message_ ( " Assuming a filter on " , type , " " , length ( e1 ) , " " , gsub ( " [\\(\\)]" , " " , fn_name ) ,
" . Wrap around `all()` or `any()` to prevent this note." )
}
}
structure ( all_any_ab_selector ( type = type , e1 , e2 ) ,
class = c ( " ab_selector_any_all" , " logical" ) )
}
#' @method != ab_selector
#' @export
#' @noRd
`!=.ab_selector` <- function ( e1 , e2 ) {
calls <- as.character ( match.call ( ) )
fn_name <- calls [2 ]
# keep only the ... in c(...)
fn_name <- gsub ( " ^(c\\()(.*)(\\))$" , " \\2" , fn_name )
if ( is_any ( fn_name ) ) {
type <- " any"
} else if ( is_all ( fn_name ) ) {
type <- " all"
} else {
type <- " all"
if ( length ( e1 ) > 1 ) {
message_ ( " Assuming a filter on " , type , " " , length ( e1 ) , " " , gsub ( " [\\(\\)]" , " " , fn_name ) ,
" . Wrap around `all()` or `any()` to prevent this note." )
}
}
# this is `!=`, so turn around the values
rsi <- c ( " R" , " S" , " I" )
e2 <- rsi [rsi != e2 ]
structure ( all_any_ab_selector ( type = type , e1 , e2 ) ,
class = c ( " ab_selector_any_all" , " logical" ) )
}
is_any <- function ( el1 ) {
syscall <- paste0 ( trimws ( deparse ( sys.calls ( ) [ [1 ] ] ) ) , collapse = " " )
el1 <- gsub ( " (.*),.*" , " \\1" , el1 )
syscall %like% paste0 ( " [^_a-zA-Z0-9]any\\(" , " (c\\()?" , el1 )
}
is_all <- function ( el1 ) {
syscall <- paste0 ( trimws ( deparse ( sys.calls ( ) [ [1 ] ] ) ) , collapse = " " )
el1 <- gsub ( " (.*),.*" , " \\1" , el1 )
syscall %like% paste0 ( " [^_a-zA-Z0-9]all\\(" , " (c\\()?" , el1 )
}
find_ab_group <- function ( ab_class ) {
ab_class [ab_class == " carbapenem|cephalosporin|penicillin" ] <- " betalactam"
ab_class <- gsub ( " [^a-zA-Z0-9]" , " .*" , ab_class )
ifelse ( ab_class %in% c ( " aminoglycoside" ,
" betalactam" ,
" carbapenem" ,
" cephalosporin" ,
" fluoroquinolone" ,
" glycopeptide" ,
" macrolide" ,
" oxazolidinone" ,
" tetracycline" ) ,
paste0 ( ab_class , " s" ) ,
antibiotics %pm>%
subset ( group %like% ab_class |
atc_group1 %like% ab_class |
atc_group2 %like% ab_class ) %pm>%
pm_pull ( group ) %pm>%
unique ( ) %pm>%
tolower ( ) %pm>%
sort ( ) %pm>%
paste ( collapse = " /" )
)
}
find_ab_names <- function ( ab_group , n = 3 ) {
ab_group <- gsub ( " [^a-zA-Z|0-9]" , " .*" , ab_group )
# try popular first, they have DDDs
drugs <- antibiotics [which ( ( ! is.na ( antibiotics $ iv_ddd ) | ! is.na ( antibiotics $ oral_ddd ) ) &
antibiotics $ name %unlike% " " &
antibiotics $ group %like% ab_group &
antibiotics $ ab %unlike% " [0-9]$" ) , ] $ name
if ( length ( drugs ) < n ) {
# now try it all
drugs <- antibiotics [which ( ( antibiotics $ group %like% ab_group |
antibiotics $ atc_group1 %like% ab_group |
antibiotics $ atc_group2 %like% ab_group ) &
antibiotics $ ab %unlike% " [0-9]$" ) , ] $ name
}
vector_or ( ab_name ( sample ( drugs , size = min ( n , length ( drugs ) ) , replace = FALSE ) ,
tolower = TRUE ,
language = NULL ) ,
quotes = FALSE )
2020-06-17 01:39:30 +02:00
}