asd
This commit is contained in:
parent
c4efe84537
commit
197e4dcbdc
Binary file not shown.
After Width: | Height: | Size: 4.3 MiB |
Binary file not shown.
Before Width: | Height: | Size: 4.0 MiB After Width: | Height: | Size: 4.0 MiB |
Binary file not shown.
After Width: | Height: | Size: 4.5 MiB |
Binary file not shown.
Binary file not shown.
After Width: | Height: | Size: 3.0 MiB |
Binary file not shown.
After Width: | Height: | Size: 4.8 MiB |
|
@ -19,6 +19,8 @@
|
|||
\usepackage{multimedia}
|
||||
\usepackage{media9}
|
||||
|
||||
|
||||
|
||||
%\usetheme{default}
|
||||
%\usetheme{AnnArbor}
|
||||
%\usetheme{Antibes}
|
||||
|
@ -177,9 +179,75 @@ The corrector field $\vec{w}$ measures the level of agreedment of the 4D flow me
|
|||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{The corrector field: Continuum problem}
|
||||
\footnotesize
|
||||
|
||||
Applying the decomposition $\vec{u} \approx \vec{u}_{meas} + \vec{w}$ into the original equation and writing a variational problem for $\vec w$ we have the following: Find $(\vec w(t) ,p(t)) \in H^1_0(\Omega)\times L^2(\Omega)$ such that
|
||||
\begin{equation*}
|
||||
\int_{\Omega} \rho \frac{\partial \vec{w}}{\partial t} \cdot \vec{v} + \rho \big ( ( \vec{u}_{meas} + \vec w) \cdot \nabla \big) \vec{w} \cdot \vec{v} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas} \cdot \vec{v} + \mu \nabla \vec{w} : \nabla \vec{v} - p \nabla \cdot \vec{v} + q \nabla \cdot \vec{w} \notag
|
||||
\end{equation*}
|
||||
\begin{equation*}
|
||||
= - \int_{\Omega} \rho \frac{\partial \vec{u}_{meas}}{\partial t} \cdot \vec{v} + \rho \big ( \vec{u}_{meas} \cdot \nabla \big) \vec{u}_{meas} \cdot \vec{v} + \mu \nabla \vec{u}_{meas} : \nabla \vec{v} + q \nabla \cdot \vec{u}_{meas}
|
||||
\end{equation*}
|
||||
|
||||
or in simple terms:
|
||||
\begin{equation*}
|
||||
A(\vec w,p;\vec v ,q ) = \mathcal{L} (\vec v)
|
||||
\end{equation*}
|
||||
|
||||
|
||||
for all $(\vec v,q) \in H^1_0(\Omega) \times L^2(\Omega)$.
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{The corrector field: Discrete problem}
|
||||
\footnotesize
|
||||
|
||||
In the Discrete, we can write the problem as follows:
|
||||
|
||||
\begin{equation}
|
||||
A_{k}(\vec w,p;\vec v ,q ) + S^{conv}_{k}(\vec w;\vec v) + S^{press}_{k}(\vec w,p;\vec v ,q) = \mathcal{L}_j (\vec v)
|
||||
\end{equation}
|
||||
|
||||
With $ S^{conv}_{k}(\vec w;\vec v)$ and $ S^{press}_{k}(\vec w,p;\vec v ,q)$ terms for the stabilization of the convection and pressure respectively.
|
||||
|
||||
|
||||
\begin{itemize}
|
||||
\small
|
||||
\item $
|
||||
A_{k}(\vec w,p;\vec v ,q ) := \int_{\Omega} \frac{\rho}{\tau} \vec{w} \cdot \vec{v} + \rho \big ( ( \vec{u}_{meas}^k + \vec{w}^{k-1} ) \cdot \nabla \big) \vec{w} \cdot \vec{v} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas}^k \cdot \vec{v} + \mu \nabla \vec{w} : \nabla \vec{v} - p \nabla \cdot \vec{v} + q \nabla \cdot \vec{w}
|
||||
$ \vspace{0.2cm}
|
||||
\item $
|
||||
S^{conv}_{k}(\vec w;\vec v) := \int_{\Omega} \frac{\rho}{2} \ \big( \nabla \cdot (\vec u^k_{meas} + \vec w^{k-1}) \big) \ \vec{w} \cdot \vec{v}
|
||||
$ \vspace{0.2cm}
|
||||
\item $
|
||||
S^{press}_{k}(\vec w,p;\vec v ,q) := \delta \sum_{K \in \Omega}\int_{K} \frac{h_j^2}{\mu} \bigg ( \rho \big ( (\vec u^k_{meas} + \vec w^{k-1}) \cdot \nabla \big) \vec{w} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas}^k + \nabla p \bigg) \cdot \notag \bigg ( \rho \big ( (\vec u^k_{meas} + \vec w^{k-1}) \cdot \nabla \big) \vec{v} + \rho \big ( \vec{v} \cdot \nabla \big) \vec{u}_{meas}^k + \nabla q \bigg )
|
||||
$ \vspace{0.2cm}
|
||||
\item $ \mathcal{L}_j (\vec v) := \int_{\Omega} \frac{\rho}{\tau} \vec{w}^{k-1} \cdot \vec{v} + \mathcal{\ell}_j (\vec v,q) $
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\section[Synthetic data]{Experiments using synthetic data }
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Experiments}
|
||||
\begin{center}
|
||||
Experiments using synthetic data
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Numerical tests}
|
||||
|
@ -254,7 +322,7 @@ All simulations were done using a stabilized finite element method implemented i
|
|||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results: aliasing and noise}
|
||||
\frametitle{Results for channel: aliasing and noise}
|
||||
\footnotesize
|
||||
|
||||
For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$
|
||||
|
@ -271,35 +339,107 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
|
|||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results: undersampling}
|
||||
\frametitle{Results for channel: undersampling}
|
||||
\footnotesize
|
||||
|
||||
\begin{columns}[c]
|
||||
\column{.6\textwidth} % Left column and width
|
||||
|
||||
other results concerning undersampling....
|
||||
|
||||
\column{.5\textwidth} % Right column and width
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=0.6\textwidth]{images/undersampling_final.png}
|
||||
\caption{Different perturbation scenarios}
|
||||
\includegraphics[height=1.2\textwidth]{images/undersampling_final.png}
|
||||
\caption{ \footnotesize Different undersampling rates for the channel}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results for aorta: aliasing and noise}
|
||||
\footnotesize
|
||||
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=0.7\textwidth]{images/aorta_perturbation.png}
|
||||
\caption{Different perturbation scenarios for the aortic mesh}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results for aorta: undersampling}
|
||||
\footnotesize
|
||||
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=0.7\textwidth]{images/undersampling_blender.png}
|
||||
\caption{ \footnotesize Different undersampling rates for the aortic mesh}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\section[4D flow data]{Experiments using real 4D flow data }
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Experiments}
|
||||
\begin{center}
|
||||
Experiments using real 4D flow data
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Experiments}
|
||||
\footnotesize
|
||||
|
||||
\begin{columns}[c]
|
||||
\column{.6\textwidth} % Left column and width
|
||||
|
||||
\begin{itemize}
|
||||
\item We performed 4D flow measurements in a silicon aortic phantom
|
||||
\item 4 healthy volunteers were scanned using a clinical standard 4D flow protocol.
|
||||
\item 4D flow measurements were taken from a silicon thoracic aortic phantom made of silicon.
|
||||
\item A controled pump injects to the system a blood mimicking fluid and allows the control of: heart rate, peak flow, stroke volume and flow waveform
|
||||
\item A stenosis of $11 \ mm$ of diameter was added in the descending aorta
|
||||
\item The phantom was scanned using a clinical $1.5 \ T$ MR scanner (Philips Achieva, Best, The Netherlands)
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\column{.5\textwidth} % Right column and width
|
||||
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\footnotesize
|
||||
\includegraphics[height=\textwidth]{images/phantom.jpg}
|
||||
\caption{\footnotesize Experiment done at the Centre of Biomedical Images (CIB) of the Catholic Unversity of Chili (PUC)}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
|
||||
\end{columns}
|
||||
|
||||
%\includemedia[width=0.6\linewidth,height=0.6\linewidth,activate=pageopen,
|
||||
%passcontext,
|
||||
%transparent,
|
||||
%addresource=images/phantom.mp4,
|
||||
%flashvars={source=images/phantom.mp4}
|
||||
%]{\includegraphics[width=0.6\linewidth]{images/phantom.jpg}}{VPlayer.swf}
|
||||
%
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
@ -310,7 +450,12 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
|
|||
\frametitle{Results}
|
||||
\footnotesize
|
||||
|
||||
results for experimental phantom
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=0.5\textwidth]{images/phantom_cib.png}
|
||||
\caption{At peak systole: a) measurements b) corrector field c) corrected measurements}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
|
Loading…
Reference in New Issue