advanced
This commit is contained in:
parent
be094e14fe
commit
c4efe84537
Binary file not shown.
After Width: | Height: | Size: 78 KiB |
Binary file not shown.
After Width: | Height: | Size: 76 KiB |
Binary file not shown.
After Width: | Height: | Size: 4.0 MiB |
Binary file not shown.
After Width: | Height: | Size: 2.9 MiB |
|
@ -80,7 +80,9 @@
|
|||
|
||||
|
||||
\setbeamerfont{page number in head/foot}{size=\large}
|
||||
\setbeamertemplate{footline}[frame number]
|
||||
%\setbeamertemplate{footline}[frame number] number in footer
|
||||
\setbeamertemplate{footline}{}
|
||||
|
||||
|
||||
|
||||
\title[A new mathematical model for verifying the Navier-Stokes compatibility of 4D flow MRI data]{ A new mathematical model for verifying the Navier-Stokes compatibility of 4D flow MRI data}
|
||||
|
@ -113,14 +115,21 @@ University of Groningen\\[0.5cm]
|
|||
\end{frame}
|
||||
|
||||
|
||||
\section{4D flow MRI}
|
||||
\section[4D flow MRI]{4D flow MRI}
|
||||
\begin{frame}
|
||||
\frametitle{4D flow MRI}
|
||||
\begin{columns}[c]
|
||||
\column{.55\textwidth} % Left column and width
|
||||
\footnotesize
|
||||
|
||||
4D flow MRI has been shown potential in the assesment of blood flow dynamics in heart and large arteries, allowing wide variety of options for visualization and quantification.
|
||||
4D flow MRI has been shown potential in the assesment of blood flow dynamics in the heart and also large arteries, allowing wide variety of options for visualization and quantification.
|
||||
|
||||
Some advantages respect others techniques:
|
||||
\begin{itemize}
|
||||
\item Full 3D coverage of the region of interest
|
||||
\item Retrospective plane positioning
|
||||
\item Rich post-proccesing: derived parameters
|
||||
\end{itemize}
|
||||
|
||||
\column{.5\textwidth} % Right column and width
|
||||
|
||||
|
@ -145,7 +154,7 @@ We want to introduce a novel measure for quantify the quality of the 4D flow mea
|
|||
\end{frame}
|
||||
|
||||
|
||||
\section{The corrector field}
|
||||
\section[]{The corrector field}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{The corrector field}
|
||||
|
@ -157,22 +166,24 @@ We assume a perfect physical velocity field $\vec{u}$
|
|||
\end{eqnarray*}
|
||||
|
||||
And a corrector field $\vec{w}$ which satisfies:
|
||||
|
||||
\begin{align}
|
||||
\vec{u} & \approx \vec{u}_{meas} + \vec{w} \quad \text{in} \quad \Omega \label{eq:corrector} \\
|
||||
\nabla \cdot \vec w & = 0 \quad \text{in} \quad \Omega \label{eq:correctorDiv} \\
|
||||
\vec w & = \vec 0 \quad \text{on} \quad \partial \Omega \label{eq:correctorBC}
|
||||
\end{align}
|
||||
|
||||
$\vec{w}$ measures the level of agreedment of the 4D flow measures respect to the Navier-Stokes equations.
|
||||
The corrector field $\vec{w}$ measures the level of agreedment of the 4D flow measures respect to the Navier-Stokes equations.
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\section[Synthetic data]{Experiments using synthetic data }
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Numerical tests}
|
||||
\begin{columns}[c]
|
||||
\column{.6\textwidth} % Left column and width
|
||||
|
||||
\footnotesize
|
||||
We tested the corrector using CFD simulations as a measurements, in the following testcases:
|
||||
|
||||
|
@ -180,25 +191,107 @@ We tested the corrector using CFD simulations as a measurements, in the followin
|
|||
\item Womersley flow in a cilinder
|
||||
\item Navier-Stokes simulations in an aortic mesh
|
||||
\end{itemize}
|
||||
|
||||
Also perturbations were added into the measurements:
|
||||
\begin{itemize}
|
||||
\item velocity aliasing
|
||||
\item additive noise
|
||||
\item simulated k-space undersampling
|
||||
\item velocity aliasing (varying the $venc$ parameter)
|
||||
\item additive noise (setting SNR in decibels)
|
||||
\item simulated k-space undersampling (compressed sensing for the reconstruction)
|
||||
\end{itemize}
|
||||
|
||||
All simulations were done using a stabilized finite element method implemented in FEniCS. Afterwards, all numerical simulations were interpolated into a voxel-type structured mesh
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Numerical tests: details}
|
||||
\begin{columns}[c]
|
||||
\column{.6\textwidth} % Left column and width
|
||||
\footnotesize
|
||||
\textbf{Channel:}
|
||||
\begin{itemize}
|
||||
\item Convective term was neglected
|
||||
\item Non-slip condition at walls
|
||||
\item Oscilatory pressure at $\Gamma_{inlet}$
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\column{.5\textwidth} % Right column and width
|
||||
\footnotesize
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=\textwidth]{images/aorta_blender.png}
|
||||
\caption{Aortic mesh }
|
||||
\includegraphics[height=0.3\textwidth]{images/cilinder_2.png}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
|
||||
|
||||
\begin{columns}[c]
|
||||
\column{.6\textwidth} % Left column and width
|
||||
\footnotesize
|
||||
\textbf{Aorta}
|
||||
\begin{itemize}
|
||||
\item a mild coartation was added in the descending aorta
|
||||
\item $u_{inlet}$ simulates a cardiac cycle
|
||||
\item 3-element Windkessel for the outlets
|
||||
\item Non-slip condition at walls
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\column{.5\textwidth} % Right column and width
|
||||
\footnotesize
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=0.7\textwidth]{images/aorta_blender.png}
|
||||
\caption{\tiny{Channel mesh}}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results: aliasing and noise}
|
||||
\footnotesize
|
||||
|
||||
For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$
|
||||
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=0.5\textwidth]{images/perturbation_pres.png}
|
||||
\caption{Different perturbation scenarios}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results: undersampling}
|
||||
\footnotesize
|
||||
|
||||
|
||||
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=0.6\textwidth]{images/undersampling_final.png}
|
||||
\caption{Different perturbation scenarios}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\section[4D flow data]{Experiments using real 4D flow data }
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Experiments}
|
||||
\footnotesize
|
||||
|
@ -211,15 +304,7 @@ Also perturbations were added into the measurements:
|
|||
|
||||
|
||||
|
||||
\section{Results}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results}
|
||||
\footnotesize
|
||||
|
||||
results for the synthetic data. Comparison againts the perfect correction field: du.
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results}
|
||||
|
@ -230,14 +315,6 @@ results for experimental phantom
|
|||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results}
|
||||
\footnotesize
|
||||
|
||||
results in healthy volunteers
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue