This commit is contained in:
parent
938224d288
commit
be094e14fe
|
@ -102,7 +102,7 @@ University of Groningen\\[0.5cm]
|
|||
\frame{\titlepage}
|
||||
|
||||
|
||||
|
||||
% \onslide<1->
|
||||
|
||||
|
||||
|
||||
|
@ -131,50 +131,65 @@ University of Groningen\\[0.5cm]
|
|||
\begin{frame}
|
||||
\frametitle{4D flow MRI}
|
||||
\footnotesize
|
||||
|
||||
Main limitation for its clinical applicability is the long scan times involved. Therefore, multiple strategies emerged in order to make acquisition faster>
|
||||
Main limitation for its clinical applicability is the long scan times involved. Therefore, multiple strategies emerged in order to make acquisition faster, such as:
|
||||
\begin{itemize}
|
||||
\item Navigator gating
|
||||
\item modest spatial resolutions $2.5 \times 2.5 \times 2.5 \ mm3$
|
||||
\item modest spatial resolutions $ \sim (2.5 \times 2.5 \times 2.5 \ mm^3)$
|
||||
\item partial data coverage
|
||||
\end{itemize}
|
||||
|
||||
Typical quality estimators are> SNR, VNR, peak flows/velocities, mass conservation (zero divergence
|
||||
Typical quality estimators: SNR, VNR, peak flows/velocities, mass conservation (zero divergence)
|
||||
|
||||
We want to introduce a novel measure for quantify the quality of the 4D flow measurements, using the conservation of momentum of the flow.
|
||||
We want to introduce a novel measure for quantify the quality of the 4D flow measurements, using the conservation of momentum of the flow (Navier-Stokes compatibility).
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\section{The corrector field}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{The corrector field}
|
||||
\begin{columns}[c]
|
||||
\column{.6\textwidth} % Left column and width
|
||||
\footnotesize
|
||||
|
||||
\onslide<1-> We assume a perfect velocity \begin{eqnarray*}
|
||||
We assume a perfect physical velocity field $\vec{u}$
|
||||
\begin{eqnarray*}
|
||||
\rho \frac{\partial \vec{u}}{\partial t} + \rho \big ( \vec{u} \cdot \nabla \big) \vec{u} - \mu \Delta \vec{u} + \nabla p = 0 \quad \text{in} \quad \Omega \label{eq:NSmom}
|
||||
\end{eqnarray*}
|
||||
|
||||
\onslide<2-> And a corrector field which
|
||||
And a corrector field $\vec{w}$ which satisfies:
|
||||
|
||||
\begin{align}
|
||||
\vec{u} & \approx \vec{u}_{meas} + \vec{w} \quad \text{in} \quad \Omega \label{eq:corrector} \\
|
||||
\nabla \cdot \vec w & = 0 \quad \text{in} \quad \Omega \label{eq:correctorDiv} \\
|
||||
\vec w & = \vec 0 \quad \text{on} \quad \partial \Omega \label{eq:correctorBC}
|
||||
\end{align}
|
||||
\onslide<3-> asd
|
||||
|
||||
$\vec{w}$ measures the level of agreedment of the 4D flow measures respect to the Navier-Stokes equations.
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Numerical tests}
|
||||
\begin{columns}[c]
|
||||
\column{.6\textwidth} % Left column and width
|
||||
\footnotesize
|
||||
We tested the corrector using CFD simulations as a measurements, in the following testcases:
|
||||
|
||||
\begin{itemize}
|
||||
\footnotesize
|
||||
\item[]<4-> $u = u_{in} \quad \text{in} \quad \Gamma_{inlet}$
|
||||
\item Womersley flow in a cilinder
|
||||
\item Navier-Stokes simulations in an aortic mesh
|
||||
\end{itemize}
|
||||
Also perturbations were added into the measurements:
|
||||
\begin{itemize}
|
||||
\item velocity aliasing
|
||||
\item additive noise
|
||||
\item simulated k-space undersampling
|
||||
\end{itemize}
|
||||
|
||||
\column{.5\textwidth} % Right column and width
|
||||
\footnotesize
|
||||
\begin{figure}[!hbtp]
|
||||
\onslide<1->
|
||||
\begin{center}
|
||||
\includegraphics[height=\textwidth]{images/aorta_blender.png}
|
||||
\caption{Aortic mesh }
|
||||
|
@ -184,30 +199,17 @@ We want to introduce a novel measure for quantify the quality of the 4D flow mea
|
|||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{The corrector field}
|
||||
\frametitle{Experiments}
|
||||
\footnotesize
|
||||
|
||||
To study the corrector in several scenarios> synthetic data, experimental phantom and healthy volunteers.
|
||||
\begin{itemize}
|
||||
\item We performed 4D flow measurements in a silicon aortic phantom
|
||||
\item 4 healthy volunteers were scanned using a clinical standard 4D flow protocol.
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{The corrector field}
|
||||
\footnotesize
|
||||
|
||||
different data treatments> aliasing and noise. Undersampling
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\section{Results}
|
||||
|
||||
|
@ -215,7 +217,7 @@ different data treatments> aliasing and noise. Undersampling
|
|||
\frametitle{Results}
|
||||
\footnotesize
|
||||
|
||||
results for the synthetic data. Comparison againts a perfect correction case with du.
|
||||
results for the synthetic data. Comparison againts the perfect correction field: du.
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
@ -243,10 +245,15 @@ results in healthy volunteers
|
|||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results}
|
||||
\frametitle{Conclusions and future}
|
||||
\footnotesize
|
||||
|
||||
potential of the new quality parameter> analize real data. use the specificity for label zones with strong disagreedment. Use the field for create new inverse problems which can be used for further accelerations
|
||||
potential of the new quality parameter:
|
||||
\begin{itemize}
|
||||
\item analize real data
|
||||
\item use the specificity for label zones with strong disagreedment
|
||||
\item Use the field for create new inverse problems which can be used for further accelerations
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
|
Loading…
Reference in New Issue