@ -102,7 +102,7 @@ University of Groningen\\[0.5cm]
\frame{\titlepage}
%\onslide<1->
@ -131,50 +131,65 @@ University of Groningen\\[0.5cm]
\begin{frame}
\frametitle{4D flow MRI}
\footnotesize
Main limitation for its clinical applicability is the long scan times involved. Therefore, multiple strategies emerged in order to make acquisition faster>
Main limitation for its clinical applicability is the long scan times involved. Therefore, multiple strategies emerged in order to make acquisition faster, such as:
We want to introduce a novel measure for quantify the quality of the 4D flow measurements, using the conservation of momentum of the flow.
We want to introduce a novel measure for quantify the quality of the 4D flow measurements, using the conservation of momentum of the flow (Navier-Stokes compatibility).
\end{frame}
\section{The corrector field}
\begin{frame}
\frametitle{The corrector field}
\begin{columns}[c]
\column{.6\textwidth}% Left column and width
\footnotesize
\onslide<1-> We assume a perfect velocity \begin{eqnarray*}
We assume a perfect physical velocity field $\vec{u}$
@ -184,38 +199,25 @@ We want to introduce a novel measure for quantify the quality of the 4D flow mea
\end{frame}
\begin{frame}
\frametitle{The corrector field}
\footnotesize
To study the corrector in several scenarios> synthetic data, experimental phantom and healthy volunteers.
\end{frame}
\begin{frame}
\frametitle{The corrector field}
\frametitle{Experiments}
\footnotesize
different data treatments> aliasing and noise. Undersampling
\begin{itemize}
\item We performed 4D flow measurements in a silicon aortic phantom
\item 4 healthy volunteers were scanned using a clinical standard 4D flow protocol.
\end{itemize}
\end{frame}
\section{Results}
\begin{frame}
\frametitle{Results}
\footnotesize
results for the synthetic data. Comparison againts a perfect correction case with du.
results for the synthetic data. Comparison againts the perfect correction field: du.
\end{frame}
@ -243,10 +245,15 @@ results in healthy volunteers
\begin{frame}
\frametitle{Results}
\frametitle{Conclusions and future}
\footnotesize
potential of the new quality parameter> analize real data. use the specificity for label zones with strong disagreedment. Use the field for create new inverse problems which can be used for further accelerations
potential of the new quality parameter:
\begin{itemize}
\item analize real data
\item use the specificity for label zones with strong disagreedment
\item Use the field for create new inverse problems which can be used for further accelerations