codes copied

This commit is contained in:
jeremias 2020-01-17 16:24:10 +01:00
parent 14cffd5876
commit 2da253f278
21 changed files with 7186 additions and 0 deletions

15
codes/.vscode/launch.json vendored Normal file
View File

@ -0,0 +1,15 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Python: Current File",
"type": "python",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal"
}
]
}

12
codes/.vscode/tasks.json vendored Normal file
View File

@ -0,0 +1,12 @@
{
// See https://go.microsoft.com/fwlink/?LinkId=733558
// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "echo",
"type": "shell",
"command": "echo Hello"
}
]
}

705
codes/CS.py Normal file
View File

@ -0,0 +1,705 @@
import numpy as np
from numpy import linalg as LA
import sys
from mpi4py import MPI
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
# COMPRESSED SENSING: LINEAR BREGMAN METHOD
# Translated and adapted into python from tinycs
#
# *tinycs* is a minimal compressed sensing (CS) toolkit designed
# to allow MR imaging scientists to design undersampled
# acquisitions and reconstruct the resulting data with CS without
# needing to be a CS expert.
#
# The Cartesian reconstruction is based on the split Bregman
# code written by Tom Goldstein, originally available here:
# <http://tag7.web.rice.edu/Split_Bregman.html>
def pdf(k,kw,klo,q):
p = (np.abs(k)/kw)**(-q)
p[np.where(k==0)] = 0
p[np.where(np.abs(k)<=kw)] = 1
p[np.where(k<klo)] = 0
return p
def mask_pdf_1d(n,norm,q,pf):
ks = np.arange(0,n) - np.ceil(n/2) - 1
kmax = np.floor(n/2)
npf = np.round(pf*n)
klo = ks[n-npf]
for k in range(int(kmax)):
P = pdf(ks,k+1,klo,q)
if np.sum(P)>=norm:
break
P = np.fft.fftshift(P)
#if np.mod(n,2)!=0:
# P = np.concatenate(([1],P),axis=None)
return P
def mask_pdf_2d(dims,norm,q,pf):
nz = dims[1]
ny = dims[0]
yc = round(ny/2)
zc = round(nz/2)
rmax = np.sqrt((ny-yc)**2 + (nz-zc)**2)
[Z,Y] = np.meshgrid(np.arange(0,nz),np.arange(0,ny))
RR = np.sqrt( (Y-yc)**2 + (Z-zc)**2)
Z = np.abs(Z - nz/2 - 0.5)
Y = np.abs(Y - ny/2 - 0.5)
for rw in range(1,int(rmax)+1):
P = np.ones([ny,nz])/pf
C = np.logical_and( Z <= rw , Y <= rw)
W = np.logical_or( Z > rw , Y > rw)
P[W] = (RR[W]/rw)**(-q)
if np.sum(P) >= norm:
break
return [P,C]
def GeneratePattern(dim,R):
# 3D CASE
if np.size(dim)==3:
nro = dim[0]
npe = dim[1]
nacq = round(npe/R)
q = 1
pf = 1
P = mask_pdf_1d(npe, nacq, q, pf)
while True:
M = np.random.rand(npe)
M = 1*(M<=P)
if np.sum(M)==nacq:
break
# remove partial Fourier plane and compensate sampling density
M = M!=0
M = np.tile(M,[nro,1]);
#M = M.T
# 4D CASE
if np.size(dim)==4:
nro = dim[0]
npe1 = dim[1]
npe2 = dim[2]
nacq = round(npe1*npe2/R)
q = 1
pf = 1
[P,C] = mask_pdf_2d([npe1,npe2], nacq, q, pf)
RR = np.random.rand(npe1,npe2)
M = (RR <= P)
nchosen = np.sum(M)
if nchosen > nacq: # Correct for inexact number chosen
#outerOn = np.logical_and( M , P!=1 )
outerOn = np.where((M)*(P!=1))
numToFlip = nchosen-nacq
idxs = np.random.permutation(outerOn[0].size)
idxx = outerOn[0][idxs[0:numToFlip]]
idxy = outerOn[1][idxs[0:numToFlip]]
M[idxx,idxy] = False
elif nchosen < nacq:
outerOff = np.where(~M)
idxs = np.random.permutation(outerOff[0].size)
numToFlip = nacq - nchosen
idxx = outerOff[0][idxs[0:numToFlip]]
idxy = outerOff[1][idxs[0:numToFlip]]
M[idxx,idxy] = True
M = np.rollaxis(np.tile(np.rollaxis(M,1),[nro,1,1]),2)
M = np.fft.ifftshift(M)
M = M.transpose((1,0,2))
return M
def get_norm_factor(MASK,uu):
UM = MASK==1
return UM.shape[0]/LA.norm(uu)
def Dxyzt(X):
if np.ndim(X)==3:
dd0 = X[:,:,0]
dd1 = X[:,:,1]
DA = dd0 - np.vstack((dd0[1::,:],dd0[0,:]))
DB = dd1 - np.hstack((dd1[:,1::],dd1[:,0:1]))
return DA + DB
if np.ndim(X)==4:
dd0 = X[:,:,:,0]
dd1 = X[:,:,:,1]
dd2 = X[:,:,:,2]
DA = dd0 - np.vstack((dd0[1::,:,:],dd0[0,:,:][np.newaxis,:,:]))
DB = dd1 - np.hstack((dd1[:,1::,:],dd1[:,0,:][:,np.newaxis,:]))
DC = dd2 - np.dstack((dd2[:,:,1::],dd2[:,:,0][:,:,np.newaxis]))
return DA + DB + DC
def Dxyz(u):
if np.ndim(u)==2:
dx = u[:,:]- np.vstack((u[-1,:],u[0:-1,:]))
dy = u[:,:]- np.hstack((u[:,-1:],u[:,0:-1]))
D = np.zeros([dx.shape[0],dx.shape[1],2],dtype=complex)
D[:,:,0] = dx
D[:,:,1] = dy
return D
if np.ndim(u)==3:
dx = u[:,:,:]- np.vstack((u[-1,:,:][np.newaxis,:,:],u[0:-1,:,:]))
dy = u[:,:,:]- np.hstack((u[:,-1,:][:,np.newaxis,:],u[:,0:-1,:]))
dz = u[:,:,:]- np.dstack((u[:,:,-1][:,:,np.newaxis],u[:,:,0:-1]))
D = np.zeros([dx.shape[0],dx.shape[1],dx.shape[2],3],dtype=complex)
D[:,:,:,0] = dx
D[:,:,:,1] = dy
D[:,:,:,2] = dz
return D
def shrink(X,pgam):
p = 1
s = np.abs(X)
tt = pgam/(s)**(1-p)
# t = pgam/np.sqrt(s)
ss = s-tt
ss = ss*(ss>0)
s = s + 1*(s<tt)
ss = ss/s
return ss*X
def CSMETHOD(ITOT,R):
''' Compressed Function.
Args:
ITOT: a numpy matrix with the full sampled (3D or 4D) dynamical data
R: the acceleration factor
'''
# Method parameters
ninner = 5
nbreg = 10
lmbda = 4
mu = 20
gam = 1
if np.ndim(ITOT)==3:
[row,col,numt2] = ITOT.shape
elif np.ndim(ITOT)==4:
[row,col,dep,numt2] = ITOT.shape
else:
raise Exception('Dynamical data is requested')
MASK = GeneratePattern(ITOT.shape,R)
CS1 = np.zeros(ITOT.shape,dtype=complex)
nit = 0
nit_tot = (numt2-1)/20
if np.ndim(ITOT)==3:
for t in range(numt2):
if rank==0:
print('{3D COMPRESSED SENSING} t = ',t)
Kdata = np.fft.fft2(ITOT[:,:,t])*MASK
data_ndims = Kdata.ndim
mask = Kdata!=0 # not perfect, but good enough
# normalize the data so that standard parameter values work
norm_factor = get_norm_factor(mask, Kdata)
Kdata = Kdata*norm_factor
# Reserve memory for the auxillary variables
Kdata0 = Kdata
img = np.zeros([row,col],dtype=complex)
X = np.zeros([row,col, data_ndims])
B = np.zeros([row,col, data_ndims])
# Build Kernels
scale = np.sqrt(row*col)
murf = np.fft.ifft2(mu*mask*Kdata)*scale
uker = np.zeros([row,col])
uker[0,0] = 4
uker[0,1] = -1 ; uker[1,0] = -1
uker[-1,0] = -1 ; uker[0,-1] = -1
uker = 1/(mu*mask + lmbda*np.fft.fftn(uker) + gam)
# Do the reconstruction
for outer in range(nbreg):
for inner in range(ninner):
# update u
rhs = murf + lmbda*Dxyzt(X-B) + gam*img
img = np.fft.ifft2(np.fft.fft2(rhs)*uker)
# update x and y
A = Dxyz(img) + B
X = shrink(A, 1/lmbda)
# update bregman parameters
B = A - X
Kdata = Kdata + Kdata0 - mask*np.fft.fftn(img)/scale
murf = np.fft.ifftn(mu*mask*Kdata)*scale
# undo the normalization so that results are scaled properly
img = img / norm_factor / scale
CS1[:,:,t] = img
if np.ndim(ITOT)==4:
for t in range(numt2):
if rank==0:
print('[4D CS] R = {re} t = {te}/{tef}'.format(re=R,te=t,tef=numt2))
#if np.mod(t,nit_tot)<1:
# sys.stdout.write('\r')
# # Progress bar
# if numt2==3:
# sys.stdout.write("{4d-CS} [%-6s] %d%%" % ('=='*nit, 100*t/numt2))
# else:
# sys.stdout.write("{4d-CS} [%-40s] %d%%" % ('=='*nit, 100*t/numt2))
# sys.stdout.flush()
# nit = nit +1
Kdata_0 = np.fft.fftn(ITOT[:,:,:,t])
Kdata = Kdata_0*MASK
data_ndims = Kdata.ndim
mask = Kdata!=0 # not perfect, but good enough
# normalize the data so that standard parameter values work
norm_factor = get_norm_factor(mask, Kdata)
Kdata = Kdata*norm_factor
# Reserve memory for the auxillary variables
Kdata0 = Kdata
img = np.zeros([row,col,dep],dtype=complex)
X = np.zeros([row,col,dep, data_ndims])
B = np.zeros([row,col,dep, data_ndims])
# Build Kernels
scale = np.sqrt(row*col*dep)
murf = np.fft.ifftn(mu*mask*Kdata)*scale
uker = np.zeros([row,col,dep])
uker[0,0,0] = 8
uker[1,0,0] = -1 ; uker[0,1,0] = -1 ; uker[0,0,1] = -1
uker[-1,0,0] = -1 ; uker[0,-1,0] = -1 ; uker[0,0,-1] = -1
uker = 1/(mu*mask + lmbda*np.fft.fftn(uker) + gam)
# Do the reconstruction
for outer in range(nbreg):
for inner in range(ninner):
# update u
rhs = murf + lmbda*Dxyzt(X-B) + gam*img
img = np.fft.ifft2(np.fft.fft2(rhs)*uker)
# update x and y
A = Dxyz(img) + B
X = shrink(A, 1/lmbda)
# update bregman parameters
B = A - X
Kdata = Kdata + Kdata0 - mask*np.fft.fftn(img)/scale
murf = np.fft.ifftn(mu*mask*Kdata)*scale
# undo the normalization so that results are scaled properly
img = img / norm_factor / scale
CS1[:,:,:,t] = img
return CS1
def CSMETHOD_SENSE(ITOT,R,R_SENSE):
''' Compressed Function.
Args:
ITOT: a numpy matrix with the full sampled (3D or 4D) dynamical data
R: the acceleration factor
'''
# Method parameters
ninner = 5
nbreg = 10
lmbda = 4
mu = 20
gam = 1
[row,col,dep,numt2] = ITOT.shape
MASK = {}
ITOTCS = {}
MASK[0] = GeneratePattern([row,int(np.ceil(col/2)),dep,numt2],R)
MASK[1] = GeneratePattern([row,int(np.ceil(col/2)),dep,numt2],R)
SenseMAP = {}
[SenseMAP[0],SenseMAP[1]] = Sensitivity_Map([row,col,dep])
col = int(np.ceil(col/2))
ITOTCS[0] = np.zeros([row,col,dep,numt2],dtype=complex)
ITOTCS[1] = np.zeros([row,col,dep,numt2],dtype=complex)
for rs in range(R_SENSE):
for t in range(numt2):
if rank==0:
print('[4D CS] R = {re} t = {te}/{tef}'.format(re=R,te=t,tef=numt2))
Kdata_0 = np.fft.fftn(ITOT[:,:,:,t])
Kdata_0 = Kdata_0*SenseMAP[rs]
Kdata_0 = Kdata_0[:,0::R_SENSE,:]
Kdata = Kdata_0*MASK[rs]
data_ndims = Kdata.ndim
mask = Kdata!=0 # not perfect, but good enough
# normalize the data so that standard parameter values work
norm_factor = get_norm_factor(mask, Kdata)
Kdata = Kdata*norm_factor
# Reserve memory for the auxillary variables
Kdata0 = Kdata
img = np.zeros([row,col,dep],dtype=complex)
X = np.zeros([row,col,dep, data_ndims])
B = np.zeros([row,col,dep, data_ndims])
# Build Kernels
scale = np.sqrt(row*col*dep)
murf = np.fft.ifftn(mu*mask*Kdata)*scale
uker = np.zeros([row,col,dep])
uker[0,0,0] = 8
uker[1,0,0] = -1 ; uker[0,1,0] = -1 ; uker[0,0,1] = -1
uker[-1,0,0] = -1 ; uker[0,-1,0] = -1 ; uker[0,0,-1] = -1
uker = 1/(mu*mask + lmbda*np.fft.fftn(uker) + gam)
# Do the reconstruction
for outer in range(nbreg):
for inner in range(ninner):
# update u
rhs = murf + lmbda*Dxyzt(X-B) + gam*img
img = np.fft.ifft2(np.fft.fft2(rhs)*uker)
# update x and y
A = Dxyz(img) + B
X = shrink(A, 1/lmbda)
# update bregman parameters
B = A - X
Kdata = Kdata + Kdata0 - mask*np.fft.fftn(img)/scale
murf = np.fft.ifftn(mu*mask*Kdata)*scale
# undo the normalization so that results are scaled properly
img = img / norm_factor / scale
ITOTCS[rs][:,:,:,t] = img
return [ITOTCS[0],ITOTCS[1]]
def CSMETHOD_peaksystole(ITOT,R,tstar):
''' Compressed Function.
Args:
ITOT: a numpy matrix with the full sampled (3D or 4D) dynamical data
R: the acceleration factor
tstar: the time when the flux in the inlet it's maximum
'''
# Method parameters
ninner = 5
nbreg = 10
lmbda = 4
mu = 20
gam = 1
[row,col,dep,numt2] = ITOT.shape
MASK = GeneratePattern(ITOT.shape,R)
CS1 = np.zeros([row,col,dep],dtype=complex)
for t in range(tstar,tstar+1):
Kdata = np.fft.fftn(ITOT[:,:,:,t])*MASK
data_ndims = Kdata.ndim
mask = Kdata!=0 # not perfect, but good enough
# normalize the data so that standard parameter values work
norm_factor = get_norm_factor(mask, Kdata)
Kdata = Kdata*norm_factor
# Reserve memory for the auxillary variables
Kdata0 = Kdata
img = np.zeros([row,col,dep],dtype=complex)
X = np.zeros([row,col,dep, data_ndims])
B = np.zeros([row,col,dep, data_ndims])
# Build Kernels
scale = np.sqrt(row*col*dep)
murf = np.fft.ifftn(mu*mask*Kdata)*scale
uker = np.zeros([row,col,dep])
uker[0,0,0] = 8
uker[1,0,0] = -1 ; uker[0,1,0] = -1 ; uker[0,0,1] = -1
uker[-1,0,0] = -1 ; uker[0,-1,0] = -1 ; uker[0,0,-1] = -1
uker = 1/(mu*mask + lmbda*np.fft.fftn(uker) + gam)
# Do the reconstruction
for outer in range(nbreg):
for inner in range(ninner):
# update u
rhs = murf + lmbda*Dxyzt(X-B) + gam*img
img = np.fft.ifft2(np.fft.fft2(rhs)*uker)
# update x and y
A = Dxyz(img) + B
X = shrink(A, 1/lmbda)
# update bregman parameters
B = A - X
Kdata = Kdata + Kdata0 - mask*np.fft.fftn(img)/scale
murf = np.fft.ifftn(mu*mask*Kdata)*scale
# undo the normalization so that results are scaled properly
img = img / norm_factor / scale
CS1[:,:,:] = img
return CS1
def phase_contrast(M1,M0,VENC,scantype='0G'):
param = 1
if scantype=='-G+G':
param = 0.5
return VENC*param*(np.angle(M1) - np.angle(M0))/np.pi
def GenerateMagnetization(Sq,VENC,noise,scantype='0G'):
# MRI PARAMETERS
gamma = 267.513e6 # rad/Tesla/sec Gyromagnetic ratio for H nuclei
B0 = 1.5 # Tesla Magnetic Field Strenght
TE = 5e-3 # Echo-time
PHASE0 = np.zeros(Sq.shape)
PHASE1 = np.zeros(Sq.shape)
RHO0 = np.zeros(Sq.shape, dtype=complex)
RHO1 = np.zeros(Sq.shape, dtype=complex)
if np.ndim(Sq)==3:
[row,col,numt2] = Sq.shape
[X,Y] = np.meshgrid(np.linspace(0,col,col),np.linspace(0,row,row))
for k in range(numt2):
if noise:
Drho = np.random.normal(0,0.2,[row,col])
Drho2 = np.random.normal(0,0.2,[row,col])
else:
Drho = np.zeros([row,col])
Drho2 = np.zeros([row,col])
varPHASE0 = np.random.randint(-10,11,size=(row,col))*np.pi/180*(np.abs(Sq[:,:,k])<0.001) #Hugo's observation
modulus = 0.5 + 0.5*(np.abs(Sq[:,:,k])>0.001)
if scantype=='0G':
PHASE0[:,:,k] = (gamma*B0*TE+0.01*X)*(np.abs(Sq[:,:,k])>0.001) + 10*varPHASE0
PHASE1[:,:,k] = (gamma*B0*TE+0.01*X)*(np.abs(Sq[:,:,k])>0.001) + 10*varPHASE0 + np.pi*Sq[:,:,k]/VENC
if scantype=='-G+G':
PHASE0[:,:,k] = gamma*B0*TE*np.ones([row,col]) + 10*varPHASE0 - np.pi*Sq[:,:,k]/VENC
PHASE1[:,:,k] = gamma*B0*TE*np.ones([row,col]) + 10*varPHASE0 + np.pi*Sq[:,:,k]/VENC
RHO0[:,:,k] = modulus*np.cos(PHASE0[:,:,k]) + Drho + 1j*modulus*np.sin(PHASE0[:,:,k]) + 1j*Drho2
RHO1[:,:,k] = modulus*np.cos(PHASE1[:,:,k]) + Drho + 1j*modulus*np.sin(PHASE1[:,:,k]) + 1j*Drho2
if np.ndim(Sq)==4:
[row, col, dep, numt2] = Sq.shape
[X, Y, Z] = np.meshgrid(np.linspace(0, col, col), np.linspace(
0, row, row), np.linspace(0, dep, dep))
for k in range(numt2):
if noise:
Drho = np.random.normal(0, 0.2, [row, col, dep])
Drho2 = np.random.normal(0, 0.2, [row, col, dep])
else:
Drho = np.zeros([row, col, dep])
Drho2 = np.zeros([row, col, dep])
varPHASE0 = np.random.randint(-10, 11, size=(row, col, dep)) * \
np.pi/180*(np.abs(Sq[:, :, :, k]) < 0.001)
modulus = 0.5 + 0.5*(np.abs(Sq[:, :, :, k]) > 0.001)
if scantype == '0G':
PHASE0[:, :, :, k] = (gamma*B0*TE+0.01*X) * \
(np.abs(Sq[:, :, :, k]) > 0.001) + 10*varPHASE0
PHASE1[:, :, :, k] = (gamma*B0*TE+0.01*X)*(np.abs(Sq[:, :, :, k])
> 0.001) + 10*varPHASE0 + np.pi*Sq[:, :, :, k]/VENC
if scantype == '-G+G':
PHASE0[:, :, :, k] = gamma*B0*TE * \
np.ones([row, col, dep]) + varPHASE0 - np.pi*Sq[:, :, :, k]/VENC
PHASE1[:, :, :, k] = gamma*B0*TE * \
np.ones([row, col, dep]) + varPHASE0 + np.pi*Sq[:, :, :, k]/VENC
RHO0[:, :, :, k] = modulus*np.cos(PHASE0[:, :, :, k]) + \
Drho + 1j*modulus*np.sin(PHASE0[:, :, :, k]) + 1j*Drho2
RHO1[:, :, :, k] = modulus*np.cos(PHASE1[:, :, :, k]) + \
Drho + 1j*modulus*np.sin(PHASE1[:, :, :, k]) + 1j*Drho2
return [RHO0,RHO1]
def undersampling(Sqx,Sqy,Sqz,options,savepath):
R = options['cs']['R']
for r in R:
if rank==0:
print('Using Acceleration Factor R = ' + str(r))
print('Component x of M0')
[M0,M1] = GenerateMagnetization(Sqx,options['cs']['VENC'],options['cs']['noise'])
print('\n Component x of M0')
M0_cs = CSMETHOD(M0,r)
print('\n Component x of M1')
M1_cs = CSMETHOD(M1,r)
Sqx_cs = phase_contrast(M1_cs,M0_cs,options['cs']['VENC'])
del M0,M1
del M0_cs, M1_cs
[M0,M1] = GenerateMagnetization(Sqy,options['cs']['VENC'],options['cs']['noise'])
print('\n Component y of M0')
M0_cs = CSMETHOD(M0,r)
print('\n Component y of M1')
M1_cs = CSMETHOD(M1,r)
Sqy_cs = phase_contrast(M1_cs,M0_cs,options['cs']['VENC'])
del M0,M1
del M0_cs, M1_cs
[M0,M1] = GenerateMagnetization(Sqz,options['cs']['VENC'],options['cs']['noise'])
if rank==0:
print('\n Component z of M0')
M0_cs = CSMETHOD(M0,r)
if rank==0:
print('\n Component z of M1')
M1_cs = CSMETHOD(M1,r)
if rank==0:
print(' ')
Sqz_cs = phase_contrast(M1_cs,M0_cs,options['cs']['VENC'])
if rank==0:
print('saving the sequences in ' + savepath)
seqname = options['cs']['name'] +'_R' + str(r) + '.npz'
print('sequence name: ' + seqname)
np.savez_compressed( savepath + seqname, x=Sqx_cs, y=Sqy_cs,z=Sqz_cs)
del Sqx_cs,Sqy_cs,Sqz_cs
def undersampling_peakpv(Sqx,Sqy,Sqz,options,R):
Sqx_cs = {}
Sqy_cs = {}
Sqz_cs = {}
[Mx0,Mx1] = GenerateMagnetization(Sqx,options['cs']['VENC'],options['cs']['noise'],scantype='0G')
[My0,My1] = GenerateMagnetization(Sqy,options['cs']['VENC'],options['cs']['noise'],scantype='0G')
[Mz0,Mz1] = GenerateMagnetization(Sqz,options['cs']['VENC'],options['cs']['noise'],scantype='0G')
Mx0_cs = CSMETHOD(Mx0,R)
Mx1_cs = CSMETHOD(Mx1,R)
My0_cs = CSMETHOD(My0,R)
My1_cs = CSMETHOD(My1,R)
Mz0_cs = CSMETHOD(Mz0,R)
Mz1_cs = CSMETHOD(Mz1,R)
Sqx_cs = phase_contrast(Mx1_cs,Mx0_cs,options['cs']['VENC'],scantype='0G')
Sqy_cs = phase_contrast(My1_cs,My0_cs,options['cs']['VENC'],scantype='0G')
Sqz_cs = phase_contrast(Mz1_cs,Mz0_cs,options['cs']['VENC'],scantype='0G')
return [Sqx_cs,Sqy_cs,Sqz_cs]
def undersampling_short(Mx,My,Mz,options):
R = options['cs']['R']
savepath = options['cs']['savepath']
R_SENSE = 1
if 'R_SENSE' in options['cs']:
R_SENSE = options['cs']['R_SENSE'][0]
for r in R:
if rank==0:
print('Using Acceleration Factor R = ' + str(r))
if R_SENSE==2:
[MxS0_cs,MxS1_cs] = CSMETHOD_SENSE(Mx,r,2)
[MyS0_cs,MyS1_cs] = CSMETHOD_SENSE(My,r,2)
[MzS0_cs,MzS1_cs] = CSMETHOD_SENSE(Mz,r,2)
if rank==0:
print('saving the sequences in ' + savepath)
seqname_s0 = options['cs']['name'] +'S0_R' + str(r) + '.npz'
seqname_s1 = options['cs']['name'] +'S1_R' + str(r) + '.npz'
print('sequence name: ' + seqname_s0)
np.savez_compressed( savepath + seqname_s0, x=MxS0_cs, y=MyS0_cs,z=MzS0_cs)
print('sequence name: ' + seqname_s1)
np.savez_compressed( savepath + seqname_s1, x=MxS1_cs, y=MyS1_cs,z=MzS1_cs)
del MxS0_cs, MyS0_cs, MzS0_cs
del MxS1_cs, MyS1_cs, MzS1_cs
elif R_SENSE==1:
Mx_cs = CSMETHOD(Mx,r)
My_cs = CSMETHOD(My,r)
Mz_cs = CSMETHOD(Mz,r)
if rank==0:
print('saving the sequences in ' + savepath)
seqname = options['cs']['name'] +'_R' + str(r) + '.npz'
print('sequence name: ' + seqname)
np.savez_compressed( savepath + seqname, x=Mx_cs, y=My_cs,z=Mz_cs)
del Mx_cs,My_cs,Mz_cs
else:
raise Exception('Only implemented for 2-fold SENSE!!')
# THE END

1581
codes/Graphics.py Normal file

File diff suppressed because it is too large Load Diff

57
codes/MATLAB/createU.m Normal file
View File

@ -0,0 +1,57 @@
clear all; close all
folder_name = uigetdir([],'Load Folder...');
data = load(strcat(folder_name,'/data.mat'));
SEG = load(strcat(folder_name,'/SEG.mat'));
data = data.data;
SEG = SEG.SEG;
VENC = data.VENC;
VoxelSize = data.voxel_MR;
vel_AP = data.MR_PCA_AP;
vel_RL = data.MR_PCA_RL;
vel_FH = data.MR_PCA_FH;
SEG2 = permute(SEG,[2,3,1]);
SEG2 = SEG2(:,:,:);
vel_AP_seg = vel_AP.*SEG2(2:end-1,2:end-1,2:end-1);
vel_RL_seg = vel_RL.*SEG2(2:end-1,2:end-1,2:end-1);
vel_FH_seg = vel_FH.*SEG2(2:end-1,2:end-1,2:end-1);
u_R1 = [] ;
u_R1.x = vel_FH_seg;
u_R1.y = vel_AP_seg;
u_R1.z = vel_RL_seg;
u_R1.VoxelSize = VoxelSize;
save('/home/yeye/Desktop/u_R1.mat','u_R1');
disp('data saved')
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FIGURES
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure
size_vel = size(vel_FH);
for n=1:size_vel(3)
imshow(squeeze(vel_FH_seg(:,:,n,8)),[-100,100],'InitialMagnification',300);
colormap(gca);
pause(0.1)
end
%%
size_seg2 = size(SEG2);
for n=1:size_seg2(3)
imshow(squeeze(SEG2(:,:,n)),'InitialMagnification',300);
colormap(gca);
pause(0.1)
end

14
codes/MATLAB/leo/CREATE_MESH.m Executable file
View File

@ -0,0 +1,14 @@
% Program to create a structured mesh using the codes of Leo Sok
clear all; close all
nodes = load('LEO_files/nodes.txt');
ux = load('LEO_files/ux.txt') ;
uy = load('LEO_files/uy.txt') ;
uz = load('LEO_files/uz.txt') ;
u = sqrt(ux.^2 + uy.^2 + uz.^2);
resol = load('LEO_files/resol.txt') ;
dx = resol(1); dy = resol(2) ; dz = resol(3);
nodes_masked = maskFEM(nodes,u);
[N,tets,faces] = meshStructTess(nodes_masked,dx,dy,dz,0,0);
writemesh('/home/yeye/Desktop/leomesh',N,tets,faces)

19
codes/MATLAB/leo/maskFEM.m Executable file
View File

@ -0,0 +1,19 @@
function nodes2 = maskFEM(nodes,vel)
a = [];
b = [];
c = [];
ind = 1;
for i=1:length(nodes)
if vel(i)>0
a(ind) = nodes(i,1);
b(ind) = nodes(i,2);
c(ind) = nodes(i,3);
ind = ind +1;
end
end
nodes2 = [a', b', c'];

169
codes/MATLAB/leo/meshStructTess.m Executable file
View File

@ -0,0 +1,169 @@
function [nodes, tets, faces, P] = meshStructTess(nodes, dx, dy, dz, check_mesh, plot_mesh)
%% [nodes, tets, faces] = meshStructTess(nodes, dx, dy, dz, check_mesh, plot_mesh)
% Generate a tessalation from a list of structured nodes.
% input: nodes: n times 3 matrix with on the rows the coordinates of
% the n points in the mesh
% dx, dy, dz: the mesh-size in the directions x, y and z
% check_mesh: if true, then it solves a Poisson problem
% plot_mesh: if true, then it plots the mesh
% output: nodes: m times 3 matrix with on the rows the coordinates of
% the m <= n points in the triangulationedi
% tets: l times 4 matrix with on the rows the tetrahedra
% faces: k times 3 matrix with on the rows the triangles of the
% boundary of the mesh
% P: Transformation matrix from input nodes to output nodes.
% Useful also for transforming node-valued functions on
% the input nodes to node-valued functions on the output
% nodes
%
% The triangulation can be plotted using tetramesh(tets,nodes)
% compute the minimum and number of points in each direction
if size(nodes,1) < 4
error('Triangulation needs at least 4 points')
end
mn = min(nodes);
xmin = mn(1);
ymin = mn(2);
zmin = mn(3);
mn = max(nodes);
xmax = mn(1);
ymax = mn(2);
zmax = mn(3);
nx = round((xmax-xmin)/dx +1);
ny = round((ymax-ymin)/dy +1);
nz = round((zmax-zmin)/dz +1);
Nnodes = size(nodes,1);
% Define tensor which consist of nodes indices, used for the creation of
% the tetrahedra
nodes3d = zeros(nx,ny,nz); % preallocate
for i=1:Nnodes
nodes3d(round((nodes(i,1)-xmin)/dx)+1,round((nodes(i,2)-ymin)/dy)+1,round((nodes(i,3)-zmin)/dz)+1)=i;
end
disp('Creating Tetrahedra')
% create tetrahedral mesh in cube, which we will reuse.
ii = 1;
X = zeros(8,3);
for i=0:1
for j=0:1
for k=0:1
X(ii,:) = [i,j,k];
ii = ii+1;
end
end
end
cubetet = delaunay(X);
% Run through the mesh
el = 1;
Tetrahedra = zeros(6*(nnz(nodes3d)),4); % preallocate
for i=1:nx-1
for j=1:ny-1
for k=1:nz-1
% take [i:i+1,j:j+1,k:k+1] as cube
nod = zeros(1,8); % perallocate
for l = 1:8
% nod is vector with node indices of cube
nod(l) = nodes3d(i + X(l,1), j + X(l,2), k + X(l,3));
end
if nnz(nod) == 8 % then the cube is inside the mesh
tet = nod(cubetet);
else % then there is at least one point of the cube outside the mesh
Xs = X(logical(nod),:); % take only nodes inside the mesh
nodx = nod(logical(nod));
if nnz(nod) == 4 % 4 nodes, check if points are coplanar
C = cross(Xs(2,:)-Xs(1,:), Xs(3,:)-Xs(1,:));
cop = logical(dot(C,Xs(4,:)-Xs(1,:)));
% if cop = 0, then points are coplanar end thus no
% tetrahedra exists.
end
if (nnz(nod)>4) || (nnz(nod) == 4 && cop)
% create tetrahedra
tet1 = delaunay(Xs);
tet = nodx(tet1);
else % no tetrahedra exists
tet = [];
end
end
% add new tetrahedra to list
Tetrahedra(el:el+size(tet,1)-1,:) = tet;
el = el+size(tet,1);
end
end
end
tets = Tetrahedra(1:el-1,:); % Delete extra preallocated rows.
clear Tetrahedra
disp([num2str(size(tets,1)), ' tetrahedra created'])
% Delete nodes which are not in any tetrahedra.
disp('Update mesh')
contr = zeros(size(nodes,1),1);
for i=1:size(tets,1)
for j=1:4
contr(tets(i,j))=1;
end
end
nodes = nodes(logical(contr),:);
% compute P
P = speye(Nnodes);
P = P(logical(contr),:);
disp([num2str(nnz(~contr)), ' unused nodes in triangulation deleted.'])
disp('Update tetrahedra')
% make tetrahedra compatible with new node indices
cumcon = cumsum(~contr)';
tets = tets - cumcon(tets);
% create triangles
if size(tets,1) == 0
warning('No tetrahedra created')
faces = zeros(0,3);
else
disp('Create Triangles')
faces = freeBoundary(triangulation(tets,nodes));
disp([num2str(size(faces,1)), ' triangles created'])
end
% checking the mesh by solving a Poisson problem
if check_mesh
% Builds the P1 stiffness matrix from tets and nodes
[A,volumes]=stifness_matrixP1_3D(tets,nodes);
% Check if element volumes may be negative
if any(volumes<=0)
warning('Some elements have zero or negative volume')
end
% solve the Poisson problem with Dirichlet BC
A(2:end,2:end)\ones(size(A(2:end,2:end),1),1);
disp('If there are no warnings, it probably means that the mesh is fine')
end
% Plots mesh
if plot_mesh
tetramesh(tets,nodes)
xlabel('x')
ylabel('y')
zlabel('z')
end
end

97
codes/MATLAB/leo/writemesh.m Executable file
View File

@ -0,0 +1,97 @@
function writemesh(varargin)
%% writemesh(path, mesh)
% Save triangulation as path.xml and path.msh
% mesh is a struct with fields Pts, Tet, Tri
% alernatively one can use writemesh(path, Pts, Tet, Tri)
% Pts should by a n times 3 matrix consisting points of the mesh
% Tet is the m times 4 matrix consisting the tetrahedra
% Tri is the l times 3 matrix consisting the triangles at the boundary
if nargin > 3
mesh.Pts=varargin{2};
mesh.Tet=varargin{3};
mesh.Tri=varargin{4};
writemesh(varargin{1},mesh,varargin(nargin));
elseif isstruct(varargin{2})
rootMeshFile = varargin{1};
% NEW FILE
obj = [rootMeshFile,'.msh'];
meshfile = fopen(obj,'w');
obj2 = [rootMeshFile,'.xml'];
xmlfile = fopen(obj2,'w');
% MESH
fprintf(meshfile,['$MeshFormat','\n']);
fprintf(meshfile,['2.2 0 8','\n']);
fprintf(meshfile,['$EndMeshFormat','\n']);
fprintf(xmlfile,['<?xml version="1.0" encoding="UTF-8"?>','\n']);
fprintf(xmlfile,'\n');
fprintf(xmlfile,['<dolfin xmlns:dolfin="http://www.fenicsproject.org">','\n']);
mesh = varargin{2};
Nodes = mesh.('Pts');
mesh = rmfield(mesh,'Pts');
Nodes = [(1:size(Nodes,1))' Nodes(:,1:3)];
% POINTS
if ~strcmp(varargin{nargin},'mute')
disp('Write Points')
end
fprintf(meshfile,['$Nodes','\n']);
fprintf(meshfile,['%i','\n'],size(Nodes,1));
fprintf(xmlfile,[' <mesh celltype="tetrahedron" dim="3">','\n']);
fprintf(xmlfile,[' <vertices size="%i">','\n'],size(Nodes,1));
fprintf(meshfile,'%i %13.6f %13.6f %13.6f\n',Nodes');
Nodes(:,1) = Nodes(:,1) - 1;
fprintf(xmlfile,' <vertex index="%i" x="%0.16e" y="%0.16e" z="%0.16e"/>\n',Nodes');
fprintf(meshfile,['$EndNodes','\n']);
fprintf(meshfile,['$Elements','\n']);
fprintf(meshfile,['%i','\n'],size(mesh.Tet,1)+size(mesh.Tri,1));
fprintf(xmlfile,[' </vertices>','\n']);
fprintf(xmlfile,[' <cells size="%i">','\n'],size(mesh.Tet,1));
% Triangles
if ~strcmp(varargin{nargin},'mute')
disp('Write Triangles')
end
tri = mesh.('Tri');
tri = [(1:size(tri,1))' 2*ones(size(tri,1),1) 2*ones(size(tri,1),1) zeros(size(tri,1),1) 2*ones(size(tri,1),1) tri(:,1:3)];
fprintf(meshfile,'%i %i %i %i %i %i %i %i\n',tri');
% Tetrahedra
if ~strcmp(varargin{nargin},'mute')
disp('Write Tetrahedra')
end
tet = mesh.('Tet');
tet = [(size(tri,1)+1:size(tri,1)+size(tet,1))' 4*ones(size(tet,1),1) 2*ones(size(tet,1),1) zeros(size(tet,1),1) ones(size(tet,1),1) tet(:,1:4)];
fprintf(meshfile,'%i %i %i %i %i %i %i %i %i\n',tet');
tet = mesh.('Tet');
tet = [(0:size(tet,1)-1)' (tet(:,1:4)-1)];
fprintf(xmlfile,' <tetrahedron index="%i" v0="%i" v1="%i" v2="%i" v3="%i"/>\n',tet');
fprintf(meshfile,['$EndElements','\n']);
fprintf(xmlfile,' </cells>\n </mesh>\n</dolfin>\n');
fclose('all');
end

126
codes/MATLAB/load_dicom.m Normal file
View File

@ -0,0 +1,126 @@
clear all ; close all
% Load dicom
name = 'Ronald' ;
if strcmp(name, 'Ronald')
path_all = [
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Ronald/FH/DICOM/IM_0001',
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Ronald/AP/DICOM/IM_0001',
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Ronald/RL/DICOM/IM_0001'
] ;
end
if strcmp(name, 'Jeremias')
path_all = [
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Jeremias/FH/DICOM/IM_0001',
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Jeremias/AP/DICOM/IM_0001',
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Jeremias/RL/DICOM/IM_0001'
] ;
end
if strcmp(name, 'Hugo')
path_all = [
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Hugo/Dicom/DICOM/IM_0013',
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Hugo/Dicom/DICOM/IM_0009',
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Hugo/Dicom/DICOM/IM_0005'
] ;
end
for i=1:3
if i==1
%path = '/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Paloma/Dicom/DICOM/IM_0013'
disp('Reading the FH component from ...')
path = path_all(1,:)
end
if i==2
%path = '/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Paloma/Dicom/DICOM/IM_0009' ;
disp('Reading the AP component from ...')
path = path_all(2,:)
end
if i==3
%path = '/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Paloma/Dicom/DICOM/IM_0005' ;
disp('Reading the RL component from ...')
path = path_all(3,:)
end
I_info = dicominfo(path);
I = double(dicomread(path));
VENC = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_1.MRVelocityEncodingSequence.Item_1.VelocityEncodingMaximumValue']) ;
heart_rate = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_1.Private_2005_140f.Item_1.HeartRate']);
MAG = zeros(size(I,1),size(I,2),I_info.Private_2001_1018,I_info.Private_2001_1017);
PHASE = zeros(size(I,1),size(I,2),I_info.Private_2001_1018,I_info.Private_2001_1017);
for n=1:size(I,4)
RI = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_',num2str(n),'.Private_2005_140f.Item_1.RescaleIntercept']); % intercept
RS = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_',num2str(n),'.Private_2005_140f.Item_1.RescaleSlope']); % slope
cp = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_',num2str(n),'.Private_2005_140f.Item_1.Private_2001_1008']); %cp
slc = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_',num2str(n),'.Private_2005_140f.Item_1.Private_2001_100a']); %scl
id = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_',num2str(n),'.Private_2005_140f.Item_1.Private_2005_106e']); % PCA o FFE
if strcmp(id,'FFE')==1
MAG(:,:,slc,cp) = I(:,:,1,n)*RS + RI;
else
PHASE(:,:,slc,cp) = I(:,:,1,n)*RS + RI;
end
end
MASK = double(abs((PHASE==PHASE(1,1,1,1))-1));
PHASE = PHASE.*MASK;
if i==1
MR_FFE_FH = MAG;
MR_PCA_FH = VENC*PHASE/pi/100;
end
if i==2
MR_FFE_AP = MAG;
MR_PCA_AP = VENC*PHASE/pi/100;
end
if i==3
MR_FFE_RL = MAG;
MR_PCA_RL = VENC*PHASE/pi/100;
end
end
disp('Saving the data ...')
spaceslices = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_1.PixelMeasuresSequence.Item_1.SpacingBetweenSlices']);
pixelspacing = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_1.PixelMeasuresSequence.Item_1.PixelSpacing']);
disp('voxel-size recognized:')
voxel_MR = [pixelspacing(1),pixelspacing(1),spaceslices]
data = [];
data.MR_FFE_AP = MR_FFE_AP;
data.MR_FFE_RL = MR_FFE_RL;
data.MR_FFE_FH = MR_FFE_FH;
data.MR_PCA_AP = MR_PCA_AP;
data.MR_PCA_RL = MR_PCA_RL;
data.MR_PCA_FH = MR_PCA_FH;
data.type = 'DAT';
data.VENC = VENC ;
data.voxel_MR = voxel_MR;
data.heart_rate = heart_rate;
save('/home/yeye/Desktop/data.mat','data','-v7.3');
disp('data saved')

1936
codes/MRI.py Normal file

File diff suppressed because it is too large Load Diff

1072
codes/PostCheck.py Normal file

File diff suppressed because it is too large Load Diff

115
codes/SENSE.py Normal file
View File

@ -0,0 +1,115 @@
import numpy as np
from numpy import linalg as LA
import sys
from mpi4py import MPI
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
# SENSE: Simulation of SENSitive Encoding algorithm proposed by K. Pruessmann, et. al. in:
# "SENSE: Sensitivity Enconding for Fast MRI" Mag. Res. in Medicine 42. (1999)
# written by Jeremias Garay (j.e.garay.labra@rug.nl)
def Sensitivity_Map(shape):
[Nx,Ny,Nz] = shape
[X,Y,Z] = np.meshgrid(np.linspace(0,Ny,Ny),np.linspace(0,Nx,Nx),np.linspace(0,Nz,Nz))
Xsense1 = (X/(Nx*2)-1)**2
Xsense2 = ((Nx-X)/(Nx*2)-1)**2
S_MAPS = [np.fft.fftshift(Xsense1),np.fft.fftshift(Xsense2)]
return S_MAPS
def SENSE_recon(S1,M1,S2,M2):
[Nx,Ny,Nz,Nt] = M1.shape
M = np.zeros([Nx,int(2*Ny),Nz,Nt],dtype=complex)
sm1 = np.fft.fftshift(S1)[:,:,0]
sm2 = np.fft.fftshift(S2)[:,:,0]
for j in range(Ny):
for k in range(Nx):
l1 = M1[k,j,:,:]; a1 = sm1[k,j]; a2 = sm1[k,j+Ny]
l2 = M2[k,j,:,:]; b1 = sm2[k,j]; b2 = sm2[k,j+Ny]
B = (l1*b1 - l2*a1)/(a2*b1 - b2*a1)
A = (l1*b2 - l2*a2)/(a1*b2 - a2*b1)
M[k,j,:,:] = A
M[k,j+Ny,:,:] = B
return M
def SENSE_recon2(S1,M1,S2,M2):
# With matrices as in the original paper!
[Nx,Ny,Nz,Nt] = M1.shape
M = np.zeros([Nx,int(2*Ny),Nz,Nt],dtype=complex)
sm1 = np.fft.fftshift(S1)[:,:,0]
sm2 = np.fft.fftshift(S2)[:,:,0]
sigma2 = 0.049**2
sigma2 = 1
Psi = np.diagflat(np.array([sigma2,sigma2])) # Error matrix Psi
Psi_inv = np.linalg.inv(Psi)
for j in range(Ny):
for k in range(Nx):
l1 = M1[k,j,:,:]; a1 = sm1[k,j]; a2 = sm1[k,j+Ny]
l2 = M2[k,j,:,:]; b1 = sm2[k,j]; b2 = sm2[k,j+Ny]
S = np.array([[a1,a2],[b1,b2]])
U = np.linalg.inv((np.transpose(S)*Psi_inv*S))*np.transpose(S)*Psi_inv
a = np.array([l1,l2])
a_resized = np.resize(a,(2,Nz*Nt))
v_resized = np.dot(U,a_resized)
<