codes copied
This commit is contained in:
parent
14cffd5876
commit
2da253f278
15
codes/.vscode/launch.json
vendored
Normal file
15
codes/.vscode/launch.json
vendored
Normal file
@ -0,0 +1,15 @@
|
||||
{
|
||||
// Use IntelliSense to learn about possible attributes.
|
||||
// Hover to view descriptions of existing attributes.
|
||||
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Python: Current File",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "${file}",
|
||||
"console": "integratedTerminal"
|
||||
}
|
||||
]
|
||||
}
|
12
codes/.vscode/tasks.json
vendored
Normal file
12
codes/.vscode/tasks.json
vendored
Normal file
@ -0,0 +1,12 @@
|
||||
{
|
||||
// See https://go.microsoft.com/fwlink/?LinkId=733558
|
||||
// for the documentation about the tasks.json format
|
||||
"version": "2.0.0",
|
||||
"tasks": [
|
||||
{
|
||||
"label": "echo",
|
||||
"type": "shell",
|
||||
"command": "echo Hello"
|
||||
}
|
||||
]
|
||||
}
|
705
codes/CS.py
Normal file
705
codes/CS.py
Normal file
@ -0,0 +1,705 @@
|
||||
import numpy as np
|
||||
from numpy import linalg as LA
|
||||
import sys
|
||||
from mpi4py import MPI
|
||||
comm = MPI.COMM_WORLD
|
||||
size = comm.Get_size()
|
||||
rank = comm.Get_rank()
|
||||
|
||||
|
||||
# COMPRESSED SENSING: LINEAR BREGMAN METHOD
|
||||
# Translated and adapted into python from tinycs
|
||||
#
|
||||
# *tinycs* is a minimal compressed sensing (CS) toolkit designed
|
||||
# to allow MR imaging scientists to design undersampled
|
||||
# acquisitions and reconstruct the resulting data with CS without
|
||||
# needing to be a CS expert.
|
||||
#
|
||||
# The Cartesian reconstruction is based on the split Bregman
|
||||
# code written by Tom Goldstein, originally available here:
|
||||
# <http://tag7.web.rice.edu/Split_Bregman.html>
|
||||
|
||||
|
||||
def pdf(k,kw,klo,q):
|
||||
|
||||
p = (np.abs(k)/kw)**(-q)
|
||||
p[np.where(k==0)] = 0
|
||||
p[np.where(np.abs(k)<=kw)] = 1
|
||||
p[np.where(k<klo)] = 0
|
||||
|
||||
return p
|
||||
|
||||
def mask_pdf_1d(n,norm,q,pf):
|
||||
|
||||
ks = np.arange(0,n) - np.ceil(n/2) - 1
|
||||
kmax = np.floor(n/2)
|
||||
npf = np.round(pf*n)
|
||||
klo = ks[n-npf]
|
||||
|
||||
|
||||
for k in range(int(kmax)):
|
||||
P = pdf(ks,k+1,klo,q)
|
||||
if np.sum(P)>=norm:
|
||||
break
|
||||
|
||||
P = np.fft.fftshift(P)
|
||||
|
||||
|
||||
#if np.mod(n,2)!=0:
|
||||
# P = np.concatenate(([1],P),axis=None)
|
||||
|
||||
|
||||
|
||||
return P
|
||||
|
||||
def mask_pdf_2d(dims,norm,q,pf):
|
||||
|
||||
nz = dims[1]
|
||||
ny = dims[0]
|
||||
yc = round(ny/2)
|
||||
zc = round(nz/2)
|
||||
rmax = np.sqrt((ny-yc)**2 + (nz-zc)**2)
|
||||
[Z,Y] = np.meshgrid(np.arange(0,nz),np.arange(0,ny))
|
||||
RR = np.sqrt( (Y-yc)**2 + (Z-zc)**2)
|
||||
Z = np.abs(Z - nz/2 - 0.5)
|
||||
Y = np.abs(Y - ny/2 - 0.5)
|
||||
|
||||
|
||||
for rw in range(1,int(rmax)+1):
|
||||
P = np.ones([ny,nz])/pf
|
||||
C = np.logical_and( Z <= rw , Y <= rw)
|
||||
W = np.logical_or( Z > rw , Y > rw)
|
||||
P[W] = (RR[W]/rw)**(-q)
|
||||
if np.sum(P) >= norm:
|
||||
break
|
||||
|
||||
|
||||
|
||||
return [P,C]
|
||||
|
||||
def GeneratePattern(dim,R):
|
||||
|
||||
# 3D CASE
|
||||
if np.size(dim)==3:
|
||||
|
||||
nro = dim[0]
|
||||
npe = dim[1]
|
||||
nacq = round(npe/R)
|
||||
q = 1
|
||||
pf = 1
|
||||
P = mask_pdf_1d(npe, nacq, q, pf)
|
||||
while True:
|
||||
M = np.random.rand(npe)
|
||||
M = 1*(M<=P)
|
||||
if np.sum(M)==nacq:
|
||||
break
|
||||
# remove partial Fourier plane and compensate sampling density
|
||||
M = M!=0
|
||||
M = np.tile(M,[nro,1]);
|
||||
#M = M.T
|
||||
|
||||
# 4D CASE
|
||||
if np.size(dim)==4:
|
||||
|
||||
nro = dim[0]
|
||||
npe1 = dim[1]
|
||||
npe2 = dim[2]
|
||||
nacq = round(npe1*npe2/R)
|
||||
q = 1
|
||||
pf = 1
|
||||
[P,C] = mask_pdf_2d([npe1,npe2], nacq, q, pf)
|
||||
RR = np.random.rand(npe1,npe2)
|
||||
M = (RR <= P)
|
||||
nchosen = np.sum(M)
|
||||
if nchosen > nacq: # Correct for inexact number chosen
|
||||
#outerOn = np.logical_and( M , P!=1 )
|
||||
outerOn = np.where((M)*(P!=1))
|
||||
numToFlip = nchosen-nacq
|
||||
idxs = np.random.permutation(outerOn[0].size)
|
||||
idxx = outerOn[0][idxs[0:numToFlip]]
|
||||
idxy = outerOn[1][idxs[0:numToFlip]]
|
||||
M[idxx,idxy] = False
|
||||
|
||||
elif nchosen < nacq:
|
||||
outerOff = np.where(~M)
|
||||
idxs = np.random.permutation(outerOff[0].size)
|
||||
numToFlip = nacq - nchosen
|
||||
idxx = outerOff[0][idxs[0:numToFlip]]
|
||||
idxy = outerOff[1][idxs[0:numToFlip]]
|
||||
M[idxx,idxy] = True
|
||||
|
||||
|
||||
|
||||
|
||||
M = np.rollaxis(np.tile(np.rollaxis(M,1),[nro,1,1]),2)
|
||||
M = np.fft.ifftshift(M)
|
||||
M = M.transpose((1,0,2))
|
||||
|
||||
|
||||
return M
|
||||
|
||||
def get_norm_factor(MASK,uu):
|
||||
UM = MASK==1
|
||||
return UM.shape[0]/LA.norm(uu)
|
||||
|
||||
def Dxyzt(X):
|
||||
|
||||
if np.ndim(X)==3:
|
||||
dd0 = X[:,:,0]
|
||||
dd1 = X[:,:,1]
|
||||
DA = dd0 - np.vstack((dd0[1::,:],dd0[0,:]))
|
||||
DB = dd1 - np.hstack((dd1[:,1::],dd1[:,0:1]))
|
||||
|
||||
return DA + DB
|
||||
|
||||
if np.ndim(X)==4:
|
||||
dd0 = X[:,:,:,0]
|
||||
dd1 = X[:,:,:,1]
|
||||
dd2 = X[:,:,:,2]
|
||||
|
||||
DA = dd0 - np.vstack((dd0[1::,:,:],dd0[0,:,:][np.newaxis,:,:]))
|
||||
DB = dd1 - np.hstack((dd1[:,1::,:],dd1[:,0,:][:,np.newaxis,:]))
|
||||
DC = dd2 - np.dstack((dd2[:,:,1::],dd2[:,:,0][:,:,np.newaxis]))
|
||||
|
||||
return DA + DB + DC
|
||||
|
||||
def Dxyz(u):
|
||||
|
||||
if np.ndim(u)==2:
|
||||
|
||||
dx = u[:,:]- np.vstack((u[-1,:],u[0:-1,:]))
|
||||
dy = u[:,:]- np.hstack((u[:,-1:],u[:,0:-1]))
|
||||
D = np.zeros([dx.shape[0],dx.shape[1],2],dtype=complex)
|
||||
D[:,:,0] = dx
|
||||
D[:,:,1] = dy
|
||||
|
||||
return D
|
||||
|
||||
if np.ndim(u)==3:
|
||||
|
||||
dx = u[:,:,:]- np.vstack((u[-1,:,:][np.newaxis,:,:],u[0:-1,:,:]))
|
||||
dy = u[:,:,:]- np.hstack((u[:,-1,:][:,np.newaxis,:],u[:,0:-1,:]))
|
||||
dz = u[:,:,:]- np.dstack((u[:,:,-1][:,:,np.newaxis],u[:,:,0:-1]))
|
||||
|
||||
D = np.zeros([dx.shape[0],dx.shape[1],dx.shape[2],3],dtype=complex)
|
||||
|
||||
D[:,:,:,0] = dx
|
||||
D[:,:,:,1] = dy
|
||||
D[:,:,:,2] = dz
|
||||
|
||||
return D
|
||||
|
||||
def shrink(X,pgam):
|
||||
p = 1
|
||||
s = np.abs(X)
|
||||
tt = pgam/(s)**(1-p)
|
||||
# t = pgam/np.sqrt(s)
|
||||
ss = s-tt
|
||||
ss = ss*(ss>0)
|
||||
s = s + 1*(s<tt)
|
||||
ss = ss/s
|
||||
return ss*X
|
||||
|
||||
def CSMETHOD(ITOT,R):
|
||||
|
||||
''' Compressed Function.
|
||||
|
||||
Args:
|
||||
ITOT: a numpy matrix with the full sampled (3D or 4D) dynamical data
|
||||
R: the acceleration factor
|
||||
'''
|
||||
# Method parameters
|
||||
ninner = 5
|
||||
nbreg = 10
|
||||
lmbda = 4
|
||||
mu = 20
|
||||
gam = 1
|
||||
|
||||
|
||||
if np.ndim(ITOT)==3:
|
||||
[row,col,numt2] = ITOT.shape
|
||||
elif np.ndim(ITOT)==4:
|
||||
[row,col,dep,numt2] = ITOT.shape
|
||||
else:
|
||||
raise Exception('Dynamical data is requested')
|
||||
|
||||
|
||||
MASK = GeneratePattern(ITOT.shape,R)
|
||||
CS1 = np.zeros(ITOT.shape,dtype=complex)
|
||||
|
||||
|
||||
nit = 0
|
||||
nit_tot = (numt2-1)/20
|
||||
|
||||
|
||||
if np.ndim(ITOT)==3:
|
||||
|
||||
for t in range(numt2):
|
||||
|
||||
if rank==0:
|
||||
print('{3D COMPRESSED SENSING} t = ',t)
|
||||
|
||||
Kdata = np.fft.fft2(ITOT[:,:,t])*MASK
|
||||
|
||||
data_ndims = Kdata.ndim
|
||||
mask = Kdata!=0 # not perfect, but good enough
|
||||
# normalize the data so that standard parameter values work
|
||||
norm_factor = get_norm_factor(mask, Kdata)
|
||||
Kdata = Kdata*norm_factor
|
||||
# Reserve memory for the auxillary variables
|
||||
Kdata0 = Kdata
|
||||
img = np.zeros([row,col],dtype=complex)
|
||||
X = np.zeros([row,col, data_ndims])
|
||||
B = np.zeros([row,col, data_ndims])
|
||||
# Build Kernels
|
||||
scale = np.sqrt(row*col)
|
||||
murf = np.fft.ifft2(mu*mask*Kdata)*scale
|
||||
uker = np.zeros([row,col])
|
||||
uker[0,0] = 4
|
||||
uker[0,1] = -1 ; uker[1,0] = -1
|
||||
uker[-1,0] = -1 ; uker[0,-1] = -1
|
||||
|
||||
uker = 1/(mu*mask + lmbda*np.fft.fftn(uker) + gam)
|
||||
|
||||
# Do the reconstruction
|
||||
for outer in range(nbreg):
|
||||
for inner in range(ninner):
|
||||
# update u
|
||||
rhs = murf + lmbda*Dxyzt(X-B) + gam*img
|
||||
img = np.fft.ifft2(np.fft.fft2(rhs)*uker)
|
||||
# update x and y
|
||||
A = Dxyz(img) + B
|
||||
X = shrink(A, 1/lmbda)
|
||||
# update bregman parameters
|
||||
B = A - X
|
||||
Kdata = Kdata + Kdata0 - mask*np.fft.fftn(img)/scale
|
||||
murf = np.fft.ifftn(mu*mask*Kdata)*scale
|
||||
|
||||
# undo the normalization so that results are scaled properly
|
||||
img = img / norm_factor / scale
|
||||
|
||||
|
||||
CS1[:,:,t] = img
|
||||
|
||||
if np.ndim(ITOT)==4:
|
||||
|
||||
for t in range(numt2):
|
||||
|
||||
|
||||
if rank==0:
|
||||
print('[4D CS] R = {re} t = {te}/{tef}'.format(re=R,te=t,tef=numt2))
|
||||
#if np.mod(t,nit_tot)<1:
|
||||
# sys.stdout.write('\r')
|
||||
# # Progress bar
|
||||
# if numt2==3:
|
||||
# sys.stdout.write("{4d-CS} [%-6s] %d%%" % ('=='*nit, 100*t/numt2))
|
||||
# else:
|
||||
# sys.stdout.write("{4d-CS} [%-40s] %d%%" % ('=='*nit, 100*t/numt2))
|
||||
# sys.stdout.flush()
|
||||
# nit = nit +1
|
||||
|
||||
|
||||
|
||||
Kdata_0 = np.fft.fftn(ITOT[:,:,:,t])
|
||||
Kdata = Kdata_0*MASK
|
||||
data_ndims = Kdata.ndim
|
||||
mask = Kdata!=0 # not perfect, but good enough
|
||||
# normalize the data so that standard parameter values work
|
||||
norm_factor = get_norm_factor(mask, Kdata)
|
||||
Kdata = Kdata*norm_factor
|
||||
# Reserve memory for the auxillary variables
|
||||
Kdata0 = Kdata
|
||||
img = np.zeros([row,col,dep],dtype=complex)
|
||||
X = np.zeros([row,col,dep, data_ndims])
|
||||
B = np.zeros([row,col,dep, data_ndims])
|
||||
# Build Kernels
|
||||
scale = np.sqrt(row*col*dep)
|
||||
murf = np.fft.ifftn(mu*mask*Kdata)*scale
|
||||
uker = np.zeros([row,col,dep])
|
||||
uker[0,0,0] = 8
|
||||
uker[1,0,0] = -1 ; uker[0,1,0] = -1 ; uker[0,0,1] = -1
|
||||
uker[-1,0,0] = -1 ; uker[0,-1,0] = -1 ; uker[0,0,-1] = -1
|
||||
uker = 1/(mu*mask + lmbda*np.fft.fftn(uker) + gam)
|
||||
|
||||
# Do the reconstruction
|
||||
for outer in range(nbreg):
|
||||
for inner in range(ninner):
|
||||
# update u
|
||||
rhs = murf + lmbda*Dxyzt(X-B) + gam*img
|
||||
img = np.fft.ifft2(np.fft.fft2(rhs)*uker)
|
||||
# update x and y
|
||||
A = Dxyz(img) + B
|
||||
X = shrink(A, 1/lmbda)
|
||||
# update bregman parameters
|
||||
B = A - X
|
||||
Kdata = Kdata + Kdata0 - mask*np.fft.fftn(img)/scale
|
||||
murf = np.fft.ifftn(mu*mask*Kdata)*scale
|
||||
|
||||
# undo the normalization so that results are scaled properly
|
||||
img = img / norm_factor / scale
|
||||
|
||||
|
||||
CS1[:,:,:,t] = img
|
||||
|
||||
|
||||
|
||||
|
||||
return CS1
|
||||
|
||||
def CSMETHOD_SENSE(ITOT,R,R_SENSE):
|
||||
''' Compressed Function.
|
||||
|
||||
Args:
|
||||
ITOT: a numpy matrix with the full sampled (3D or 4D) dynamical data
|
||||
R: the acceleration factor
|
||||
'''
|
||||
# Method parameters
|
||||
ninner = 5
|
||||
nbreg = 10
|
||||
lmbda = 4
|
||||
mu = 20
|
||||
gam = 1
|
||||
|
||||
[row,col,dep,numt2] = ITOT.shape
|
||||
MASK = {}
|
||||
ITOTCS = {}
|
||||
MASK[0] = GeneratePattern([row,int(np.ceil(col/2)),dep,numt2],R)
|
||||
MASK[1] = GeneratePattern([row,int(np.ceil(col/2)),dep,numt2],R)
|
||||
SenseMAP = {}
|
||||
[SenseMAP[0],SenseMAP[1]] = Sensitivity_Map([row,col,dep])
|
||||
|
||||
col = int(np.ceil(col/2))
|
||||
ITOTCS[0] = np.zeros([row,col,dep,numt2],dtype=complex)
|
||||
ITOTCS[1] = np.zeros([row,col,dep,numt2],dtype=complex)
|
||||
|
||||
for rs in range(R_SENSE):
|
||||
for t in range(numt2):
|
||||
if rank==0:
|
||||
print('[4D CS] R = {re} t = {te}/{tef}'.format(re=R,te=t,tef=numt2))
|
||||
|
||||
Kdata_0 = np.fft.fftn(ITOT[:,:,:,t])
|
||||
Kdata_0 = Kdata_0*SenseMAP[rs]
|
||||
Kdata_0 = Kdata_0[:,0::R_SENSE,:]
|
||||
|
||||
Kdata = Kdata_0*MASK[rs]
|
||||
data_ndims = Kdata.ndim
|
||||
mask = Kdata!=0 # not perfect, but good enough
|
||||
# normalize the data so that standard parameter values work
|
||||
norm_factor = get_norm_factor(mask, Kdata)
|
||||
Kdata = Kdata*norm_factor
|
||||
# Reserve memory for the auxillary variables
|
||||
Kdata0 = Kdata
|
||||
img = np.zeros([row,col,dep],dtype=complex)
|
||||
X = np.zeros([row,col,dep, data_ndims])
|
||||
B = np.zeros([row,col,dep, data_ndims])
|
||||
# Build Kernels
|
||||
scale = np.sqrt(row*col*dep)
|
||||
murf = np.fft.ifftn(mu*mask*Kdata)*scale
|
||||
uker = np.zeros([row,col,dep])
|
||||
uker[0,0,0] = 8
|
||||
uker[1,0,0] = -1 ; uker[0,1,0] = -1 ; uker[0,0,1] = -1
|
||||
uker[-1,0,0] = -1 ; uker[0,-1,0] = -1 ; uker[0,0,-1] = -1
|
||||
uker = 1/(mu*mask + lmbda*np.fft.fftn(uker) + gam)
|
||||
|
||||
# Do the reconstruction
|
||||
for outer in range(nbreg):
|
||||
for inner in range(ninner):
|
||||
# update u
|
||||
rhs = murf + lmbda*Dxyzt(X-B) + gam*img
|
||||
img = np.fft.ifft2(np.fft.fft2(rhs)*uker)
|
||||
# update x and y
|
||||
A = Dxyz(img) + B
|
||||
X = shrink(A, 1/lmbda)
|
||||
# update bregman parameters
|
||||
B = A - X
|
||||
Kdata = Kdata + Kdata0 - mask*np.fft.fftn(img)/scale
|
||||
murf = np.fft.ifftn(mu*mask*Kdata)*scale
|
||||
|
||||
# undo the normalization so that results are scaled properly
|
||||
img = img / norm_factor / scale
|
||||
|
||||
ITOTCS[rs][:,:,:,t] = img
|
||||
|
||||
|
||||
return [ITOTCS[0],ITOTCS[1]]
|
||||
|
||||
def CSMETHOD_peaksystole(ITOT,R,tstar):
|
||||
|
||||
''' Compressed Function.
|
||||
|
||||
Args:
|
||||
ITOT: a numpy matrix with the full sampled (3D or 4D) dynamical data
|
||||
R: the acceleration factor
|
||||
tstar: the time when the flux in the inlet it's maximum
|
||||
'''
|
||||
# Method parameters
|
||||
ninner = 5
|
||||
nbreg = 10
|
||||
lmbda = 4
|
||||
mu = 20
|
||||
gam = 1
|
||||
|
||||
|
||||
|
||||
[row,col,dep,numt2] = ITOT.shape
|
||||
|
||||
MASK = GeneratePattern(ITOT.shape,R)
|
||||
CS1 = np.zeros([row,col,dep],dtype=complex)
|
||||
|
||||
for t in range(tstar,tstar+1):
|
||||
Kdata = np.fft.fftn(ITOT[:,:,:,t])*MASK
|
||||
data_ndims = Kdata.ndim
|
||||
mask = Kdata!=0 # not perfect, but good enough
|
||||
# normalize the data so that standard parameter values work
|
||||
norm_factor = get_norm_factor(mask, Kdata)
|
||||
Kdata = Kdata*norm_factor
|
||||
# Reserve memory for the auxillary variables
|
||||
Kdata0 = Kdata
|
||||
img = np.zeros([row,col,dep],dtype=complex)
|
||||
X = np.zeros([row,col,dep, data_ndims])
|
||||
B = np.zeros([row,col,dep, data_ndims])
|
||||
# Build Kernels
|
||||
scale = np.sqrt(row*col*dep)
|
||||
murf = np.fft.ifftn(mu*mask*Kdata)*scale
|
||||
uker = np.zeros([row,col,dep])
|
||||
uker[0,0,0] = 8
|
||||
uker[1,0,0] = -1 ; uker[0,1,0] = -1 ; uker[0,0,1] = -1
|
||||
uker[-1,0,0] = -1 ; uker[0,-1,0] = -1 ; uker[0,0,-1] = -1
|
||||
uker = 1/(mu*mask + lmbda*np.fft.fftn(uker) + gam)
|
||||
|
||||
# Do the reconstruction
|
||||
for outer in range(nbreg):
|
||||
for inner in range(ninner):
|
||||
# update u
|
||||
rhs = murf + lmbda*Dxyzt(X-B) + gam*img
|
||||
img = np.fft.ifft2(np.fft.fft2(rhs)*uker)
|
||||
# update x and y
|
||||
A = Dxyz(img) + B
|
||||
X = shrink(A, 1/lmbda)
|
||||
# update bregman parameters
|
||||
B = A - X
|
||||
Kdata = Kdata + Kdata0 - mask*np.fft.fftn(img)/scale
|
||||
murf = np.fft.ifftn(mu*mask*Kdata)*scale
|
||||
|
||||
# undo the normalization so that results are scaled properly
|
||||
img = img / norm_factor / scale
|
||||
CS1[:,:,:] = img
|
||||
|
||||
|
||||
return CS1
|
||||
|
||||
def phase_contrast(M1,M0,VENC,scantype='0G'):
|
||||
param = 1
|
||||
if scantype=='-G+G':
|
||||
param = 0.5
|
||||
return VENC*param*(np.angle(M1) - np.angle(M0))/np.pi
|
||||
|
||||
def GenerateMagnetization(Sq,VENC,noise,scantype='0G'):
|
||||
# MRI PARAMETERS
|
||||
gamma = 267.513e6 # rad/Tesla/sec Gyromagnetic ratio for H nuclei
|
||||
B0 = 1.5 # Tesla Magnetic Field Strenght
|
||||
TE = 5e-3 # Echo-time
|
||||
PHASE0 = np.zeros(Sq.shape)
|
||||
PHASE1 = np.zeros(Sq.shape)
|
||||
RHO0 = np.zeros(Sq.shape, dtype=complex)
|
||||
RHO1 = np.zeros(Sq.shape, dtype=complex)
|
||||
|
||||
if np.ndim(Sq)==3:
|
||||
[row,col,numt2] = Sq.shape
|
||||
[X,Y] = np.meshgrid(np.linspace(0,col,col),np.linspace(0,row,row))
|
||||
for k in range(numt2):
|
||||
if noise:
|
||||
Drho = np.random.normal(0,0.2,[row,col])
|
||||
Drho2 = np.random.normal(0,0.2,[row,col])
|
||||
else:
|
||||
Drho = np.zeros([row,col])
|
||||
Drho2 = np.zeros([row,col])
|
||||
|
||||
varPHASE0 = np.random.randint(-10,11,size=(row,col))*np.pi/180*(np.abs(Sq[:,:,k])<0.001) #Hugo's observation
|
||||
modulus = 0.5 + 0.5*(np.abs(Sq[:,:,k])>0.001)
|
||||
|
||||
if scantype=='0G':
|
||||
PHASE0[:,:,k] = (gamma*B0*TE+0.01*X)*(np.abs(Sq[:,:,k])>0.001) + 10*varPHASE0
|
||||
PHASE1[:,:,k] = (gamma*B0*TE+0.01*X)*(np.abs(Sq[:,:,k])>0.001) + 10*varPHASE0 + np.pi*Sq[:,:,k]/VENC
|
||||
|
||||
if scantype=='-G+G':
|
||||
PHASE0[:,:,k] = gamma*B0*TE*np.ones([row,col]) + 10*varPHASE0 - np.pi*Sq[:,:,k]/VENC
|
||||
PHASE1[:,:,k] = gamma*B0*TE*np.ones([row,col]) + 10*varPHASE0 + np.pi*Sq[:,:,k]/VENC
|
||||
|
||||
RHO0[:,:,k] = modulus*np.cos(PHASE0[:,:,k]) + Drho + 1j*modulus*np.sin(PHASE0[:,:,k]) + 1j*Drho2
|
||||
RHO1[:,:,k] = modulus*np.cos(PHASE1[:,:,k]) + Drho + 1j*modulus*np.sin(PHASE1[:,:,k]) + 1j*Drho2
|
||||
|
||||
|
||||
if np.ndim(Sq)==4:
|
||||
[row, col, dep, numt2] = Sq.shape
|
||||
[X, Y, Z] = np.meshgrid(np.linspace(0, col, col), np.linspace(
|
||||
0, row, row), np.linspace(0, dep, dep))
|
||||
|
||||
for k in range(numt2):
|
||||
|
||||
if noise:
|
||||
Drho = np.random.normal(0, 0.2, [row, col, dep])
|
||||
Drho2 = np.random.normal(0, 0.2, [row, col, dep])
|
||||
else:
|
||||
Drho = np.zeros([row, col, dep])
|
||||
Drho2 = np.zeros([row, col, dep])
|
||||
|
||||
varPHASE0 = np.random.randint(-10, 11, size=(row, col, dep)) * \
|
||||
np.pi/180*(np.abs(Sq[:, :, :, k]) < 0.001)
|
||||
modulus = 0.5 + 0.5*(np.abs(Sq[:, :, :, k]) > 0.001)
|
||||
|
||||
if scantype == '0G':
|
||||
PHASE0[:, :, :, k] = (gamma*B0*TE+0.01*X) * \
|
||||
(np.abs(Sq[:, :, :, k]) > 0.001) + 10*varPHASE0
|
||||
PHASE1[:, :, :, k] = (gamma*B0*TE+0.01*X)*(np.abs(Sq[:, :, :, k])
|
||||
> 0.001) + 10*varPHASE0 + np.pi*Sq[:, :, :, k]/VENC
|
||||
|
||||
if scantype == '-G+G':
|
||||
PHASE0[:, :, :, k] = gamma*B0*TE * \
|
||||
np.ones([row, col, dep]) + varPHASE0 - np.pi*Sq[:, :, :, k]/VENC
|
||||
PHASE1[:, :, :, k] = gamma*B0*TE * \
|
||||
np.ones([row, col, dep]) + varPHASE0 + np.pi*Sq[:, :, :, k]/VENC
|
||||
|
||||
RHO0[:, :, :, k] = modulus*np.cos(PHASE0[:, :, :, k]) + \
|
||||
Drho + 1j*modulus*np.sin(PHASE0[:, :, :, k]) + 1j*Drho2
|
||||
RHO1[:, :, :, k] = modulus*np.cos(PHASE1[:, :, :, k]) + \
|
||||
Drho + 1j*modulus*np.sin(PHASE1[:, :, :, k]) + 1j*Drho2
|
||||
|
||||
|
||||
|
||||
return [RHO0,RHO1]
|
||||
|
||||
def undersampling(Sqx,Sqy,Sqz,options,savepath):
|
||||
|
||||
R = options['cs']['R']
|
||||
|
||||
for r in R:
|
||||
|
||||
if rank==0:
|
||||
print('Using Acceleration Factor R = ' + str(r))
|
||||
print('Component x of M0')
|
||||
|
||||
[M0,M1] = GenerateMagnetization(Sqx,options['cs']['VENC'],options['cs']['noise'])
|
||||
|
||||
|
||||
print('\n Component x of M0')
|
||||
M0_cs = CSMETHOD(M0,r)
|
||||
print('\n Component x of M1')
|
||||
M1_cs = CSMETHOD(M1,r)
|
||||
|
||||
Sqx_cs = phase_contrast(M1_cs,M0_cs,options['cs']['VENC'])
|
||||
del M0,M1
|
||||
del M0_cs, M1_cs
|
||||
|
||||
[M0,M1] = GenerateMagnetization(Sqy,options['cs']['VENC'],options['cs']['noise'])
|
||||
|
||||
|
||||
print('\n Component y of M0')
|
||||
M0_cs = CSMETHOD(M0,r)
|
||||
print('\n Component y of M1')
|
||||
M1_cs = CSMETHOD(M1,r)
|
||||
|
||||
|
||||
Sqy_cs = phase_contrast(M1_cs,M0_cs,options['cs']['VENC'])
|
||||
|
||||
del M0,M1
|
||||
del M0_cs, M1_cs
|
||||
|
||||
[M0,M1] = GenerateMagnetization(Sqz,options['cs']['VENC'],options['cs']['noise'])
|
||||
|
||||
if rank==0:
|
||||
print('\n Component z of M0')
|
||||
M0_cs = CSMETHOD(M0,r)
|
||||
if rank==0:
|
||||
print('\n Component z of M1')
|
||||
M1_cs = CSMETHOD(M1,r)
|
||||
if rank==0:
|
||||
print(' ')
|
||||
|
||||
Sqz_cs = phase_contrast(M1_cs,M0_cs,options['cs']['VENC'])
|
||||
|
||||
|
||||
if rank==0:
|
||||
print('saving the sequences in ' + savepath)
|
||||
seqname = options['cs']['name'] +'_R' + str(r) + '.npz'
|
||||
print('sequence name: ' + seqname)
|
||||
np.savez_compressed( savepath + seqname, x=Sqx_cs, y=Sqy_cs,z=Sqz_cs)
|
||||
|
||||
del Sqx_cs,Sqy_cs,Sqz_cs
|
||||
|
||||
def undersampling_peakpv(Sqx,Sqy,Sqz,options,R):
|
||||
|
||||
Sqx_cs = {}
|
||||
Sqy_cs = {}
|
||||
Sqz_cs = {}
|
||||
[Mx0,Mx1] = GenerateMagnetization(Sqx,options['cs']['VENC'],options['cs']['noise'],scantype='0G')
|
||||
[My0,My1] = GenerateMagnetization(Sqy,options['cs']['VENC'],options['cs']['noise'],scantype='0G')
|
||||
[Mz0,Mz1] = GenerateMagnetization(Sqz,options['cs']['VENC'],options['cs']['noise'],scantype='0G')
|
||||
|
||||
|
||||
Mx0_cs = CSMETHOD(Mx0,R)
|
||||
Mx1_cs = CSMETHOD(Mx1,R)
|
||||
My0_cs = CSMETHOD(My0,R)
|
||||
My1_cs = CSMETHOD(My1,R)
|
||||
Mz0_cs = CSMETHOD(Mz0,R)
|
||||
Mz1_cs = CSMETHOD(Mz1,R)
|
||||
|
||||
Sqx_cs = phase_contrast(Mx1_cs,Mx0_cs,options['cs']['VENC'],scantype='0G')
|
||||
Sqy_cs = phase_contrast(My1_cs,My0_cs,options['cs']['VENC'],scantype='0G')
|
||||
Sqz_cs = phase_contrast(Mz1_cs,Mz0_cs,options['cs']['VENC'],scantype='0G')
|
||||
|
||||
|
||||
|
||||
return [Sqx_cs,Sqy_cs,Sqz_cs]
|
||||
|
||||
def undersampling_short(Mx,My,Mz,options):
|
||||
|
||||
R = options['cs']['R']
|
||||
savepath = options['cs']['savepath']
|
||||
|
||||
|
||||
R_SENSE = 1
|
||||
if 'R_SENSE' in options['cs']:
|
||||
R_SENSE = options['cs']['R_SENSE'][0]
|
||||
|
||||
for r in R:
|
||||
if rank==0:
|
||||
print('Using Acceleration Factor R = ' + str(r))
|
||||
|
||||
|
||||
if R_SENSE==2:
|
||||
[MxS0_cs,MxS1_cs] = CSMETHOD_SENSE(Mx,r,2)
|
||||
[MyS0_cs,MyS1_cs] = CSMETHOD_SENSE(My,r,2)
|
||||
[MzS0_cs,MzS1_cs] = CSMETHOD_SENSE(Mz,r,2)
|
||||
if rank==0:
|
||||
print('saving the sequences in ' + savepath)
|
||||
seqname_s0 = options['cs']['name'] +'S0_R' + str(r) + '.npz'
|
||||
seqname_s1 = options['cs']['name'] +'S1_R' + str(r) + '.npz'
|
||||
print('sequence name: ' + seqname_s0)
|
||||
np.savez_compressed( savepath + seqname_s0, x=MxS0_cs, y=MyS0_cs,z=MzS0_cs)
|
||||
print('sequence name: ' + seqname_s1)
|
||||
np.savez_compressed( savepath + seqname_s1, x=MxS1_cs, y=MyS1_cs,z=MzS1_cs)
|
||||
del MxS0_cs, MyS0_cs, MzS0_cs
|
||||
del MxS1_cs, MyS1_cs, MzS1_cs
|
||||
elif R_SENSE==1:
|
||||
Mx_cs = CSMETHOD(Mx,r)
|
||||
My_cs = CSMETHOD(My,r)
|
||||
Mz_cs = CSMETHOD(Mz,r)
|
||||
if rank==0:
|
||||
print('saving the sequences in ' + savepath)
|
||||
seqname = options['cs']['name'] +'_R' + str(r) + '.npz'
|
||||
print('sequence name: ' + seqname)
|
||||
np.savez_compressed( savepath + seqname, x=Mx_cs, y=My_cs,z=Mz_cs)
|
||||
del Mx_cs,My_cs,Mz_cs
|
||||
else:
|
||||
raise Exception('Only implemented for 2-fold SENSE!!')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# THE END
|
||||
|
||||
|
||||
|
1581
codes/Graphics.py
Normal file
1581
codes/Graphics.py
Normal file
File diff suppressed because it is too large
Load Diff
57
codes/MATLAB/createU.m
Normal file
57
codes/MATLAB/createU.m
Normal file
@ -0,0 +1,57 @@
|
||||
clear all; close all
|
||||
|
||||
folder_name = uigetdir([],'Load Folder...');
|
||||
|
||||
data = load(strcat(folder_name,'/data.mat'));
|
||||
SEG = load(strcat(folder_name,'/SEG.mat'));
|
||||
|
||||
data = data.data;
|
||||
SEG = SEG.SEG;
|
||||
|
||||
|
||||
VENC = data.VENC;
|
||||
VoxelSize = data.voxel_MR;
|
||||
|
||||
vel_AP = data.MR_PCA_AP;
|
||||
vel_RL = data.MR_PCA_RL;
|
||||
vel_FH = data.MR_PCA_FH;
|
||||
|
||||
SEG2 = permute(SEG,[2,3,1]);
|
||||
SEG2 = SEG2(:,:,:);
|
||||
|
||||
|
||||
vel_AP_seg = vel_AP.*SEG2(2:end-1,2:end-1,2:end-1);
|
||||
vel_RL_seg = vel_RL.*SEG2(2:end-1,2:end-1,2:end-1);
|
||||
vel_FH_seg = vel_FH.*SEG2(2:end-1,2:end-1,2:end-1);
|
||||
|
||||
|
||||
|
||||
|
||||
u_R1 = [] ;
|
||||
u_R1.x = vel_FH_seg;
|
||||
u_R1.y = vel_AP_seg;
|
||||
u_R1.z = vel_RL_seg;
|
||||
u_R1.VoxelSize = VoxelSize;
|
||||
save('/home/yeye/Desktop/u_R1.mat','u_R1');
|
||||
disp('data saved')
|
||||
%%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% FIGURES
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
figure
|
||||
size_vel = size(vel_FH);
|
||||
for n=1:size_vel(3)
|
||||
imshow(squeeze(vel_FH_seg(:,:,n,8)),[-100,100],'InitialMagnification',300);
|
||||
colormap(gca);
|
||||
pause(0.1)
|
||||
end
|
||||
%%
|
||||
size_seg2 = size(SEG2);
|
||||
for n=1:size_seg2(3)
|
||||
imshow(squeeze(SEG2(:,:,n)),'InitialMagnification',300);
|
||||
colormap(gca);
|
||||
pause(0.1)
|
||||
end
|
||||
|
||||
|
14
codes/MATLAB/leo/CREATE_MESH.m
Executable file
14
codes/MATLAB/leo/CREATE_MESH.m
Executable file
@ -0,0 +1,14 @@
|
||||
% Program to create a structured mesh using the codes of Leo Sok
|
||||
clear all; close all
|
||||
|
||||
nodes = load('LEO_files/nodes.txt');
|
||||
ux = load('LEO_files/ux.txt') ;
|
||||
uy = load('LEO_files/uy.txt') ;
|
||||
uz = load('LEO_files/uz.txt') ;
|
||||
u = sqrt(ux.^2 + uy.^2 + uz.^2);
|
||||
resol = load('LEO_files/resol.txt') ;
|
||||
dx = resol(1); dy = resol(2) ; dz = resol(3);
|
||||
|
||||
nodes_masked = maskFEM(nodes,u);
|
||||
[N,tets,faces] = meshStructTess(nodes_masked,dx,dy,dz,0,0);
|
||||
writemesh('/home/yeye/Desktop/leomesh',N,tets,faces)
|
19
codes/MATLAB/leo/maskFEM.m
Executable file
19
codes/MATLAB/leo/maskFEM.m
Executable file
@ -0,0 +1,19 @@
|
||||
function nodes2 = maskFEM(nodes,vel)
|
||||
|
||||
a = [];
|
||||
b = [];
|
||||
c = [];
|
||||
ind = 1;
|
||||
|
||||
for i=1:length(nodes)
|
||||
if vel(i)>0
|
||||
a(ind) = nodes(i,1);
|
||||
b(ind) = nodes(i,2);
|
||||
c(ind) = nodes(i,3);
|
||||
ind = ind +1;
|
||||
end
|
||||
end
|
||||
|
||||
nodes2 = [a', b', c'];
|
||||
|
||||
|
169
codes/MATLAB/leo/meshStructTess.m
Executable file
169
codes/MATLAB/leo/meshStructTess.m
Executable file
@ -0,0 +1,169 @@
|
||||
function [nodes, tets, faces, P] = meshStructTess(nodes, dx, dy, dz, check_mesh, plot_mesh)
|
||||
%% [nodes, tets, faces] = meshStructTess(nodes, dx, dy, dz, check_mesh, plot_mesh)
|
||||
% Generate a tessalation from a list of structured nodes.
|
||||
% input: nodes: n times 3 matrix with on the rows the coordinates of
|
||||
% the n points in the mesh
|
||||
% dx, dy, dz: the mesh-size in the directions x, y and z
|
||||
% check_mesh: if true, then it solves a Poisson problem
|
||||
% plot_mesh: if true, then it plots the mesh
|
||||
% output: nodes: m times 3 matrix with on the rows the coordinates of
|
||||
% the m <= n points in the triangulationedi
|
||||
% tets: l times 4 matrix with on the rows the tetrahedra
|
||||
% faces: k times 3 matrix with on the rows the triangles of the
|
||||
% boundary of the mesh
|
||||
% P: Transformation matrix from input nodes to output nodes.
|
||||
% Useful also for transforming node-valued functions on
|
||||
% the input nodes to node-valued functions on the output
|
||||
% nodes
|
||||
%
|
||||
% The triangulation can be plotted using tetramesh(tets,nodes)
|
||||
|
||||
|
||||
% compute the minimum and number of points in each direction
|
||||
if size(nodes,1) < 4
|
||||
error('Triangulation needs at least 4 points')
|
||||
end
|
||||
mn = min(nodes);
|
||||
xmin = mn(1);
|
||||
ymin = mn(2);
|
||||
zmin = mn(3);
|
||||
|
||||
mn = max(nodes);
|
||||
xmax = mn(1);
|
||||
ymax = mn(2);
|
||||
zmax = mn(3);
|
||||
|
||||
nx = round((xmax-xmin)/dx +1);
|
||||
ny = round((ymax-ymin)/dy +1);
|
||||
nz = round((zmax-zmin)/dz +1);
|
||||
|
||||
Nnodes = size(nodes,1);
|
||||
|
||||
|
||||
% Define tensor which consist of nodes indices, used for the creation of
|
||||
% the tetrahedra
|
||||
|
||||
nodes3d = zeros(nx,ny,nz); % preallocate
|
||||
for i=1:Nnodes
|
||||
nodes3d(round((nodes(i,1)-xmin)/dx)+1,round((nodes(i,2)-ymin)/dy)+1,round((nodes(i,3)-zmin)/dz)+1)=i;
|
||||
end
|
||||
|
||||
|
||||
disp('Creating Tetrahedra')
|
||||
|
||||
% create tetrahedral mesh in cube, which we will reuse.
|
||||
ii = 1;
|
||||
X = zeros(8,3);
|
||||
for i=0:1
|
||||
for j=0:1
|
||||
for k=0:1
|
||||
X(ii,:) = [i,j,k];
|
||||
ii = ii+1;
|
||||
end
|
||||
end
|
||||
end
|
||||
cubetet = delaunay(X);
|
||||
|
||||
% Run through the mesh
|
||||
el = 1;
|
||||
Tetrahedra = zeros(6*(nnz(nodes3d)),4); % preallocate
|
||||
|
||||
for i=1:nx-1
|
||||
for j=1:ny-1
|
||||
for k=1:nz-1
|
||||
% take [i:i+1,j:j+1,k:k+1] as cube
|
||||
nod = zeros(1,8); % perallocate
|
||||
|
||||
for l = 1:8
|
||||
% nod is vector with node indices of cube
|
||||
nod(l) = nodes3d(i + X(l,1), j + X(l,2), k + X(l,3));
|
||||
end
|
||||
|
||||
if nnz(nod) == 8 % then the cube is inside the mesh
|
||||
tet = nod(cubetet);
|
||||
else % then there is at least one point of the cube outside the mesh
|
||||
Xs = X(logical(nod),:); % take only nodes inside the mesh
|
||||
nodx = nod(logical(nod));
|
||||
if nnz(nod) == 4 % 4 nodes, check if points are coplanar
|
||||
C = cross(Xs(2,:)-Xs(1,:), Xs(3,:)-Xs(1,:));
|
||||
cop = logical(dot(C,Xs(4,:)-Xs(1,:)));
|
||||
% if cop = 0, then points are coplanar end thus no
|
||||
% tetrahedra exists.
|
||||
end
|
||||
if (nnz(nod)>4) || (nnz(nod) == 4 && cop)
|
||||
% create tetrahedra
|
||||
tet1 = delaunay(Xs);
|
||||
tet = nodx(tet1);
|
||||
else % no tetrahedra exists
|
||||
tet = [];
|
||||
end
|
||||
end
|
||||
|
||||
% add new tetrahedra to list
|
||||
Tetrahedra(el:el+size(tet,1)-1,:) = tet;
|
||||
el = el+size(tet,1);
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
tets = Tetrahedra(1:el-1,:); % Delete extra preallocated rows.
|
||||
clear Tetrahedra
|
||||
|
||||
disp([num2str(size(tets,1)), ' tetrahedra created'])
|
||||
|
||||
% Delete nodes which are not in any tetrahedra.
|
||||
disp('Update mesh')
|
||||
contr = zeros(size(nodes,1),1);
|
||||
for i=1:size(tets,1)
|
||||
for j=1:4
|
||||
contr(tets(i,j))=1;
|
||||
end
|
||||
end
|
||||
|
||||
nodes = nodes(logical(contr),:);
|
||||
|
||||
% compute P
|
||||
P = speye(Nnodes);
|
||||
P = P(logical(contr),:);
|
||||
|
||||
disp([num2str(nnz(~contr)), ' unused nodes in triangulation deleted.'])
|
||||
|
||||
disp('Update tetrahedra')
|
||||
|
||||
% make tetrahedra compatible with new node indices
|
||||
cumcon = cumsum(~contr)';
|
||||
tets = tets - cumcon(tets);
|
||||
|
||||
% create triangles
|
||||
if size(tets,1) == 0
|
||||
warning('No tetrahedra created')
|
||||
faces = zeros(0,3);
|
||||
else
|
||||
disp('Create Triangles')
|
||||
faces = freeBoundary(triangulation(tets,nodes));
|
||||
disp([num2str(size(faces,1)), ' triangles created'])
|
||||
end
|
||||
|
||||
% checking the mesh by solving a Poisson problem
|
||||
if check_mesh
|
||||
% Builds the P1 stiffness matrix from tets and nodes
|
||||
[A,volumes]=stifness_matrixP1_3D(tets,nodes);
|
||||
% Check if element volumes may be negative
|
||||
if any(volumes<=0)
|
||||
warning('Some elements have zero or negative volume')
|
||||
end
|
||||
% solve the Poisson problem with Dirichlet BC
|
||||
A(2:end,2:end)\ones(size(A(2:end,2:end),1),1);
|
||||
disp('If there are no warnings, it probably means that the mesh is fine')
|
||||
end
|
||||
|
||||
% Plots mesh
|
||||
if plot_mesh
|
||||
tetramesh(tets,nodes)
|
||||
xlabel('x')
|
||||
ylabel('y')
|
||||
zlabel('z')
|
||||
end
|
||||
|
||||
end
|
||||
|
97
codes/MATLAB/leo/writemesh.m
Executable file
97
codes/MATLAB/leo/writemesh.m
Executable file
@ -0,0 +1,97 @@
|
||||
function writemesh(varargin)
|
||||
%% writemesh(path, mesh)
|
||||
% Save triangulation as path.xml and path.msh
|
||||
% mesh is a struct with fields Pts, Tet, Tri
|
||||
% alernatively one can use writemesh(path, Pts, Tet, Tri)
|
||||
% Pts should by a n times 3 matrix consisting points of the mesh
|
||||
% Tet is the m times 4 matrix consisting the tetrahedra
|
||||
% Tri is the l times 3 matrix consisting the triangles at the boundary
|
||||
|
||||
if nargin > 3
|
||||
mesh.Pts=varargin{2};
|
||||
mesh.Tet=varargin{3};
|
||||
mesh.Tri=varargin{4};
|
||||
writemesh(varargin{1},mesh,varargin(nargin));
|
||||
|
||||
elseif isstruct(varargin{2})
|
||||
rootMeshFile = varargin{1};
|
||||
|
||||
% NEW FILE
|
||||
obj = [rootMeshFile,'.msh'];
|
||||
meshfile = fopen(obj,'w');
|
||||
|
||||
obj2 = [rootMeshFile,'.xml'];
|
||||
xmlfile = fopen(obj2,'w');
|
||||
|
||||
% MESH
|
||||
fprintf(meshfile,['$MeshFormat','\n']);
|
||||
fprintf(meshfile,['2.2 0 8','\n']);
|
||||
fprintf(meshfile,['$EndMeshFormat','\n']);
|
||||
|
||||
fprintf(xmlfile,['<?xml version="1.0" encoding="UTF-8"?>','\n']);
|
||||
fprintf(xmlfile,'\n');
|
||||
fprintf(xmlfile,['<dolfin xmlns:dolfin="http://www.fenicsproject.org">','\n']);
|
||||
|
||||
mesh = varargin{2};
|
||||
|
||||
Nodes = mesh.('Pts');
|
||||
mesh = rmfield(mesh,'Pts');
|
||||
|
||||
Nodes = [(1:size(Nodes,1))' Nodes(:,1:3)];
|
||||
|
||||
% POINTS
|
||||
if ~strcmp(varargin{nargin},'mute')
|
||||
disp('Write Points')
|
||||
end
|
||||
fprintf(meshfile,['$Nodes','\n']);
|
||||
fprintf(meshfile,['%i','\n'],size(Nodes,1));
|
||||
fprintf(xmlfile,[' <mesh celltype="tetrahedron" dim="3">','\n']);
|
||||
fprintf(xmlfile,[' <vertices size="%i">','\n'],size(Nodes,1));
|
||||
|
||||
|
||||
fprintf(meshfile,'%i %13.6f %13.6f %13.6f\n',Nodes');
|
||||
|
||||
Nodes(:,1) = Nodes(:,1) - 1;
|
||||
|
||||
fprintf(xmlfile,' <vertex index="%i" x="%0.16e" y="%0.16e" z="%0.16e"/>\n',Nodes');
|
||||
|
||||
fprintf(meshfile,['$EndNodes','\n']);
|
||||
fprintf(meshfile,['$Elements','\n']);
|
||||
fprintf(meshfile,['%i','\n'],size(mesh.Tet,1)+size(mesh.Tri,1));
|
||||
fprintf(xmlfile,[' </vertices>','\n']);
|
||||
fprintf(xmlfile,[' <cells size="%i">','\n'],size(mesh.Tet,1));
|
||||
|
||||
% Triangles
|
||||
|
||||
if ~strcmp(varargin{nargin},'mute')
|
||||
disp('Write Triangles')
|
||||
end
|
||||
|
||||
tri = mesh.('Tri');
|
||||
tri = [(1:size(tri,1))' 2*ones(size(tri,1),1) 2*ones(size(tri,1),1) zeros(size(tri,1),1) 2*ones(size(tri,1),1) tri(:,1:3)];
|
||||
fprintf(meshfile,'%i %i %i %i %i %i %i %i\n',tri');
|
||||
|
||||
|
||||
|
||||
% Tetrahedra
|
||||
if ~strcmp(varargin{nargin},'mute')
|
||||
disp('Write Tetrahedra')
|
||||
end
|
||||
|
||||
tet = mesh.('Tet');
|
||||
tet = [(size(tri,1)+1:size(tri,1)+size(tet,1))' 4*ones(size(tet,1),1) 2*ones(size(tet,1),1) zeros(size(tet,1),1) ones(size(tet,1),1) tet(:,1:4)];
|
||||
fprintf(meshfile,'%i %i %i %i %i %i %i %i %i\n',tet');
|
||||
|
||||
tet = mesh.('Tet');
|
||||
tet = [(0:size(tet,1)-1)' (tet(:,1:4)-1)];
|
||||
fprintf(xmlfile,' <tetrahedron index="%i" v0="%i" v1="%i" v2="%i" v3="%i"/>\n',tet');
|
||||
|
||||
|
||||
|
||||
fprintf(meshfile,['$EndElements','\n']);
|
||||
fprintf(xmlfile,' </cells>\n </mesh>\n</dolfin>\n');
|
||||
|
||||
fclose('all');
|
||||
end
|
||||
|
||||
|
126
codes/MATLAB/load_dicom.m
Normal file
126
codes/MATLAB/load_dicom.m
Normal file
@ -0,0 +1,126 @@
|
||||
clear all ; close all
|
||||
% Load dicom
|
||||
|
||||
|
||||
name = 'Ronald' ;
|
||||
|
||||
if strcmp(name, 'Ronald')
|
||||
path_all = [
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Ronald/FH/DICOM/IM_0001',
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Ronald/AP/DICOM/IM_0001',
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Ronald/RL/DICOM/IM_0001'
|
||||
] ;
|
||||
end
|
||||
|
||||
if strcmp(name, 'Jeremias')
|
||||
path_all = [
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Jeremias/FH/DICOM/IM_0001',
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Jeremias/AP/DICOM/IM_0001',
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Jeremias/RL/DICOM/IM_0001'
|
||||
] ;
|
||||
end
|
||||
|
||||
if strcmp(name, 'Hugo')
|
||||
path_all = [
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Hugo/Dicom/DICOM/IM_0013',
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Hugo/Dicom/DICOM/IM_0009',
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Hugo/Dicom/DICOM/IM_0005'
|
||||
] ;
|
||||
end
|
||||
|
||||
for i=1:3
|
||||
|
||||
if i==1
|
||||
%path = '/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Paloma/Dicom/DICOM/IM_0013'
|
||||
disp('Reading the FH component from ...')
|
||||
path = path_all(1,:)
|
||||
end
|
||||
|
||||
if i==2
|
||||
%path = '/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Paloma/Dicom/DICOM/IM_0009' ;
|
||||
disp('Reading the AP component from ...')
|
||||
path = path_all(2,:)
|
||||
end
|
||||
|
||||
if i==3
|
||||
%path = '/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Paloma/Dicom/DICOM/IM_0005' ;
|
||||
disp('Reading the RL component from ...')
|
||||
path = path_all(3,:)
|
||||
end
|
||||
|
||||
|
||||
I_info = dicominfo(path);
|
||||
I = double(dicomread(path));
|
||||
VENC = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_1.MRVelocityEncodingSequence.Item_1.VelocityEncodingMaximumValue']) ;
|
||||
heart_rate = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_1.Private_2005_140f.Item_1.HeartRate']);
|
||||
|
||||
|
||||
MAG = zeros(size(I,1),size(I,2),I_info.Private_2001_1018,I_info.Private_2001_1017);
|
||||
PHASE = zeros(size(I,1),size(I,2),I_info.Private_2001_1018,I_info.Private_2001_1017);
|
||||
|
||||
for n=1:size(I,4)
|
||||
|
||||
RI = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_',num2str(n),'.Private_2005_140f.Item_1.RescaleIntercept']); % intercept
|
||||
RS = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_',num2str(n),'.Private_2005_140f.Item_1.RescaleSlope']); % slope
|
||||
cp = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_',num2str(n),'.Private_2005_140f.Item_1.Private_2001_1008']); %cp
|
||||
slc = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_',num2str(n),'.Private_2005_140f.Item_1.Private_2001_100a']); %scl
|
||||
id = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_',num2str(n),'.Private_2005_140f.Item_1.Private_2005_106e']); % PCA o FFE
|
||||
|
||||
if strcmp(id,'FFE')==1
|
||||
MAG(:,:,slc,cp) = I(:,:,1,n)*RS + RI;
|
||||
else
|
||||
PHASE(:,:,slc,cp) = I(:,:,1,n)*RS + RI;
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
|
||||
MASK = double(abs((PHASE==PHASE(1,1,1,1))-1));
|
||||
PHASE = PHASE.*MASK;
|
||||
|
||||
|
||||
if i==1
|
||||
MR_FFE_FH = MAG;
|
||||
MR_PCA_FH = VENC*PHASE/pi/100;
|
||||
end
|
||||
|
||||
if i==2
|
||||
MR_FFE_AP = MAG;
|
||||
MR_PCA_AP = VENC*PHASE/pi/100;
|
||||
end
|
||||
if i==3
|
||||
MR_FFE_RL = MAG;
|
||||
MR_PCA_RL = VENC*PHASE/pi/100;
|
||||
end
|
||||
|
||||
|
||||
end
|
||||
|
||||
|
||||
disp('Saving the data ...')
|
||||
|
||||
spaceslices = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_1.PixelMeasuresSequence.Item_1.SpacingBetweenSlices']);
|
||||
pixelspacing = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_1.PixelMeasuresSequence.Item_1.PixelSpacing']);
|
||||
|
||||
disp('voxel-size recognized:')
|
||||
voxel_MR = [pixelspacing(1),pixelspacing(1),spaceslices]
|
||||
|
||||
|
||||
data = [];
|
||||
data.MR_FFE_AP = MR_FFE_AP;
|
||||
data.MR_FFE_RL = MR_FFE_RL;
|
||||
data.MR_FFE_FH = MR_FFE_FH;
|
||||
data.MR_PCA_AP = MR_PCA_AP;
|
||||
data.MR_PCA_RL = MR_PCA_RL;
|
||||
data.MR_PCA_FH = MR_PCA_FH;
|
||||
data.type = 'DAT';
|
||||
data.VENC = VENC ;
|
||||
data.voxel_MR = voxel_MR;
|
||||
data.heart_rate = heart_rate;
|
||||
|
||||
save('/home/yeye/Desktop/data.mat','data','-v7.3');
|
||||
disp('data saved')
|
||||
|
||||
|
||||
|
||||
|
1936
codes/MRI.py
Normal file
1936
codes/MRI.py
Normal file
File diff suppressed because it is too large
Load Diff
1072
codes/PostCheck.py
Normal file
1072
codes/PostCheck.py
Normal file
File diff suppressed because it is too large
Load Diff
115
codes/SENSE.py
Normal file
115
codes/SENSE.py
Normal file
@ -0,0 +1,115 @@
|
||||
import numpy as np
|
||||
from numpy import linalg as LA
|
||||
import sys
|
||||
from mpi4py import MPI
|
||||
comm = MPI.COMM_WORLD
|
||||
size = comm.Get_size()
|
||||
rank = comm.Get_rank()
|
||||
|
||||
# SENSE: Simulation of SENSitive Encoding algorithm proposed by K. Pruessmann, et. al. in:
|
||||
# "SENSE: Sensitivity Enconding for Fast MRI" Mag. Res. in Medicine 42. (1999)
|
||||
# written by Jeremias Garay (j.e.garay.labra@rug.nl)
|
||||
|
||||
def Sensitivity_Map(shape):
|
||||
|
||||
[Nx,Ny,Nz] = shape
|
||||
[X,Y,Z] = np.meshgrid(np.linspace(0,Ny,Ny),np.linspace(0,Nx,Nx),np.linspace(0,Nz,Nz))
|
||||
Xsense1 = (X/(Nx*2)-1)**2
|
||||
Xsense2 = ((Nx-X)/(Nx*2)-1)**2
|
||||
S_MAPS = [np.fft.fftshift(Xsense1),np.fft.fftshift(Xsense2)]
|
||||
|
||||
return S_MAPS
|
||||
|
||||
def SENSE_recon(S1,M1,S2,M2):
|
||||
|
||||
[Nx,Ny,Nz,Nt] = M1.shape
|
||||
M = np.zeros([Nx,int(2*Ny),Nz,Nt],dtype=complex)
|
||||
sm1 = np.fft.fftshift(S1)[:,:,0]
|
||||
sm2 = np.fft.fftshift(S2)[:,:,0]
|
||||
|
||||
for j in range(Ny):
|
||||
for k in range(Nx):
|
||||
l1 = M1[k,j,:,:]; a1 = sm1[k,j]; a2 = sm1[k,j+Ny]
|
||||
l2 = M2[k,j,:,:]; b1 = sm2[k,j]; b2 = sm2[k,j+Ny]
|
||||
B = (l1*b1 - l2*a1)/(a2*b1 - b2*a1)
|
||||
A = (l1*b2 - l2*a2)/(a1*b2 - a2*b1)
|
||||
M[k,j,:,:] = A
|
||||
M[k,j+Ny,:,:] = B
|
||||
|
||||
|
||||
return M
|
||||
|
||||
def SENSE_recon2(S1,M1,S2,M2):
|
||||
# With matrices as in the original paper!
|
||||
|
||||
[Nx,Ny,Nz,Nt] = M1.shape
|
||||
M = np.zeros([Nx,int(2*Ny),Nz,Nt],dtype=complex)
|
||||
sm1 = np.fft.fftshift(S1)[:,:,0]
|
||||
sm2 = np.fft.fftshift(S2)[:,:,0]
|
||||
sigma2 = 0.049**2
|
||||
sigma2 = 1
|
||||
Psi = np.diagflat(np.array([sigma2,sigma2])) # Error matrix Psi
|
||||
Psi_inv = np.linalg.inv(Psi)
|
||||
|
||||
for j in range(Ny):
|
||||
for k in range(Nx):
|
||||
l1 = M1[k,j,:,:]; a1 = sm1[k,j]; a2 = sm1[k,j+Ny]
|
||||
l2 = M2[k,j,:,:]; b1 = sm2[k,j]; b2 = sm2[k,j+Ny]
|
||||
S = np.array([[a1,a2],[b1,b2]])
|
||||
U = np.linalg.inv((np.transpose(S)*Psi_inv*S))*np.transpose(S)*Psi_inv
|
||||
a = np.array([l1,l2])
|
||||
a_resized = np.resize(a,(2,Nz*Nt))
|
||||
v_resized = np.dot(U,a_resized)
|
||||
v = np.resize(v_resized,(2,Nz,Nt))
|
||||
M[k,j,:,:] = v[0,:,:]
|
||||
M[k,j+Ny,:,:] = v[1,:,:]
|
||||
|
||||
|
||||
return M
|
||||
|
||||
def SENSE_METHOD(Seq,R):
|
||||
'''
|
||||
Args:
|
||||
ITOT: a numpy matrix with the full sampled (3D or 4D) dynamical data
|
||||
R: the acceleration factor
|
||||
'''
|
||||
|
||||
[row,col,dep,numt2] = Seq.shape
|
||||
Seq_red = {}
|
||||
SenseMAP = {}
|
||||
[SenseMAP[0],SenseMAP[1]] = Sensitivity_Map([row,col,dep])
|
||||
|
||||
col2 = int(np.ceil(col/2))
|
||||
|
||||
for rs in range(R):
|
||||
Seq_red[rs] = np.zeros([row,col2,dep,numt2],dtype=complex)
|
||||
for t in range(numt2):
|
||||
Kdata_0 = np.fft.fftn(Seq[:,:,:,t])
|
||||
Kdata_0 = Kdata_0*SenseMAP[rs]
|
||||
Kdata_0 = Kdata_0[:,0::R,:]
|
||||
Seq_red[rs][:,:,:,t] = np.fft.ifftn(Kdata_0)
|
||||
|
||||
Seq_recon = SENSE_recon2(SenseMAP[0],Seq_red[0],SenseMAP[1],Seq_red[1])
|
||||
|
||||
return Seq_recon
|
||||
|
||||
def undersampling(Mx,My,Mz,options):
|
||||
|
||||
R = options['SENSE']['R']
|
||||
|
||||
for r in R:
|
||||
if rank==0:
|
||||
print('Using Acceleration Factor R = ' + str(r))
|
||||
print('applying into x component')
|
||||
Mx_s = SENSE_METHOD(Mx,r)
|
||||
if rank==0:
|
||||
print('applying into y component')
|
||||
My_s = SENSE_METHOD(My,r)
|
||||
if rank==0:
|
||||
print('applying into z component')
|
||||
Mz_s = SENSE_METHOD(Mz,r)
|
||||
|
||||
return [Mx_s,My_s,Mz_s]
|
||||
|
||||
|
||||
|
BIN
codes/__pycache__/CS.cpython-36.pyc
Normal file
BIN
codes/__pycache__/CS.cpython-36.pyc
Normal file
Binary file not shown.
BIN
codes/__pycache__/Graphics.cpython-36.pyc
Normal file
BIN
codes/__pycache__/Graphics.cpython-36.pyc
Normal file
Binary file not shown.
BIN
codes/__pycache__/MRI.cpython-36.pyc
Normal file
BIN
codes/__pycache__/MRI.cpython-36.pyc
Normal file
Binary file not shown.
BIN
codes/__pycache__/SENSE.cpython-36.pyc
Normal file
BIN
codes/__pycache__/SENSE.cpython-36.pyc
Normal file
Binary file not shown.
BIN
codes/__pycache__/ktBLAST.cpython-36.pyc
Normal file
BIN
codes/__pycache__/ktBLAST.cpython-36.pyc
Normal file
Binary file not shown.
327
codes/cfd_mono.py
Normal file
327
codes/cfd_mono.py
Normal file
@ -0,0 +1,327 @@
|
||||
from dolfin import *
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import dolfin
|
||||
from common import inout
|
||||
from mpi4py import MPI
|
||||
import sys
|
||||
import os
|
||||
#
|
||||
# NAVIER STOKES PROBLEM IN THE AORTA with a MONOLITHIC SOLVER
|
||||
# THIS SCRIPT INCLUDE THE 0-WINDKESSEL BOUNDARY CONDITION
|
||||
#
|
||||
# Written by Jeremias Garay L: j.e.garay.labra@rug.nl
|
||||
#
|
||||
|
||||
if '2017' in dolfin.__version__:
|
||||
class MPI(MPI):
|
||||
comm_world = mpi_comm_world()
|
||||
|
||||
set_log_active(False)
|
||||
else:
|
||||
parameters["std_out_all_processes"] = False
|
||||
|
||||
|
||||
def BACH():
|
||||
import os
|
||||
tempof = 0.7
|
||||
semicorchea = 0.1*tempof
|
||||
corchea = 0.2*tempof
|
||||
negra = 0.4*tempof
|
||||
blanca = 0.8*tempof
|
||||
LA3 = 220
|
||||
SIb = 233.08
|
||||
SI = 246.94
|
||||
DO = 261
|
||||
REb = 277.18
|
||||
RE = 293.66
|
||||
FA = 349.23
|
||||
MIb = 311.13
|
||||
MI = 329.63
|
||||
SOL = 391
|
||||
LA = 440
|
||||
|
||||
os.system('play -V0 --no-show-progress --null --channels 1 synth %s sine %f' % (negra, DO))
|
||||
os.system('play -V0 --no-show-progress --null --channels 1 synth %s sine %f' % (negra, LA))
|
||||
os.system('play -V0 --no-show-progress --null --channels 1 synth %s sine %f' % (negra, SOL))
|
||||
os.system('play -V0 --no-show-progress --null --channels 1 synth %s sine %f' % (negra, FA))
|
||||
os.system('play -V0 --no-show-progress --null --channels 1 synth %s sine %f' % (semicorchea, MI))
|
||||
os.system('play -V0 --no-show-progress --null --channels 1 synth %s sine %f' % (semicorchea, FA))
|
||||
os.system('play -V0 --no-show-progress --null --channels 1 synth %s sine %f' % (corchea, SOL))
|
||||
os.system('play -V0 --no-show-progress --null --channels 1 synth %s sine %f' % (blanca, FA))
|
||||
|
||||
def flux(u,n,ds,idd):
|
||||
Q = 0
|
||||
for k in idd:
|
||||
Q += assemble(dot(u,n)*ds(k))
|
||||
return Q
|
||||
|
||||
def save_outlet_data(options,Qin,Qout3,Qout4,Qout5,Qout6,Pin,Pout3,Pout4,Pout5,Pout6,dt):
|
||||
# saving the fluxes
|
||||
np.savetxt(options['outlets_path'] + 'fluxes/' + 'q_in_dt' + str(dt) + '.txt', Qin)
|
||||
np.savetxt(options['outlets_path'] + 'fluxes/' + 'q3_dt' + str(dt) + '.txt', Qout3)
|
||||
np.savetxt(options['outlets_path'] + 'fluxes/' + 'q4_dt' + str(dt) + '.txt', Qout4)
|
||||
np.savetxt(options['outlets_path'] + 'fluxes/' + 'q5_dt' + str(dt) + '.txt', Qout5)
|
||||
np.savetxt(options['outlets_path'] + 'fluxes/' + 'q6_dt' + str(dt) + '.txt', Qout6)
|
||||
# saving the pressures
|
||||
np.savetxt(options['outlets_path'] + 'pressures/' + 'p_in_dt' + str(dt) + '.txt', Pin)
|
||||
np.savetxt(options['outlets_path'] + 'pressures/' + 'p3_dt' + str(dt) + '.txt', Pout3)
|
||||
np.savetxt(options['outlets_path'] + 'pressures/' + 'p4_dt' + str(dt) + '.txt', Pout4)
|
||||
np.savetxt(options['outlets_path'] + 'pressures/' + 'p5_dt' + str(dt) + '.txt', Pout5)
|
||||
np.savetxt(options['outlets_path'] + 'pressures/' + 'p6_dt' + str(dt) + '.txt', Pout6)
|
||||
|
||||
def windkessel_update(u0,n,ds,fluxes,press,pii,pii0,windkessel):
|
||||
# Updating the time dependent windkessel parameters
|
||||
if windkessel['C']:
|
||||
for nk in windkessel['id']:
|
||||
k = str(nk)
|
||||
fluxes[k].assign(assemble(dot(u0,n)*ds(nk)))
|
||||
pii0[k].assign(pii[k])
|
||||
pii[k].assign(windkessel['alpha'][k]*pii0[k] + windkessel['beta'][k]*fluxes[k])
|
||||
press[k].assign(windkessel['gamma'][k]*fluxes[k] + windkessel['alpha'][k]*pii0[k])
|
||||
|
||||
else:
|
||||
for nk in windkessel['id']:
|
||||
k = str(nk)
|
||||
fluxes[k] = assemble(dot(u0,n)*ds(nk))
|
||||
press[k].assign( windkessel['R_p'][k]*assemble(dot(u0,n)*ds(nk)))
|
||||
|
||||
def solv_NavierStokes(options):
|
||||
|
||||
# Assign physical parameters
|
||||
rho = Constant(options['density'])
|
||||
mu = Constant(options['dynamic_viscosity'])
|
||||
otheta = Constant(1-options['param']['theta'])
|
||||
theta = Constant(options['param']['theta'])
|
||||
Tf = options['Tf']
|
||||
dt = options['dt']
|
||||
dt_w = options['dt_write']
|
||||
Qin = np.zeros([int(Tf/dt)])
|
||||
Qout3 = np.zeros([int(Tf/dt)])
|
||||
Qout4 = np.zeros([int(Tf/dt)])
|
||||
Qout5 = np.zeros([int(Tf/dt)])
|
||||
Qout6 = np.zeros([int(Tf/dt)])
|
||||
Pin = np.zeros([int(Tf/dt)])
|
||||
Pout3 = np.zeros([int(Tf/dt)])
|
||||
Pout4 = np.zeros([int(Tf/dt)])
|
||||
Pout5 = np.zeros([int(Tf/dt)])
|
||||
Pout6 = np.zeros([int(Tf/dt)])
|
||||
barye2mmHg = 1/1333.22387415
|
||||
|
||||
# CREATING THE FILES
|
||||
xdmf_u = XDMFFile(options['savepath']+'u.xdmf')
|
||||
xdmf_p = XDMFFile(options['savepath']+'p.xdmf')
|
||||
xdmf_u.parameters['rewrite_function_mesh'] = False
|
||||
xdmf_p.parameters['rewrite_function_mesh'] = False
|
||||
# LOADING THE MESH
|
||||
#mesh = Mesh(options['mesh_path'])
|
||||
#boundaries = MeshFunction('size_t', mesh, mesh.topology().dim()-1)
|
||||
#boundaries = MarkBoundaries(boundaries)
|
||||
|
||||
mesh = Mesh()
|
||||
hdf = HDF5File(mesh.mpi_comm(), options['mesh_path'] , 'r')
|
||||
hdf.read(mesh, '/mesh', False)
|
||||
boundaries = MeshFunction('size_t', mesh , mesh.topology().dim() - 1)
|
||||
hdf.read(boundaries, '/boundaries')
|
||||
|
||||
# To save the boundaries information
|
||||
#path2 = '/home/p283370/Desktop/marked_fine/boundaries.xdmf'
|
||||
#XDMFFile(path2).write(boundaries)
|
||||
# DEFINE FUNCTION SPACES
|
||||
V = VectorElement('Lagrange', mesh.ufl_cell(), options['param']['Nvel'])
|
||||
Q = FiniteElement('Lagrange', mesh.ufl_cell(), options['param']['Npress'])
|
||||
TH = V * Q
|
||||
W = FunctionSpace(mesh, TH)
|
||||
# No-slip boundary condition for velocity on walls
|
||||
noslip = Constant((0, 0, 0))
|
||||
inflow = Expression(('0','0','(-0.5*U*fabs(sin(w*t)) - 0.5*U*sin(w*t))*(t<0.7)'), degree=3,t=0,U=options['param']['U'], w=2*DOLFIN_PI/options['param']['period'])
|
||||
bc_inflow = DirichletBC(W.sub(0), inflow, boundaries, 2)
|
||||
bc_walls = DirichletBC(W.sub(0), noslip, boundaries, 1)
|
||||
# COLLECTING THE BOUNDARY CONDITIONS
|
||||
BCS = [bc_inflow,bc_walls]
|
||||
u, p = TrialFunctions(W)
|
||||
v, q = TestFunctions(W)
|
||||
w = Function(W)
|
||||
n = FacetNormal(mesh)
|
||||
ds = Measure("ds", subdomain_data=boundaries)
|
||||
h = CellDiameter(mesh)
|
||||
f = Constant((0,0,0))
|
||||
u0, p0 = w.split()
|
||||
|
||||
u_ = theta*u + (1 - theta)*u0
|
||||
theta_p = theta
|
||||
p_ = theta_p*p + (1 - theta_p)*p0
|
||||
# The variational formulation
|
||||
# Mass matrix
|
||||
F = (
|
||||
(rho/dt)*dot(u - u0, v)*dx
|
||||
+ mu*inner(grad(u_), grad(v))*dx
|
||||
- p_*div(v)*dx + q*div(u)*dx
|
||||
+ rho*dot(grad(u_)*u0, v)*dx
|
||||
)
|
||||
|
||||
if options['stab']['temam']:
|
||||
F += 0.5*rho*div(u0)*dot(u_, v)*dx
|
||||
|
||||
if options['stab']['pspg']:
|
||||
eps = Constant(options['stab']['epsilon'])
|
||||
F += eps/mu*h**2*inner(grad(p_), grad(q))*dx
|
||||
|
||||
if options['stab']['backflow']:
|
||||
def abs_n(x):
|
||||
return 0.5*(x - abs(x))
|
||||
|
||||
for nk in options['stab']['back_id']:
|
||||
if rank==0:
|
||||
print('adding backflow stabilization in border number:' + str(nk))
|
||||
F -= 0.5*rho*abs_n(dot(u0, n))*dot(u_, v)*ds(nk)
|
||||
|
||||
a = lhs(F)
|
||||
L = rhs(F)
|
||||
|
||||
# Initialization of Windkessel Boundaries
|
||||
if options['windkessel']['id']:
|
||||
windkessel = options['windkessel']
|
||||
# Coeficients
|
||||
fluxes = {str(k):[] for k in windkessel['id']}
|
||||
pii0 = {str(k):[] for k in windkessel['id']}
|
||||
pii = {str(k):[] for k in windkessel['id']}
|
||||
press = {str(k):[] for k in windkessel['id']}
|
||||
|
||||
if windkessel['C']:
|
||||
for nk in windkessel['id']:
|
||||
k = str(nk)
|
||||
if rank==0:
|
||||
print('Capacitance of windkessel model is: ', windkessel['C'][k])
|
||||
|
||||
# computing coeficients
|
||||
windkessel['alpha'][k] = windkessel['R_d'][k]*windkessel['C'][k]/(windkessel['R_d'][k]*windkessel['C'][k] + options['dt'])
|
||||
windkessel['beta'][k] = windkessel['R_d'][k]*(1-windkessel['alpha'][k])
|
||||
windkessel['gamma'][k] = windkessel['R_p'][k] + windkessel['beta'][k]
|
||||
if rank==0:
|
||||
print('Using 0-Windkessel complete at outlet number: ' + str(k))
|
||||
# setting initial values for flux, distal pressure and proximal pressure
|
||||
fluxes[k] = Constant(0)
|
||||
pii0[k] = Constant(47/barye2mmHg)
|
||||
pii[k] = Constant(windkessel['alpha'][k]*pii0[k] + windkessel['beta'][k]*fluxes[k])
|
||||
press[k] = Constant(windkessel['gamma'][k]*fluxes[k] + windkessel['alpha'][k]*pii0[k])
|
||||
# Adding to RHS
|
||||
L = L - dt*press[k]*dot(v,n)*ds(nk)
|
||||
else:
|
||||
for nk in windkessel['id']:
|
||||
k = str(nk)
|
||||
if rank==0:
|
||||
print('Using 0-Windkessel reduced at outlet number: ' + str(nk))
|
||||
fluxes[k] = Constant(0)
|
||||
press[k] = Constant(windkessel['R_p'][k]*0)
|
||||
# Adding to RHS
|
||||
L = L - dt*press[k]*dot(v,n)*ds(nk)
|
||||
|
||||
|
||||
|
||||
# The static part of the matrix
|
||||
A = assemble(a)
|
||||
#b = assemble(L)
|
||||
[bc.apply(A) for bc in BCS]
|
||||
#[bc.apply(b) for bc in BCS]
|
||||
#solv = LUSolver()
|
||||
#solv.set_operator(A)
|
||||
#solv.parameters['linear_solver'] = 'mumps'
|
||||
#solv.parameters['reuse_factorization'] = True
|
||||
u, p = w.split()
|
||||
u.rename('velocity', 'u')
|
||||
p.rename('pressure', 'p')
|
||||
ind = 0
|
||||
t = dt
|
||||
|
||||
ones = interpolate(Constant(1),W.sub(1).collapse())
|
||||
A2 = assemble(ones*ds(2))
|
||||
A3 = assemble(ones*ds(3))
|
||||
A4 = assemble(ones*ds(4))
|
||||
A5 = assemble(ones*ds(5))
|
||||
A6 = assemble(ones*ds(6))
|
||||
|
||||
checkcicle = int(options['checkpoint_dt']/options['dt'])
|
||||
writecicle = int(options['checkpoint_dt']/options['dt_write'])
|
||||
|
||||
while t<=Tf+dt:
|
||||
|
||||
if options['windkessel']['id']:
|
||||
windkessel_update(u,n,ds,fluxes,press,pii,pii0,windkessel)
|
||||
# To solve
|
||||
assemble(a, tensor=A)
|
||||
b = assemble(L)
|
||||
[bc.apply(A, b) for bc in BCS]
|
||||
solve(A, w.vector(), b)
|
||||
|
||||
Qin[ind] = flux(u,n,ds,[2])
|
||||
Qout3[ind] = flux(u,n,ds,[3])
|
||||
Qout4[ind] = flux(u,n,ds,[4])
|
||||
Qout5[ind] = flux(u,n,ds,[5])
|
||||
Qout6[ind] = flux(u,n,ds,[6])
|
||||
Pin[ind] = barye2mmHg*assemble(p*ds(2))/A2
|
||||
Pout3[ind] = barye2mmHg*assemble(p*ds(3))/A3
|
||||
Pout4[ind] = barye2mmHg*assemble(p*ds(4))/A4
|
||||
Pout5[ind] = barye2mmHg*assemble(p*ds(5))/A5
|
||||
Pout6[ind] = barye2mmHg*assemble(p*ds(6))/A6
|
||||
|
||||
if rank==0:
|
||||
print('t = ',t)
|
||||
# print('|u|:', norm(u0))
|
||||
# print('|p|:', norm(p0))
|
||||
# print('div(u):', assemble(div(u0)*dx))
|
||||
print('Dp = ',np.round(Pin[ind]-Pout3[ind],3),'mmHg')
|
||||
|
||||
ind += 1
|
||||
if options['write_xdmf']:
|
||||
if np.mod(ind,writecicle)<0.1 or ind==1:
|
||||
xdmf_u.write(u, t)
|
||||
xdmf_p.write(p, t)
|
||||
|
||||
if np.mod(ind,checkcicle)<0.1 or ind==1:
|
||||
if options['write_checkpoint']:
|
||||
checkpath = options['savepath'] +'checkpoint/{i}/'.format(i=ind)
|
||||
comm = u.function_space().mesh().mpi_comm()
|
||||
inout.write_HDF5_data(comm, checkpath + '/u.h5', u, '/u', t=t)
|
||||
inout.write_HDF5_data(comm, checkpath + '/p.h5', p, '/p', t=t)
|
||||
|
||||
inflow.t = t
|
||||
t += dt
|
||||
|
||||
|
||||
# saving the data at outlets: fluxes and pressures
|
||||
if options['write_outlets']:
|
||||
if rank==0:
|
||||
save_outlet_data(options,Qin,Qout3,Qout4,Qout5,Qout6,Pin,Pout3,Pout4,Pout5,Pout6,options['dt'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
comm = MPI.COMM_WORLD
|
||||
size = comm.Get_size()
|
||||
rank = comm.Get_rank()
|
||||
|
||||
if len(sys.argv) > 1:
|
||||
if os.path.exists(sys.argv[1]):
|
||||
inputfile = sys.argv[1]
|
||||
if rank==0:
|
||||
print('Found input file ' + inputfile)
|
||||
else:
|
||||
raise Exception('Command line arg given but input file does not exist:'
|
||||
' {}'.format(sys.argv[1]))
|
||||
else:
|
||||
raise Exception('An input file is required as argument!')
|
||||
|
||||
if 'Zion' in os.popen('hostname').read():
|
||||
user = 'yeye'
|
||||
np.set_printoptions(threshold=5)
|
||||
|
||||
if 'fwn-bborg-5-166' in os.popen('hostname').read():
|
||||
user = 'p283370'
|
||||
|
||||
if rank==0:
|
||||
print('Welcome user {uss}'.format(uss=user))
|
||||
|
||||
options = inout.read_parameters(inputfile)
|
||||
solv_NavierStokes(options)
|
||||
|
870
codes/ktBLAST.py
Normal file
870
codes/ktBLAST.py
Normal file
@ -0,0 +1,870 @@
|
||||
import numpy as np
|
||||
import scipy as sc
|
||||
from scipy import signal
|
||||
from mpi4py import MPI
|
||||
comm = MPI.COMM_WORLD
|
||||
size = comm.Get_size()
|
||||
rank = comm.Get_rank()
|
||||
|
||||
|
||||
|
||||
# kt-BLAST (NO DC TERM) method for reconstruction of undersampled MRI image based on
|
||||
# l2 minimization.
|
||||
|
||||
def EveryAliased3D2(i,j,k,PP,Nx,Ny,Nz,BB,R):
|
||||
|
||||
ivec = [i,j,k]
|
||||
Nvec = [Nx,Ny,Nz]
|
||||
[ktot,ltot] = PP.shape
|
||||
Ptot = np.zeros([ktot**ltot,ltot])
|
||||
PP2 = np.zeros([ktot**ltot,ltot])
|
||||
tt = -1
|
||||
|
||||
for kk in range(Ptot.shape[0]):
|
||||
nn = int(np.mod(kk,3))
|
||||
mm = int(np.mod(np.floor(kk/3),3))
|
||||
if np.mod(kk,9)==0:
|
||||
tt+=1
|
||||
|
||||
Ptot[kk,0] = PP[tt,0] + ivec[0]
|
||||
Ptot[kk,1] = PP[mm,1] + ivec[1]
|
||||
Ptot[kk,2] = PP[nn,2] + ivec[2]
|
||||
|
||||
for kk in range(Ptot.shape[0]):
|
||||
for ll in range(Ptot.shape[1]):
|
||||
if Ptot[kk,ll]<0:
|
||||
Ptot[kk,ll] = Ptot[kk,ll] + Nvec[ll]
|
||||
if Ptot[kk,ll]>=Nvec[ll]:
|
||||
Ptot[kk,ll] = Ptot[kk,ll] - Nvec[ll]
|
||||
|
||||
|
||||
CC = np.zeros([3,Ptot.shape[0]+1])
|
||||
YY = np.array([ [i] , [j], [k] ])
|
||||
CC[0,0] = i
|
||||
CC[1,0] = j
|
||||
CC[2,0] = k
|
||||
psel = 0
|
||||
|
||||
|
||||
for l in range(1,Ptot.shape[0]+1):
|
||||
CC[0,l] = int(Ptot[l-1,0])
|
||||
CC[1,l] = int(Ptot[l-1,1])
|
||||
CC[2,l] = int(Ptot[l-1,2])
|
||||
|
||||
|
||||
|
||||
if CC[0,l]==YY[0,psel] and CC[1,l]==YY[1,psel] and CC[2,l]==YY[2,psel] and BB[int(CC[1,l]),int(CC[2,l]),int(CC[0,l])]!=0:
|
||||
pass
|
||||
else:
|
||||
War = False
|
||||
for ww in range(psel):
|
||||
if CC[0,l]==YY[0,ww] and CC[1,l]==YY[1,ww] and CC[2,l]==YY[2,ww] and BB[int(CC[1,l]),int(CC[2,l]),int(CC[0,l])]!=0:
|
||||
War = True
|
||||
|
||||
if not War:
|
||||
psel += 1
|
||||
CCC = np.array([ [CC[0,l] ] , [CC[1,l]] , [CC[2,l]]])
|
||||
YY = np.concatenate( ( YY, CCC ) ,axis=1 )
|
||||
|
||||
return YY.astype(int)
|
||||
|
||||
def EveryAliased3D(i,j,k,DP,Nx,Ny,Nz,BB,R,SPREAD=None):
|
||||
|
||||
ivec = [i,j,k]
|
||||
Nvec = [Nx,Ny,Nz]
|
||||
[ktot,ltot] = DP.shape
|
||||
DPN = np.zeros([ktot,ltot])
|
||||
|
||||
if SPREAD is not None: # WITH SPREAD FUNCTIONS FORMALISM
|
||||
Maux = np.zeros([Ny,Nz,Nx])
|
||||
Maux[j,k,i] = 1
|
||||
SP2 = SPREAD[::-1,::-1,::-1]
|
||||
MS = R*sc.signal.convolve(Maux,SP2, mode='same')
|
||||
ms = np.abs(MS)
|
||||
Ims = 1*(ms>np.max(ms)*0.405)
|
||||
Pas = np.where(Ims==1)
|
||||
PP = np.array(Pas[:])
|
||||
PEA = PP[::-1,:]
|
||||
|
||||
for ll in range(PEA.shape[1]):
|
||||
if PEA[0,ll]>=Nx:
|
||||
PEA[0,ll] = PEA[0,ll] - Nx
|
||||
if PEA[1,ll]>=Ny:
|
||||
PEA[1,ll] = PEA[1,ll] - Ny
|
||||
if PEA[2,ll]>=Nz:
|
||||
PEA[2,ll] = PEA[2,ll] - Nz
|
||||
|
||||
|
||||
Ntot = PEA.shape[1]
|
||||
ind = 0
|
||||
PEAnew = PEA
|
||||
|
||||
|
||||
for ll in range(Ntot):
|
||||
if BB[PEA[1,ll],PEA[2,ll],PEA[0,ll]]!=0:
|
||||
PEAnew = np.delete(PEAnew,(ll-ind),axis=1)
|
||||
ind +=1
|
||||
|
||||
|
||||
return PEA
|
||||
else:
|
||||
|
||||
for kk in range(DPN.shape[0]):
|
||||
for l in range(DPN.shape[1]):
|
||||
DPN[kk,l] = DP[kk,l] + ivec[l]
|
||||
if DPN[kk,l]<0:
|
||||
DPN[kk,l] = DPN[kk,l] + Nvec[l]
|
||||
if DPN[kk,l]>=Nvec[l]:
|
||||
DPN[kk,l] = DPN[kk,l] - Nvec[l]
|
||||
|
||||
|
||||
|
||||
CC = np.zeros([3,ktot+1])
|
||||
YY = np.array([ [i] , [j], [k] ])
|
||||
CC[0,0] = i
|
||||
CC[1,0] = j
|
||||
CC[2,0] = k
|
||||
|
||||
|
||||
for l in range(1,ktot+1):
|
||||
CC[0,l] = DPN[l-1,0]
|
||||
CC[1,l] = DPN[l-1,1]
|
||||
CC[2,l] = DPN[l-1,2]
|
||||
|
||||
if CC[0,l]!=CC[0,l-1] and CC[1,l]!=CC[1,l-1] and CC[2,l]!=CC[2,l-1] and BB[int(CC[1,l]),int(CC[2,l]),int(CC[0,l])]==0:
|
||||
CCC = np.array([ [CC[0,l] ] , [CC[1,l]] , [CC[2,l]]])
|
||||
YY = np.concatenate( ( YY, CCC ) ,axis=1 )
|
||||
|
||||
return YY.astype(int)
|
||||
|
||||
def EveryAliased(i,j,DP,Nx,Ny,BB,R,mode):
|
||||
|
||||
if mode==1: # USING GEOMETRICAL ASSUMPTIONS
|
||||
ivec = [i,j]
|
||||
Nvec = [Nx,Ny]
|
||||
DPN = 0*DP
|
||||
[ktot,ltot] = DP.shape
|
||||
|
||||
for k in range(ktot):
|
||||
for l in range(ltot):
|
||||
|
||||
DPN[k,l] = DP[k,l] + ivec[l]
|
||||
|
||||
if DPN[k,l]<0:
|
||||
#DPN[k,l] = ivec[l]
|
||||
DPN[k,l] = DPN[k,l] + Nvec[l]
|
||||
|
||||
if DPN[k,l]>=Nvec[l]:
|
||||
#DPN[k,l] = ivec[l]
|
||||
DPN[k,l] = DPN[k,l] - Nvec[l]
|
||||
|
||||
CC = np.zeros([2,ktot+1])
|
||||
YY = np.array([ [i] , [j] ])
|
||||
CC[0,0] = i
|
||||
CC[1,0] = j
|
||||
|
||||
for l in range(1,ktot+1):
|
||||
CC[0,l] = DPN[l-1,0]
|
||||
CC[1,l] = DPN[l-1,1]
|
||||
if CC[0,l]!=CC[0,l-1] and CC[1,l]!=CC[1,l-1] and BB[int(CC[1,l]),int(CC[0,l])]==0:
|
||||
CCC = np.array([ [CC[0,l] ] , [CC[1,l]] ])
|
||||
YY = np.concatenate( ( YY, CCC ) ,axis=1 )
|
||||
|
||||
return YY.astype(int)
|
||||
|
||||
|
||||
|
||||
if mode=='spread': # WITH SPREAD FUNCTIONS FORMALISM
|
||||
Maux = np.zeros([row,numt2])
|
||||
Maux[l,k] = 1
|
||||
MS = R*ConvolSP(Maux,SPREAD)
|
||||
ms = np.abs(MS)
|
||||
Ims = 1*(ms>np.max(ms)*0.405)
|
||||
Pas = np.where(Ims==1)
|
||||
PP = np.array(Pas[:])
|
||||
return PP[::-1,:]
|
||||
|
||||
def GetSymmetric(M):
|
||||
[row,numt2] = M.shape
|
||||
S = np.zeros(M.shape,dtype=complex)
|
||||
aux = np.zeros([1,row])
|
||||
nmid = 0.5*(numt2+1)
|
||||
for k in range(int(nmid)):
|
||||
aux = 0.5*( M[:,k] + M[:,numt2-k-1] )
|
||||
S[:,k] = aux
|
||||
S[:,numt2-k-1] = aux
|
||||
|
||||
return S
|
||||
|
||||
def UNDER(A,mode,R,k):
|
||||
|
||||
start = np.mod(k,R)
|
||||
I1B = np.zeros(A.shape,dtype=complex)
|
||||
|
||||
# Not quite efficient ! better to work with vectors
|
||||
|
||||
if mode=='ky':
|
||||
for k in range(start,A.shape[0],R):
|
||||
I1B[k,:,:] = A[k,:,:]
|
||||
|
||||
if mode=='kxky':
|
||||
for k in range(start,A.shape[0],R):
|
||||
for l in range(start,A.shape[1],R):
|
||||
I1B[k,l,:] = A[k,l,:]
|
||||
|
||||
if mode=='kxkykz':
|
||||
for k in range(start,A.shape[0],R):
|
||||
for l in range(start,A.shape[2],R):
|
||||
for r in range(start,A.shape[1],R):
|
||||
I1B[k,r,l] = A[k,r,l]
|
||||
|
||||
|
||||
return I1B
|
||||
|
||||
def FilteringHigh(M,fac):
|
||||
|
||||
if M.ndim==2:
|
||||
|
||||
[row,col] = M.shape
|
||||
inx = np.linspace(0,col-1,col)
|
||||
MF = np.zeros(M.shape,dtype=complex)
|
||||
|
||||
for k in range(row):
|
||||
vecfou = np.fft.fft(M[k,:])
|
||||
window = signal.tukey(2*col,fac)
|
||||
vecfou2 = vecfou*window[col:2*col]
|
||||
MF[k,:] = np.fft.ifft(vecfou2)
|
||||
|
||||
return MF
|
||||
|
||||
|
||||
if M.ndim==3:
|
||||
[row,col,dep] = M.shape
|
||||
MF = np.zeros(M.shape,dtype=complex)
|
||||
inx = np.linspace(0,col-1,col)
|
||||
for l in range(dep):
|
||||
for k in range(row):
|
||||
vecfou = np.fft.fft(M[k,:,l])
|
||||
window = signal.tukey(2*col,fac)
|
||||
vecfou2 = vecfou*window[col:2*col]
|
||||
MF[k,:,l] = np.fft.ifft(vecfou2)
|
||||
|
||||
|
||||
return MF
|
||||
|
||||
def InterpolateM(M,numt2):
|
||||
|
||||
if M.ndim==2:
|
||||
|
||||
[row,numt] = M.shape
|
||||
MNew = np.zeros([row,numt2],dtype=complex)
|
||||
xdat = np.linspace(0,numt,numt)
|
||||
xdat2 = np.linspace(0,numt,numt2)
|
||||
nstar = int(0.5*(numt2-numt))
|
||||
|
||||
for t in range(nstar,nstar+numt):
|
||||
MNew[:,t] = M[:,t-nstar]
|
||||
|
||||
for l in range(row):
|
||||
ydat = M[l,:]
|
||||
fdat = sc.interpolate.interp1d(xdat,ydat,kind='cubic')
|
||||
MNew[l,1:nstar] = fdat(xdat2)[1:nstar]
|
||||
MNew[l,nstar+numt:numt2] = fdat(xdat2)[nstar+numt:numt2]
|
||||
|
||||
|
||||
if M.ndim==3:
|
||||
[row,col,numt] = M.shape
|
||||
MNew = np.zeros([row,col,numt2],dtype=complex)
|
||||
xdat = np.linspace(0,numt,numt)
|
||||
xdat2 = np.linspace(0,numt,numt2)
|
||||
nstar = int(0.5*(numt2-numt))
|
||||
for t in range(nstar,nstar+numt):
|
||||
MNew[:,:,t] = M[:,:,t-nstar]
|
||||
|
||||
for c in range(col):
|
||||
for l in range(row):
|
||||
ydat = M[l,c,:]
|
||||
fdat = sc.interpolate.interp1d(xdat,ydat,kind='cubic')
|
||||
MNew[l,c,1:nstar] = fdat(xdat2)[1:nstar]
|
||||
MNew[l,c,nstar+numt:numt2] = fdat(xdat2)[nstar+numt:numt2]
|
||||
|
||||
|
||||
return MNew
|
||||
|
||||
def KTT(M,scol):
|
||||
|
||||
#Maux = M[:,scol,:]
|
||||
#Maux = np.fft.ifftshift(Maux,axes=0)
|
||||
#Maux = np.fft.ifft(Maux,axis=0)
|
||||
#Maux = np.fft.ifft(Maux,axis=1)
|
||||
#Maux = np.fft.fftshift(Maux,axes=1)
|
||||
|
||||
# TAO STYLE
|
||||
Maux = np.zeros(M.shape,dtype=complex)
|
||||
|
||||
for k in range(M.shape[2]):
|
||||
Maux[:,:,k] = np.fft.ifftshift(M[:,:,k])
|
||||
Maux[:,:,k] = np.fft.ifft2(Maux[:,:,k])
|
||||
Maux = Maux[:,scol,:]
|
||||
Maux = np.fft.ifft(Maux,axis=1)
|
||||
Maux = np.fft.fftshift(Maux,axes=1)
|
||||
return Maux
|
||||
|
||||
def IKTT(M):
|
||||
|
||||
#Maux = np.fft.ifftshift(M,axes=1)
|
||||
#Maux = np.fft.ifft(Maux,axis=1)
|
||||
#Maux = np.fft.fft(Maux,axis=0)
|
||||
#Maux = np.fft.fftshift(Maux,axes=0)
|
||||
|
||||
# TAO STYLE
|
||||
Maux = np.fft.ifftshift(M,axes=1)
|
||||
Maux = np.fft.fft(Maux,axis=1)
|
||||
|
||||
return Maux
|
||||
|
||||
def KTT3D(M,sdep):
|
||||
|
||||
Maux = np.zeros(M.shape,dtype=complex)
|
||||
for k in range(M.shape[3]):
|
||||
Maux[:,:,:,k] = np.fft.ifftshift(M[:,:,:,k])
|
||||
Maux[:,:,:,k] = np.fft.ifftn(Maux[:,:,:,k])
|
||||
Maux = Maux[:,:,sdep,:]
|
||||
Maux = np.fft.ifft(Maux,axis=2)
|
||||
Maux = np.fft.fftshift(Maux,axes=2)
|
||||
return Maux
|
||||
|
||||
def IKTT3D(M):
|
||||
|
||||
Maux = np.fft.ifftshift(M,axes=2)
|
||||
Maux = np.fft.fft(Maux,axis=2)
|
||||
|
||||
return Maux
|
||||
|
||||
def get_points4D(row,col,dep,numt2,R,mode):
|
||||
|
||||
bb = np.ceil(row/R)
|
||||
cc = np.ceil(col/R)
|
||||
aa = np.ceil(numt2/R)
|
||||
points = R+1
|
||||
kmid = int(R/2)
|
||||
|
||||
if mode=='kxky':
|
||||
PC = [np.ceil(numt2/2),np.ceil(row/2),np.ceil(col/2)]
|
||||
PP = np.zeros([points,3])
|
||||
DP = np.zeros([points-1,3])
|
||||
for k in range(points):
|
||||
|
||||
PP[k,0] = numt2-aa*(k) + 1
|
||||
PP[k,1] = bb*(k)
|
||||
PP[k,2] = cc*(k)
|
||||
|
||||
if PP[k,0]>=numt2:
|
||||
PP[k,0] -= 1
|
||||
if PP[k,0]<0:
|
||||
PP[k,0] += 1
|
||||
|
||||
if PP[k,1]>=row:
|
||||
PP[k,1] -= 1
|
||||
if PP[k,1]<0:
|
||||
PP[k,1] += 1
|
||||
|
||||
if PP[k,2]>=col:
|
||||
PP[k,2] -= 1
|
||||
if PP[k,2]<0:
|
||||
PP[k,2] += 1
|
||||
|
||||
if k<kmid:
|
||||
DP[k,0] = PP[k,0] - PC[0]
|
||||
DP[k,1] = PP[k,1] - PC[1]
|
||||
DP[k,2] = PP[k,2] - PC[2]
|
||||
if k>kmid:
|
||||
DP[k-1,0] = PP[k,0] - PC[0]
|
||||
DP[k-1,1] = PP[k,1] - PC[1]
|
||||
DP[k-1,2] = PP[k,2] - PC[2]
|
||||
|
||||
kmax = int((PP[kmid,0] + PP[kmid-1,0])/2 )
|
||||
kmin = int((PP[kmid,0] + PP[kmid+1,0])/2 )
|
||||
cmax = int((PP[kmid,1] + PP[kmid-1,1])/2 )
|
||||
cmin = int((PP[kmid,1] + PP[kmid+1,1])/2 )
|
||||
|
||||
|
||||
#DP2 = np.zeros([DP.shape[0]**DP.shape[1],DP.shape[1]])
|
||||
#DP2[0,0] = DP[0,0]; DP2[0,1] = DP[0,1] ; DP2[0,2] = DP[0,2]
|
||||
#DP2[1,0] = DP[0,0]; DP2[1,1] = DP[0,1] ; DP2[1,2] = DP[1,2]
|
||||
#DP2[2,0] = DP[0,0]; DP2[2,1] = DP[1,1] ; DP2[2,2] = DP[0,2]
|
||||
#DP2[3,0] = DP[0,0]; DP2[3,1] = DP[1,1] ; DP2[3,2] = DP[1,2]
|
||||
#DP2[4,0] = DP[1,0]; DP2[4,1] = DP[0,1] ; DP2[4,2] = DP[0,2]
|
||||
#DP2[5,0] = DP[1,0]; DP2[5,1] = DP[0,1] ; DP2[5,2] = DP[1,2]
|
||||
#DP2[6,0] = DP[1,0]; DP2[6,1] = DP[1,1] ; DP2[6,2] = DP[0,2]
|
||||
#P2[7,0] = DP[1,0]; DP2[7,1] = DP[1,1] ; DP2[7,2] = DP[1,2]
|
||||
|
||||
|
||||
return [kmin,kmax,PP,DP]
|
||||
|
||||
if mode=='ky':
|
||||
PC = [np.ceil(numt2/2),np.ceil(row/2)]
|
||||
PP = np.zeros([points,2])
|
||||
DP = np.zeros([points-1,2])
|
||||
for k in range(points):
|
||||
PP[k,0] = numt2-(aa-1)*(k)
|
||||
PP[k,1] = bb*(k)
|
||||
|
||||
if k<kmid:
|
||||
DP[k,0] = PP[k,0] - PC[0]
|
||||
DP[k,1] = PP[k,1] - PC[1]
|
||||
if k>kmid:
|
||||
DP[k-1,0] = PP[k,0] - PC[0]
|
||||
DP[k-1,1] = PP[k,1] - PC[1]
|
||||
|
||||
kmax = int((PP[kmid,0] + PP[kmid-1,0])/2 )
|
||||
kmin = int((PP[kmid,0] + PP[kmid+1,0])/2 )
|
||||
return [kmin,kmax,PP,DP]
|
||||
|
||||
def SpreadPoint3D(M,R,sdep):
|
||||
|
||||
[row,col,dep,numt2] = M.shape
|
||||
PS = np.zeros([row,col,dep,numt2],dtype=complex)
|
||||
inx = 0
|
||||
iny = 0
|
||||
|
||||
for k in range(np.mod(inx,R),row,R):
|
||||
for ss in range(np.mod(iny,R),col,R):
|
||||
PS[k,ss,:,:] = 1
|
||||
iny = iny + 1
|
||||
inx = inx + 1
|
||||
|
||||
|
||||
for k in range(numt2):
|
||||
PS[:,:,:,k] = np.fft.ifftn(PS[:,:,:,k])
|
||||
PS[:,:,:,k] = np.fft.fftshift(PS[:,:,:,k])
|
||||
|
||||
|
||||
SPREAD = PS[:,:,sdep,:]
|
||||
SPREAD = np.fft.ifft(SPREAD,axis=2)
|
||||
SPREAD = np.fft.fftshift(SPREAD,axes=2)
|
||||
|
||||
return SPREAD
|
||||
|
||||
def SpreadPoint(M,R,scol):
|
||||
|
||||
[row,col,numt2] = M.shape
|
||||
PS = np.zeros([row,col,numt2],dtype=complex)
|
||||
inx = 0
|
||||
|
||||
for l in range(0,numt2):
|
||||
for k in range(np.mod(inx,R),row,R):
|
||||
PS[k,:,l] = 1
|
||||
inx = inx + 1
|
||||
|
||||
#PS = 1*(M!=0)
|
||||
#PS = 0*M + 1
|
||||
#SPREAD = KTT(PS,0)
|
||||
|
||||
for k in range(numt2):
|
||||
PS[:,:,k] = np.fft.ifft2(PS[:,:,k])
|
||||
PS[:,:,k] = np.fft.fftshift(PS[:,:,k])
|
||||
|
||||
|
||||
SPREAD = PS[:,scol,:]
|
||||
SPREAD = np.fft.ifft(SPREAD,axis=1)
|
||||
SPREAD = np.fft.fftshift(SPREAD,axes=1)
|
||||
|
||||
return SPREAD
|
||||
|
||||
def ConvolSP(M1,M2):
|
||||
M2 = M2[::-1,::-1]
|
||||
M3 = sc.signal.convolve2d(M1,M2, boundary='wrap', mode='same')
|
||||
return M3
|
||||
|
||||
def KTBLASTMETHOD_4D_kxky(ITOT,R,mode):
|
||||
|
||||
|
||||
###################################################################
|
||||
# Training Stage #
|
||||
###################################################################
|
||||
[row,col,dep,numt2] = ITOT.shape
|
||||
# INPUT PARAMETERS
|
||||
iteshort = 1
|
||||
tetest = int(dep/2)
|
||||
numt = int(numt2)
|
||||
Dyy = int(row*0.1)
|
||||
rmid = int(row/2)
|
||||
cmid = int(col/2)
|
||||
|
||||
TKdata = np.zeros(ITOT.shape,dtype=complex)
|
||||
UKdata = np.zeros(ITOT.shape,dtype=complex)
|
||||
Kdata = np.zeros(ITOT.shape,dtype=complex)
|
||||
Kdata_NEW0 = np.zeros(ITOT.shape,dtype=complex)
|
||||
Kdata_NEW = np.zeros(ITOT.shape,dtype=complex)
|
||||
KTBLAST0 = np.zeros(ITOT.shape,dtype=complex)
|
||||
KTBLAST = np.zeros(ITOT.shape,dtype=complex)
|
||||
|
||||
|
||||
for k in range(numt2):
|
||||
# THE FULL KSPACE
|
||||
Kdata[:,:,:,k] = np.fft.fftn(ITOT[:,:,:,k])
|
||||
Kdata[:,:,:,k] = np.fft.fftshift(Kdata[:,:,:,k])
|
||||
# UNDERSAMPLING STEP AND FILLED WITH ZEROS THE REST
|
||||
UKdata[:,:,:,k] = UNDER(Kdata[:,:,:,k],mode,R,k)
|
||||
|
||||
# GENERATING THE TRAINING DATA WITH SUBSAMPLING the Center IN KX , KY
|
||||
for k in range(numt):
|
||||
TKdata[rmid-Dyy:rmid+Dyy+1,cmid-Dyy:cmid+Dyy+1,:,k] = Kdata[rmid-Dyy:rmid+Dyy+1,cmid-Dyy:cmid+Dyy+1,:,k]
|
||||
|
||||
[kmin,kmax,PP,DP] = get_points4D(row,col,dep,numt2,R,mode)
|
||||
|
||||
if iteshort==1:
|
||||
print(PP)
|
||||
print(DP)
|
||||
print('range of k = ',kmin,kmax)
|
||||
|
||||
SPREAD = SpreadPoint3D(UKdata,R,tetest)
|
||||
###################################################################
|
||||
# RECONSTRUCTION #
|
||||
###################################################################
|
||||
ZE1 = iteshort + (tetest-1)*(iteshort)
|
||||
ZE2 = (tetest+1)*(iteshort) + (dep)*(1-iteshort)
|
||||
|
||||
for zi in range(ZE1,ZE2):
|
||||
|
||||
if rank==0:
|
||||
print('4D KTBLAST: R = ' + str(R) + ' and z = ' + str(zi)+'/'+str(dep))
|
||||
|
||||
### CONSTRUCT THE REFERENCE M_TRAINING
|
||||
B2 = KTT3D(TKdata,zi)
|
||||
B2 = FilteringHigh(B2,0.3)
|
||||
M2 = 4*np.abs(B2)**2
|
||||
#M2 = GetSymmetric(M2)
|
||||
### INTERPOLATE IF NUMT<NUMT2 IS REQUIRED
|
||||
if numt<numt2:
|
||||
M2 = InterpolateM(M2,numt2)
|
||||
#M2 = GetSymmetric(M2)
|
||||
###################################################################
|
||||
# Adquisition Stage #
|
||||
###################################################################
|
||||
VLund = KTT3D(UKdata,zi)
|
||||
VLref = KTT3D(Kdata,zi)
|
||||
VLnew = np.zeros(VLund.shape,dtype=complex)
|
||||
|
||||
|
||||
#for k in range(kmin*0+12,kmax*0+13):
|
||||
for k in range(kmin,kmax):
|
||||
#for k in range(0,numt2):
|
||||
for l in range(row):
|
||||
for cc in range(col):
|
||||
PEA = EveryAliased3D2(k,l,cc,PP,numt2,row,col,VLnew,R)
|
||||
NAA = PEA.shape[1]
|
||||
Mvec = np.zeros([1,NAA],dtype=complex)
|
||||
un = np.ones([1,NAA],dtype=complex)
|
||||
Mvec[0,:] = M2[PEA[1,:],PEA[2,:],PEA[0,:]]
|
||||
ralia = NAA*VLund[l,cc,k]
|
||||
MDIAG = np.diagflat(Mvec)
|
||||
rnew = np.transpose(np.inner(un,MDIAG))/np.sum(np.inner(un,MDIAG))*ralia
|
||||
VLnew[PEA[1,:],PEA[2,:],PEA[0,:]] = rnew[:,0]
|
||||
#VLnew[PEA[1,:],PEA[2,:],PEA[0,:]] += 1
|
||||
|
||||
|
||||
KTBLAST[:,:,zi,:] = IKTT3D(VLnew)
|
||||
|
||||
|
||||
KTBLAST = np.fft.ifftshift(KTBLAST,axes=3)
|
||||
|
||||
if iteshort==1:
|
||||
D0 = np.abs(M2)
|
||||
D1 = np.abs(VLund)
|
||||
D2 = np.abs(VLnew)
|
||||
D3 = np.abs(VLref)
|
||||
return [D0,D1,D2,D3]
|
||||
|
||||
if iteshort==0:
|
||||
return KTBLAST
|
||||
|
||||
def KTBLASTMETHOD_4D_ky(ITOT,R,mode):
|
||||
|
||||
###################################################################
|
||||
# Training Stage #
|
||||
###################################################################
|
||||
[row,col,dep,numt2] = ITOT.shape
|
||||
# INPUT PARAMETERS
|
||||
iteshort = 0
|
||||
tetest = int(col/2)
|
||||
zetest = int(3*dep/5)
|
||||
numt = int(numt2/1)
|
||||
Dyy = int(row*0.1)
|
||||
rmid = int(row/2)
|
||||
cmid = int(col/2)
|
||||
|
||||
TKdata = np.zeros(ITOT.shape,dtype=complex)
|
||||
UKdata = np.zeros(ITOT.shape,dtype=complex)
|
||||
Kdata = np.zeros(ITOT.shape,dtype=complex)
|
||||
KTBLAST0 = np.zeros(ITOT.shape,dtype=complex)
|
||||
KTBLAST = np.zeros(ITOT.shape,dtype=complex)
|
||||
|
||||
|
||||
for k in range(numt2):
|
||||
# THE FULL KSPACE
|
||||
Kdata[:,:,:,k] = np.fft.fft2(ITOT[:,:,:,k], axes=(0,1))
|
||||
Kdata[:,:,:,k] = np.fft.fftshift(Kdata[:,:,:,k])
|
||||
# UNDERSAMPLING STEP AND FILLED WITH ZEROS THE REST
|
||||
UKdata[:,:,:,k] = UNDER(Kdata[:,:,:,k],mode,R,k)
|
||||
|
||||
|
||||
# GENERATING THE TRAINING DATA WITH ONLY SUBSAMPLING IN KY
|
||||
for k in range(numt):
|
||||
TKdata[rmid-Dyy:rmid+Dyy+1,:,:,k] = Kdata[rmid-Dyy:rmid+Dyy+1,:,:,k]
|
||||
|
||||
[kmin,kmax,PP,DP] = get_points4D(row,col,dep,numt2,R,mode)
|
||||
|
||||
if iteshort==1:
|
||||
print(PP)
|
||||
print(DP)
|
||||
print('range of y = ',kmin,kmax)
|
||||
|
||||
|
||||
#SPREAD = SpreadPoint(UKdata,R,tetest)
|
||||
###################################################################
|
||||
# RECONSTRUCTION #
|
||||
###################################################################
|
||||
TE1 = iteshort + (tetest-1)*(iteshort)
|
||||
TE2 = (tetest+1)*(iteshort) + (col)*(1-iteshort)
|
||||
ZE1 = iteshort + (zetest-1)*(iteshort)
|
||||
ZE2 = (zetest+1)*(iteshort) + (dep)*(1-iteshort)
|
||||
|
||||
for zi in range(ZE1,ZE2):
|
||||
if rank==0:
|
||||
print('4D KTBLAST: z = ',zi)
|
||||
|
||||
for te in range(TE1,TE2):
|
||||
|
||||
### CONSTRUCT THE REFERENCE M_TRAINING
|
||||
B2 = KTT(TKdata[:,:,zi,:],te)
|
||||
B2 = FilteringHigh(B2,0.3)
|
||||
M2 = 4*np.abs(B2)**2
|
||||
M2 = GetSymmetric(M2)
|
||||
### INTERPOLATE IF NUMT<NUMT2 IS REQUIRED
|
||||
if numt<numt2:
|
||||
M2 = InterpolateM(M2,numt2)
|
||||
M2 = GetSymmetric(M2)
|
||||
###################################################################
|
||||
# Adquisition Stage #
|
||||
###################################################################
|
||||
VLund = KTT(UKdata[:,:,zi,:],te)
|
||||
VLref = KTT(Kdata[:,:,zi,:],te)
|
||||
VLnew = np.zeros(VLund.shape,dtype=complex)
|
||||
|
||||
for k in range(kmin,kmax):
|
||||
for l in range(row):
|
||||
PEA = EveryAliased(k,l,DP,numt2,row,VLnew,R,1)
|
||||
NAA = PEA.shape[1]
|
||||
Mvec = np.zeros([1,NAA],dtype=complex)
|
||||
un = np.ones([1,NAA],dtype=complex)
|
||||
Mvec[0,:] = M2[PEA[1,:],PEA[0,:]]
|
||||
ralia = NAA*VLund[l,k]
|
||||
MDIAG = np.diagflat(Mvec)
|
||||
rnew = np.transpose(np.inner(un,MDIAG))/np.sum(np.inner(un,MDIAG))*ralia
|
||||
VLnew[PEA[1,:],PEA[0,:]] = rnew[:,0]
|
||||
|
||||
|
||||
KTBLAST[:,te,zi,:] = IKTT(VLnew)
|
||||
|
||||
|
||||
KTBLAST = np.fft.ifftshift(KTBLAST,axes=2)
|
||||
|
||||
|
||||
if iteshort==1:
|
||||
D0 = np.abs(M2)
|
||||
D1 = np.abs(VLund)
|
||||
D2 = np.abs(VLnew)
|
||||
D3 = np.abs(VLref)
|
||||
return [D0,D1,D2,D3]
|
||||
|
||||
if iteshort==0:
|
||||
return KTBLAST
|
||||
|
||||
def phase_contrast(M1,M0,VENC,scantype='0G'):
|
||||
param = 1
|
||||
if scantype=='-G+G':
|
||||
param = 0.5
|
||||
return VENC*param*(np.angle(M1) - np.angle(M0))/np.pi
|
||||
|
||||
def GenerateMagnetization(Sq,VENC,noise,scantype='0G'):
|
||||
# MRI PARAMETERS
|
||||
gamma = 267.513e6 # rad/Tesla/sec Gyromagnetic ratio for H nuclei
|
||||
B0 = 1.5 # Tesla Magnetic Field Strenght
|
||||
TE = 5e-3 # Echo-time
|
||||
M1 = np.pi/(gamma*VENC)
|
||||
|
||||
PHASE0 = np.zeros(Sq.shape)
|
||||
PHASE1 = np.zeros(Sq.shape)
|
||||
RHO0 = np.zeros(Sq.shape,dtype=complex)
|
||||
RHO1 = np.zeros(Sq.shape,dtype=complex)
|
||||
# THE K DATA
|
||||
KRHO0 = np.zeros(Sq.shape,dtype=complex)
|
||||
KRHO1 = np.zeros(Sq.shape,dtype=complex)
|
||||
|
||||
if np.ndim(Sq)==3:
|
||||
[row,col,numt2] = Sq.shape
|
||||
[X,Y] = np.meshgrid(np.linspace(0,col,col),np.linspace(0,row,row))
|
||||
for k in range(numt2):
|
||||
if noise:
|
||||
Drho = np.random.normal(0,0.2,[row,col])
|
||||
Drho2 = np.random.normal(0,0.2,[row,col])
|
||||
else:
|
||||
Drho = np.zeros([row,col])
|
||||
Drho2 = np.zeros([row,col])
|
||||
|
||||
varPHASE0 = np.random.randint(-10,11,size=(row,col))*np.pi/180*(np.abs(Sq[:,:,k])<0.001) #Hugo's observation
|
||||
modulus = 0.5 + 0.5*(np.abs(Sq[:,:,k])>0.001)
|
||||
|
||||
if scantype=='0G':
|
||||
PHASE0[:,:,k] = (gamma*B0*TE+0.01*X)*(np.abs(Sq[:,:,k])>0.001) + 10*varPHASE0
|
||||
PHASE1[:,:,k] = (gamma*B0*TE+0.01*X)*(np.abs(Sq[:,:,k])>0.001) + 10*varPHASE0 + np.pi*Sq[:,:,k]/VENC
|
||||
|
||||
if scantype=='-G+G':
|
||||
PHASE0[:,:,k] = gamma*B0*TE*np.ones([row,col]) + 10*varPHASE0 - np.pi*Sq[:,:,k]/VENC
|
||||
PHASE1[:,:,k] = gamma*B0*TE*np.ones([row,col]) + 10*varPHASE0 + np.pi*Sq[:,:,k]/VENC
|
||||
|
||||
RHO0[:,:,k] = modulus*np.cos(PHASE0[:,:,k]) + Drho + 1j*modulus*np.sin(PHASE0[:,:,k]) + 1j*Drho2
|
||||
RHO1[:,:,k] = modulus*np.cos(PHASE1[:,:,k]) + Drho + 1j*modulus*np.sin(PHASE1[:,:,k]) + 1j*Drho2
|
||||
|
||||
|
||||
if np.ndim(Sq)==4:
|
||||
[row,col,dep,numt2] = Sq.shape
|
||||
[X,Y,Z] = np.meshgrid(np.linspace(0,col,col),np.linspace(0,row,row),np.linspace(0,dep,dep))
|
||||
|
||||
for k in range(numt2):
|
||||
|
||||
if noise:
|
||||
Drho = np.random.normal(0,0.2,[row,col,dep])
|
||||
Drho2 = np.random.normal(0,0.2,[row,col,dep])
|
||||
else:
|
||||
Drho = np.zeros([row,col,dep])
|
||||
Drho2 = np.zeros([row,col,dep])
|
||||
|
||||
varPHASE0 = np.random.randint(-10,11,size=(row,col,dep))*np.pi/180*(np.abs(Sq[:,:,:,k])<0.001)
|
||||
modulus = 0.5 + 0.5*(np.abs(Sq[:,:,:,k])>0.001)
|
||||
|
||||
if scantype=='0G':
|
||||
PHASE0[:,:,:,k] = (gamma*B0*TE+0.01*X)*(np.abs(Sq[:,:,:,k])>0.001) + 10*varPHASE0
|
||||
PHASE1[:,:,:,k] = (gamma*B0*TE+0.01*X)*(np.abs(Sq[:,:,:,k])>0.001) + 10*varPHASE0 + np.pi*Sq[:,:,:,k]/VENC
|
||||
|
||||
if scantype=='-G+G':
|
||||
PHASE0[:,:,:,k] = gamma*B0*TE*np.ones([row,col,dep]) + varPHASE0 - np.pi*Sq[:,:,:,k]/VENC
|
||||
PHASE1[:,:,:,k] = gamma*B0*TE*np.ones([row,col,dep]) + varPHASE0 + np.pi*Sq[:,:,:,k]/VENC
|
||||
|
||||
RHO0[:,:,:,k] = modulus*np.cos(PHASE0[:,:,:,k]) + Drho + 1j*modulus*np.sin(PHASE0[:,:,:,k]) + 1j*Drho2
|
||||
RHO1[:,:,:,k] = modulus*np.cos(PHASE1[:,:,:,k]) + Drho + 1j*modulus*np.sin(PHASE1[:,:,:,k]) + 1j*Drho2
|
||||
|
||||
|
||||
|
||||
|
||||
return [RHO0,RHO1]
|
||||
|
||||
def undersampling(Sqx,Sqy,Sqz,options,savepath):
|
||||
|
||||
R = options['kt-BLAST']['R']
|
||||
mode = options['kt-BLAST']['mode']
|
||||
transpose = True
|
||||
|
||||
for r in R:
|
||||
|
||||
if rank==0:
|
||||
print('Using Acceleration Factor R = ' + str(r))
|
||||
print('Component x of M0')
|
||||
|
||||
[M0,M1] = GenerateMagnetization(Sqx,options['kt-BLAST']['VENC'],options['kt-BLAST']['noise'],scantype='0G')
|
||||
if transpose:
|
||||
M0 = M0.transpose((0,2,1,3))
|
||||
M1 = M1.transpose((0,2,1,3))
|
||||
|
||||
if mode=='ky':
|
||||
M0_kt = KTBLASTMETHOD_4D_ky(M0,r,mode)
|
||||
if mode=='kxky':
|
||||
M0_kt = KTBLASTMETHOD_4D_kxky(M0,r,mode)
|
||||
|
||||
if rank==0:
|
||||
print('\n Component x of M1')
|
||||
|
||||
if mode=='ky':
|
||||
M1_kt = KTBLASTMETHOD_4D_ky(M1,r,mode)
|
||||
if mode=='kxky':
|
||||
M1_kt = KTBLASTMETHOD_4D_kxky(M1,r,mode)
|
||||
|
||||
|
||||
Sqx_kt = phase_contrast(M1_kt,M0_kt,options['kt-BLAST']['VENC'],scantype='0G')
|
||||
|
||||
del M0,M1
|
||||
del M0_kt, M1_kt
|
||||
|
||||
[M0,M1] = GenerateMagnetization(Sqy,options['kt-BLAST']['VENC'],options['kt-BLAST']['noise'],scantype='0G')
|
||||
if transpose:
|
||||
M0 = M0.transpose((0,2,1,3))
|
||||
M1 = M1.transpose((0,2,1,3))
|
||||
if rank==0:
|
||||
print('\n Component y of M0')
|
||||
|
||||
if mode=='ky':
|
||||
M0_kt = KTBLASTMETHOD_4D_ky(M0,r,mode)
|
||||
if mode=='kxky':
|
||||
M0_kt = KTBLASTMETHOD_4D_kxky(M0,r,mode)
|
||||
|
||||
|
||||
if rank==0:
|
||||
print('\n Component y of M1')
|
||||
|
||||
if mode=='ky':
|
||||
M1_kt = KTBLASTMETHOD_4D_ky(M1,r,mode)
|
||||
if mode=='kxky':
|
||||
M1_kt = KTBLASTMETHOD_4D_kxky(M1,r,mode)
|
||||
|
||||
Sqy_kt = phase_contrast(M1_kt,M0_kt,options['kt-BLAST']['VENC'],scantype='0G')
|
||||
|
||||
del M0,M1
|
||||
del M0_kt, M1_kt
|
||||
|
||||
[M0,M1] = GenerateMagnetization(Sqz,options['kt-BLAST']['VENC'],options['kt-BLAST']['noise'],scantype='0G')
|
||||
if transpose:
|
||||
M0 = M0.transpose((0,2,1,3))
|
||||
M1 = M1.transpose((0,2,1,3))
|
||||
if rank==0:
|
||||
print('\n Component z of M0')
|
||||
|
||||
if mode=='ky':
|
||||
M0_kt = KTBLASTMETHOD_4D_ky(M0,r,mode)
|
||||
|
||||
if mode=='kxky':
|
||||
M0_kt = KTBLASTMETHOD_4D_kxky(M0,r,mode)
|
||||
|
||||
if rank==0:
|
||||
print('\n Component z of M1')
|
||||
|
||||
if mode=='ky':
|
||||
M1_kt = KTBLASTMETHOD_4D_ky(M1,r,mode)
|
||||
if mode=='kxky':
|
||||
M1_kt = KTBLASTMETHOD_4D_kxky(M1,r,mode)
|
||||
|
||||
if rank==0:
|
||||
print(' ')
|
||||
|
||||
Sqz_kt = phase_contrast(M1_kt,M0_kt,options['kt-BLAST']['VENC'],scantype='0G')
|
||||
|
||||
|
||||
if transpose:
|
||||
Sqx_kt = Sqx_kt.transpose((0,2,1,3))
|
||||
Sqy_kt = Sqy_kt.transpose((0,2,1,3))
|
||||
Sqz_kt = Sqz_kt.transpose((0,2,1,3))
|
||||
|
||||
|
||||
if options['kt-BLAST']['save']:
|
||||
if rank==0:
|
||||
print('saving the sequences in ' + savepath)
|
||||
seqname = options['kt-BLAST']['name'] +'_R' + str(r) + '.npz'
|
||||
print('sequence name: ' + seqname)
|
||||
np.savez_compressed( savepath + seqname, x=Sqx_kt, y=Sqy_kt,z=Sqz_kt)
|
||||
|
||||
del Sqx_kt,Sqy_kt,Sqz_kt
|
||||
|
||||
|
||||
|
||||
|
71
codes/mesh_generator.py
Executable file
71
codes/mesh_generator.py
Executable file
@ -0,0 +1,71 @@
|
||||
from dolfin import *
|
||||
|
||||
|
||||
mesh_in = '/home/yeye/Desktop/leomesh.xml'
|
||||
mesh_out = '/home/yeye/Desktop/aorta.h5'
|
||||
mesh = Mesh(mesh_in)
|
||||
|
||||
hdf = HDF5File(mesh.mpi_comm(), mesh_out, 'w')
|
||||
boundaries = MeshFunction('size_t', mesh,2)
|
||||
|
||||
marked = 1
|
||||
testmesh = 0
|
||||
|
||||
hdf.write(mesh, '/mesh')
|
||||
|
||||
if marked==1:
|
||||
|
||||
class Inlet(SubDomain):
|
||||
def inside(self, x, on_boundary):
|
||||
return on_boundary and between(x[0],(0.1975,0.1989)) and between(x[2],(0.07,0.1))
|
||||
|
||||
class Outlet(SubDomain):
|
||||
def inside(self, x, on_boundary):
|
||||
return on_boundary and between(x[0],(0.1975,0.1989)) and between(x[2],(0,0.04))
|
||||
|
||||
class Walls(SubDomain):
|
||||
def inside(self, x, on_boundary):
|
||||
return on_boundary
|
||||
|
||||
|
||||
outlet = Outlet()
|
||||
inlet = Inlet()
|
||||
walls = Walls()
|
||||
|
||||
boundaries.set_all(0)
|
||||
walls.mark(boundaries,1)
|
||||
outlet.mark(boundaries,3)
|
||||
inlet.mark(boundaries,2)
|
||||
|
||||
|
||||
|
||||
|
||||
hdf.write(boundaries, '/boundaries')
|
||||
hdf.close()
|
||||
|
||||
|
||||
|
||||
if testmesh:
|
||||
print('Testing Mesh...')
|
||||
meshname = mesh_out
|
||||
pathtoB = '/home/yeye/Desktop/boundaries.xdmf'
|
||||
mesh = Mesh()
|
||||
hdf = HDF5File(mesh.mpi_comm(), meshname , 'r')
|
||||
hdf.read(mesh, '/mesh', False)
|
||||
boundaries = MeshFunction('size_t', mesh , mesh.topology().dim() - 1)
|
||||
hdf.read(boundaries, '/boundaries')
|
||||
# To save the boundaries information
|
||||
XDMFFile(pathtoB).write(boundaries)
|
||||
print('Boundary info printed in ' + pathtoB)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user