final press 8ecm
|
@ -146,27 +146,12 @@ def plot_parameters(dat, input_file, deparameterize=False, ref=None):
|
|||
|
||||
|
||||
for i in range(len(ids)):
|
||||
cur_key = ids[i]
|
||||
|
||||
true_level = np.log(true_values[ids[i]]/current_val[i])/np.log(2)
|
||||
rec_value = np.round(2**theta[-1, idx]*current_val[i],2)
|
||||
|
||||
|
||||
#curve = theta[:,idx] + line_split*idx - true_level
|
||||
#dash_curve = line_split*idx + t*0
|
||||
|
||||
curve = 2**theta[:, idx]*current_val[i]
|
||||
std_down = 2**(-np.sqrt(P[:, idx, idx]))*curve
|
||||
std_up = 2**np.sqrt(P[:, idx, idx])*curve
|
||||
dash_curve = true_values[ids[i]] + t*0
|
||||
|
||||
|
||||
if ids_type[i] == 'dirichlet':
|
||||
fig3, axes3 = plt.subplots(1,1,figsize=(12,5))
|
||||
axes3.plot(t, curve , '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key]) + '$', linewidth = 4)
|
||||
axes3.fill_between(t, std_down, std_up, alpha=0.3, color=col_)
|
||||
legends_=next(legends)
|
||||
axes3.plot(t, dash_curve , color=col_,ls='--')
|
||||
axes3.plot(t, dash_curve , color=col_,ls='--' , linewidth = 3)
|
||||
axes3.set_ylabel(r'$U$',fontsize=36)
|
||||
axes3.legend(fontsize=36,loc='upper right')
|
||||
axes3.set_xlim([-0.01,0.81])
|
||||
|
@ -177,28 +162,34 @@ def plot_parameters(dat, input_file, deparameterize=False, ref=None):
|
|||
plt.savefig('U.png')
|
||||
plt.close(fig3)
|
||||
else:
|
||||
|
||||
cur_key = ids[i]
|
||||
rec_value = np.round(2**theta[-1, idx]*current_val[i],2)
|
||||
curve = 2**theta[:, idx]*current_val[i]
|
||||
std_down = 2**(-np.sqrt(P[:, idx, idx]))*curve
|
||||
std_up = 2**np.sqrt(P[:, idx, idx])*curve
|
||||
dash_curve = true_values[ids[i]] + t*0
|
||||
|
||||
axes1.plot(t, curve , '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key]) + '$', linewidth = 3)
|
||||
axes1.fill_between(t, std_down, std_up, alpha=0.3, color=col_)
|
||||
axes1.plot(t, dash_curve , color=col_,ls='--')
|
||||
axes1.plot(t, dash_curve , color=col_,ls='--',linewidth = 3)
|
||||
legends_=next(legends)
|
||||
|
||||
if RC_flag:
|
||||
if i<len(current_val_C):
|
||||
rec_value_C = np.round(2**theta[-1, idx+1]*current_val_C[idc],6)
|
||||
|
||||
if RC_flag:
|
||||
if i<len(current_val_C):
|
||||
true_level_C = np.log(true_values_C[ids[i]]/current_val_C[i])/np.log(2)
|
||||
rec_value_C = np.round(2**theta[-1, idc]*current_val_C[idc],6)
|
||||
|
||||
curve_C = 2**theta[:, idx+1]*current_val_C[idc]
|
||||
dash_curve_C = true_values_C[ids[i]] + t*0
|
||||
std_C_down = 2**(-np.sqrt(P[:, idx+1, idx+1]))*curve_C
|
||||
std_C_up = 2**np.sqrt(P[:, idx+1, idx+1])*curve_C
|
||||
|
||||
axes2.plot(t, curve_C , '-', color=col_,label= legends_ + '= ' + str(rec_value_C) + '/' + str(true_values_C[cur_key]) + '$', linewidth = 2)
|
||||
axes2.fill_between(t, std_C_down, std_C_up, alpha=0.3, color=col_)
|
||||
axes2.plot(t, dash_curve_C , color=col_,ls='--')
|
||||
legends_=next(legends)
|
||||
idx +=1
|
||||
idc +=1
|
||||
curve_C = 2**theta[:, idx+1]*current_val_C[idc]
|
||||
dash_curve_C = true_values_C[ids[i]] + t*0
|
||||
std_C_down = 2**(-np.sqrt(P[:, idx+1, idx+1]))*curve_C
|
||||
std_C_up = 2**np.sqrt(P[:, idx+1, idx+1])*curve_C
|
||||
|
||||
axes2.plot(t, curve_C , '-', color=col_,label= legends_ + '= ' + str(rec_value_C) + '/' + str(true_values_C[cur_key]) + '$', linewidth = 3)
|
||||
axes2.fill_between(t, std_C_down, std_C_up, alpha=0.3, color=col_)
|
||||
axes2.plot(t, dash_curve_C , color=col_,ls='--',linewidth = 3)
|
||||
legends_=next(legends)
|
||||
idx +=1
|
||||
idc +=1
|
||||
|
||||
|
||||
if meas_flag:
|
||||
|
@ -221,10 +212,12 @@ def plot_parameters(dat, input_file, deparameterize=False, ref=None):
|
|||
|
||||
if RC_flag:
|
||||
|
||||
axes2.set_ylabel(r'$C$',fontsize=24)
|
||||
axes2.legend(fontsize=18,loc='upper right')
|
||||
axes2.set_ylabel(r'$C$',fontsize=36)
|
||||
axes2.legend(fontsize=36,loc='upper right')
|
||||
axes2.set_xlim([-0.01,0.81])
|
||||
axes2.set_xlabel(r'$t (s)$',fontsize=24)
|
||||
plt.xticks(fontsize=28)
|
||||
plt.yticks(fontsize=28)
|
||||
axes2.set_xlabel(r'$t (s)$',fontsize=36)
|
||||
fig2.savefig('C.png')
|
||||
|
||||
fig1.savefig('Rd.png')
|
||||
|
|
|
@ -8,7 +8,7 @@ fluid:
|
|||
implicit_windkessel: True
|
||||
|
||||
io:
|
||||
write_path: 'results/HRz_Pb_V70'
|
||||
write_path: 'results/impl_1ms'
|
||||
restart:
|
||||
path: '' # './projects/nse_coa3d/results/test_restart2/'
|
||||
time: 0
|
||||
|
@ -27,7 +27,8 @@ boundary_conditions:
|
|||
value: ['0','0','-U*sin(DOLFIN_PI*t/Th)*(t<=Th) + (Th<t)*(U*DOLFIN_PI/Th*(t-Th)*exp(-(t-Th)*beta))']
|
||||
parameters:
|
||||
#U: 75 #REFERENCE
|
||||
U: 150 #Pa Pb
|
||||
U: 80
|
||||
#U: 150 #Pa/Pb
|
||||
#U: 40 #Pc
|
||||
Th: 0.36
|
||||
beta: 70
|
||||
|
@ -55,9 +56,9 @@ boundary_conditions:
|
|||
#C: 0.0010 # Pb
|
||||
#C: 0.0001 # Pc
|
||||
#C: 0.0008 # Pg
|
||||
#R_d: 7200 # REFERENCE
|
||||
R_d: 7200 # REFERENCE
|
||||
#R_d: 8760 #Pa
|
||||
R_d: 17520 #Pb x2
|
||||
#R_d: 17520 #Pb x2
|
||||
#R_d: 4000 #Pc
|
||||
p0: 85
|
||||
conv: 1333.223874
|
||||
|
@ -71,9 +72,9 @@ boundary_conditions:
|
|||
#C: 0.0010 # Pb
|
||||
#C: 0.0001 # Pc
|
||||
#C: 0.0008 # Pg
|
||||
#R_d: 11520 # REFERENCE
|
||||
R_d: 11520 # REFERENCE
|
||||
#R_d: 8760 #Pa
|
||||
R_d: 17520 #Pb x2
|
||||
#R_d: 17520 #Pb x2
|
||||
#R_d: 4000 #Pc
|
||||
p0: 85
|
||||
conv: 1333.223874
|
||||
|
@ -86,9 +87,9 @@ boundary_conditions:
|
|||
#C: 0.0005 #Pa
|
||||
#C: 0.0010 #Pb
|
||||
#C: 0.0001 #Pc
|
||||
#R_d: 11520 # REFERENCE
|
||||
R_d: 11520 # REFERENCE
|
||||
#R_d: 8760 #Pa
|
||||
R_d: 17520 #Pb x2
|
||||
#R_d: 17520 #Pb x2
|
||||
#R_d: 4000 #Pc
|
||||
p0: 85
|
||||
conv: 1333.223874
|
||||
|
@ -131,7 +132,7 @@ fem:
|
|||
convection_skew_symmetric: True # aka Temam term
|
||||
stabilization:
|
||||
forced_normal:
|
||||
enabled: True
|
||||
enabled: False
|
||||
boundaries: [3,4,5,6]
|
||||
gamma: 20
|
||||
backflow_boundaries: [3,4,5,6]
|
||||
|
@ -162,17 +163,17 @@ estimation:
|
|||
-
|
||||
id: 4
|
||||
type: 'windkessel'
|
||||
mode: 'Rd'
|
||||
mode: 'RdC'
|
||||
initial_stddev: 1
|
||||
-
|
||||
id: 5
|
||||
type: 'windkessel'
|
||||
mode: 'Rd'
|
||||
mode: 'RdC'
|
||||
initial_stddev: 1
|
||||
-
|
||||
id: 6
|
||||
type: 'windkessel'
|
||||
mode: 'Rd'
|
||||
mode: 'RdC'
|
||||
initial_stddev: 1
|
||||
-
|
||||
id: 2
|
||||
|
@ -186,12 +187,12 @@ estimation:
|
|||
mesh: '/home/yeye/NuMRI/kalman/meshes/coaortaH3_leo2.0.h5'
|
||||
#mesh: './meshes/coaortaH1.h5'
|
||||
fe_degree: 1
|
||||
xdmf_file: 'measurements/aorta_zdir/Perturbation/Mg15V70/u_all.xdmf'
|
||||
file_root: 'measurements/aorta_zdir/Perturbation/Mg15V70/u{i}.h5'
|
||||
#xdmf_file: 'measurements/aorta/u_all.xdmf'
|
||||
#file_root: 'measurements/aorta/u{i}.h5'
|
||||
#xdmf_file: 'measurements/aorta_dt1ms/Perturbation/Mg15V70/u_all.xdmf'
|
||||
#file_root: 'measurements/aorta_dt1ms/Perturbation/Mg15V70/u{i}.h5'
|
||||
xdmf_file: 'measurements/aorta_exp_dt1ms/u_all.xdmf'
|
||||
file_root: 'measurements/aorta_exp_dt1ms/u{i}.h5'
|
||||
indices: 0 # indices of checkpoints to be processed. 0 == all
|
||||
velocity_direction: ~
|
||||
velocity_direction: [0,0,1]
|
||||
noise_stddev: 45 # standard deviation of Gaussian noise
|
||||
|
||||
roukf:
|
||||
|
@ -199,5 +200,5 @@ estimation:
|
|||
observation_operator: 'postprocessing' #state or postprocessing
|
||||
reparameterize: True
|
||||
ODV_functional:
|
||||
enable: True
|
||||
VENC: 142
|
||||
enable: False
|
||||
VENC: 138
|
After Width: | Height: | Size: 78 KiB |
After Width: | Height: | Size: 72 KiB |
After Width: | Height: | Size: 77 KiB |
After Width: | Height: | Size: 75 KiB |
After Width: | Height: | Size: 25 KiB |
After Width: | Height: | Size: 24 KiB |
After Width: | Height: | Size: 26 KiB |
After Width: | Height: | Size: 26 KiB |
After Width: | Height: | Size: 68 KiB |
After Width: | Height: | Size: 73 KiB |
After Width: | Height: | Size: 26 KiB |
After Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 1.4 MiB |
After Width: | Height: | Size: 1.4 MiB |
After Width: | Height: | Size: 1.4 MiB |
After Width: | Height: | Size: 1.4 MiB |
|
@ -0,0 +1,162 @@
|
|||
\relax
|
||||
\providecommand\hyper@newdestlabel[2]{}
|
||||
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
|
||||
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
|
||||
\global\let\oldcontentsline\contentsline
|
||||
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
|
||||
\global\let\oldnewlabel\newlabel
|
||||
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
|
||||
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
|
||||
\AtEndDocument{\ifx\hyper@anchor\@undefined
|
||||
\let\contentsline\oldcontentsline
|
||||
\let\newlabel\oldnewlabel
|
||||
\fi}
|
||||
\fi}
|
||||
\global\let\hyper@last\relax
|
||||
\gdef\HyperFirstAtBeginDocument#1{#1}
|
||||
\providecommand\HyField@AuxAddToFields[1]{}
|
||||
\providecommand\HyField@AuxAddToCoFields[2]{}
|
||||
\providecommand\pbs@newkey[2]{}
|
||||
\providecommand\pbs@seq@push@cx[2]{}
|
||||
\providecommand\pbs@at@end@dvi@check{}
|
||||
\pbs@at@end@dvi@check
|
||||
\providecommand\mix@newkey[2]{}
|
||||
\pbs@newkey{pbs@last@page}{1}
|
||||
\babel@aux{english}{}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {1}{1}}}
|
||||
\pbs@newkey{pbs@last@page}{2}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {2}{2}}}
|
||||
\pbs@newkey{pbs@last@page}{3}
|
||||
\@writefile{toc}{\beamer@sectionintoc {1}{4D flow MRI}{3}{0}{1}}
|
||||
\@writefile{nav}{\headcommand {\beamer@sectionpages {1}{2}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionpages {1}{2}}}
|
||||
\@writefile{nav}{\headcommand {\sectionentry {1}{4D flow MRI}{3}{4D flow MRI}{0}}}
|
||||
\pbs@newkey{pbs@last@page}{4}
|
||||
\pbs@newkey{pbs@last@page}{5}
|
||||
\@writefile{nav}{\headcommand {\slideentry {1}{0}{1}{3/5}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {3}{5}}}
|
||||
\pbs@newkey{pbs@last@page}{6}
|
||||
\@writefile{toc}{\beamer@sectionintoc {2}{The mathematical model}{6}{0}{2}}
|
||||
\@writefile{nav}{\headcommand {\beamer@sectionpages {3}{5}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionpages {3}{5}}}
|
||||
\@writefile{nav}{\headcommand {\sectionentry {2}{The mathematical model}{6}{The mathematical model}{0}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{0}{1}{6/6}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {6}{6}}}
|
||||
\pbs@newkey{pbs@last@page}{7}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{0}{2}{7/7}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {7}{7}}}
|
||||
\pbs@newkey{pbs@last@page}{8}
|
||||
\pbs@newkey{pbs@last@page}{9}
|
||||
\pbs@newkey{pbs@last@page}{10}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{0}{3}{8/10}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {8}{10}}}
|
||||
\pbs@newkey{pbs@last@page}{11}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{0}{4}{11/11}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {11}{11}}}
|
||||
\pbs@newkey{pbs@last@page}{12}
|
||||
\pbs@newkey{pbs@last@page}{13}
|
||||
\pbs@newkey{pbs@last@page}{14}
|
||||
\pbs@newkey{pbs@last@page}{15}
|
||||
\pbs@newkey{pbs@last@page}{16}
|
||||
\pbs@newkey{pbs@last@page}{17}
|
||||
\pbs@newkey{pbs@last@page}{18}
|
||||
\pbs@newkey{pbs@last@page}{19}
|
||||
\pbs@newkey{pbs@last@page}{20}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{0}{5}{12/20}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {12}{20}}}
|
||||
\pbs@newkey{pbs@last@page}{21}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{0}{6}{21/21}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {21}{21}}}
|
||||
\pbs@newkey{pbs@last@page}{22}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{0}{7}{22/22}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {22}{22}}}
|
||||
\pbs@newkey{pbs@last@page}{23}
|
||||
\@writefile{toc}{\beamer@sectionintoc {3}{The inverse problem}{23}{0}{3}}
|
||||
\@writefile{nav}{\headcommand {\beamer@sectionpages {6}{22}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionpages {6}{22}}}
|
||||
\@writefile{nav}{\headcommand {\sectionentry {3}{The inverse problem}{23}{The inverse problem}{0}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{0}{1}{23/23}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {23}{23}}}
|
||||
\pbs@newkey{pbs@last@page}{24}
|
||||
\pbs@newkey{pbs@last@page}{25}
|
||||
\pbs@newkey{pbs@last@page}{26}
|
||||
\pbs@newkey{pbs@last@page}{27}
|
||||
\pbs@newkey{pbs@last@page}{28}
|
||||
\pbs@newkey{pbs@last@page}{29}
|
||||
\pbs@newkey{pbs@last@page}{30}
|
||||
\pbs@newkey{pbs@last@page}{31}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{0}{2}{24/31}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {24}{31}}}
|
||||
\pbs@newkey{pbs@last@page}{32}
|
||||
\pbs@newkey{pbs@last@page}{33}
|
||||
\pbs@newkey{pbs@last@page}{34}
|
||||
\pbs@newkey{pbs@last@page}{35}
|
||||
\pbs@newkey{pbs@last@page}{36}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{0}{3}{32/36}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {32}{36}}}
|
||||
\pbs@newkey{pbs@last@page}{37}
|
||||
\@writefile{toc}{\beamer@sectionintoc {4}{Numerical Experiments}{37}{0}{4}}
|
||||
\@writefile{nav}{\headcommand {\beamer@sectionpages {23}{36}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionpages {23}{36}}}
|
||||
\@writefile{nav}{\headcommand {\sectionentry {4}{Numerical Experiments}{37}{Numerical Experiments}{0}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{0}{1}{37/37}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {37}{37}}}
|
||||
\pbs@newkey{pbs@last@page}{38}
|
||||
\pbs@newkey{pbs@last@page}{39}
|
||||
\pbs@newkey{pbs@last@page}{40}
|
||||
\pbs@newkey{pbs@last@page}{41}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{0}{2}{38/41}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {38}{41}}}
|
||||
\pbs@newkey{pbs@last@page}{42}
|
||||
\pbs@newkey{pbs@last@page}{43}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{0}{3}{42/43}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {42}{43}}}
|
||||
\pbs@newkey{pbs@last@page}{44}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{0}{4}{44/44}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {44}{44}}}
|
||||
\pbs@newkey{pbs@last@page}{45}
|
||||
\pbs@newkey{pbs@last@page}{46}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{0}{5}{45/46}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {45}{46}}}
|
||||
\pbs@newkey{pbs@last@page}{47}
|
||||
\pbs@newkey{pbs@last@page}{48}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{0}{6}{47/48}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {47}{48}}}
|
||||
\pbs@newkey{pbs@last@page}{49}
|
||||
\pbs@newkey{pbs@last@page}{50}
|
||||
\pbs@newkey{pbs@last@page}{51}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{0}{7}{49/51}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {49}{51}}}
|
||||
\pbs@newkey{pbs@last@page}{52}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{0}{8}{52/52}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {52}{52}}}
|
||||
\pbs@newkey{pbs@last@page}{53}
|
||||
\pbs@newkey{pbs@last@page}{54}
|
||||
\pbs@newkey{pbs@last@page}{55}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{0}{9}{53/55}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {53}{55}}}
|
||||
\pbs@newkey{pbs@last@page}{56}
|
||||
\@writefile{toc}{\beamer@sectionintoc {5}{Conclusions}{56}{0}{5}}
|
||||
\@writefile{nav}{\headcommand {\beamer@sectionpages {37}{55}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionpages {37}{55}}}
|
||||
\@writefile{nav}{\headcommand {\sectionentry {5}{Conclusions}{56}{Conclusions}{0}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {5}{0}{1}{56/56}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {56}{56}}}
|
||||
\pbs@newkey{pbs@last@page}{57}
|
||||
\pbs@newkey{pbs@last@page}{58}
|
||||
\pbs@newkey{pbs@last@page}{59}
|
||||
\pbs@newkey{pbs@last@page}{60}
|
||||
\pbs@newkey{pbs@last@page}{61}
|
||||
\pbs@newkey{pbs@last@page}{62}
|
||||
\@writefile{nav}{\headcommand {\slideentry {5}{0}{2}{57/62}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {57}{62}}}
|
||||
\pbs@newkey{pbs@last@page}{63}
|
||||
\@writefile{nav}{\headcommand {\slideentry {5}{0}{3}{63/63}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {63}{63}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@partpages {1}{63}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionpages {56}{63}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@sectionpages {56}{63}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@documentpages {63}}}
|
||||
\@writefile{nav}{\headcommand {\gdef \inserttotalframenumber {25}}}
|
|
@ -0,0 +1,48 @@
|
|||
This is BibTeX, Version 0.99d (TeX Live 2017/Debian)
|
||||
Capacity: max_strings=100000, hash_size=100000, hash_prime=85009
|
||||
The top-level auxiliary file: press.aux
|
||||
I found no \citation commands---while reading file press.aux
|
||||
I found no \bibdata command---while reading file press.aux
|
||||
I found no \bibstyle command---while reading file press.aux
|
||||
You've used 0 entries,
|
||||
0 wiz_defined-function locations,
|
||||
83 strings with 484 characters,
|
||||
and the built_in function-call counts, 0 in all, are:
|
||||
= -- 0
|
||||
> -- 0
|
||||
< -- 0
|
||||
+ -- 0
|
||||
- -- 0
|
||||
* -- 0
|
||||
:= -- 0
|
||||
add.period$ -- 0
|
||||
call.type$ -- 0
|
||||
change.case$ -- 0
|
||||
chr.to.int$ -- 0
|
||||
cite$ -- 0
|
||||
duplicate$ -- 0
|
||||
empty$ -- 0
|
||||
format.name$ -- 0
|
||||
if$ -- 0
|
||||
int.to.chr$ -- 0
|
||||
int.to.str$ -- 0
|
||||
missing$ -- 0
|
||||
newline$ -- 0
|
||||
num.names$ -- 0
|
||||
pop$ -- 0
|
||||
preamble$ -- 0
|
||||
purify$ -- 0
|
||||
quote$ -- 0
|
||||
skip$ -- 0
|
||||
stack$ -- 0
|
||||
substring$ -- 0
|
||||
swap$ -- 0
|
||||
text.length$ -- 0
|
||||
text.prefix$ -- 0
|
||||
top$ -- 0
|
||||
type$ -- 0
|
||||
warning$ -- 0
|
||||
while$ -- 0
|
||||
width$ -- 0
|
||||
write$ -- 0
|
||||
(There were 3 error messages)
|
|
@ -0,0 +1,70 @@
|
|||
\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}
|
||||
\headcommand {\beamer@framepages {1}{1}}
|
||||
\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}}
|
||||
\headcommand {\beamer@framepages {2}{2}}
|
||||
\headcommand {\beamer@sectionpages {1}{2}}
|
||||
\headcommand {\beamer@subsectionpages {1}{2}}
|
||||
\headcommand {\sectionentry {1}{4D flow MRI}{3}{4D flow MRI}{0}}
|
||||
\headcommand {\slideentry {1}{0}{1}{3/5}{}{0}}
|
||||
\headcommand {\beamer@framepages {3}{5}}
|
||||
\headcommand {\beamer@sectionpages {3}{5}}
|
||||
\headcommand {\beamer@subsectionpages {3}{5}}
|
||||
\headcommand {\sectionentry {2}{The mathematical model}{6}{The mathematical model}{0}}
|
||||
\headcommand {\slideentry {2}{0}{1}{6/6}{}{0}}
|
||||
\headcommand {\beamer@framepages {6}{6}}
|
||||
\headcommand {\slideentry {2}{0}{2}{7/7}{}{0}}
|
||||
\headcommand {\beamer@framepages {7}{7}}
|
||||
\headcommand {\slideentry {2}{0}{3}{8/10}{}{0}}
|
||||
\headcommand {\beamer@framepages {8}{10}}
|
||||
\headcommand {\slideentry {2}{0}{4}{11/11}{}{0}}
|
||||
\headcommand {\beamer@framepages {11}{11}}
|
||||
\headcommand {\slideentry {2}{0}{5}{12/20}{}{0}}
|
||||
\headcommand {\beamer@framepages {12}{20}}
|
||||
\headcommand {\slideentry {2}{0}{6}{21/21}{}{0}}
|
||||
\headcommand {\beamer@framepages {21}{21}}
|
||||
\headcommand {\slideentry {2}{0}{7}{22/22}{}{0}}
|
||||
\headcommand {\beamer@framepages {22}{22}}
|
||||
\headcommand {\beamer@sectionpages {6}{22}}
|
||||
\headcommand {\beamer@subsectionpages {6}{22}}
|
||||
\headcommand {\sectionentry {3}{The inverse problem}{23}{The inverse problem}{0}}
|
||||
\headcommand {\slideentry {3}{0}{1}{23/23}{}{0}}
|
||||
\headcommand {\beamer@framepages {23}{23}}
|
||||
\headcommand {\slideentry {3}{0}{2}{24/31}{}{0}}
|
||||
\headcommand {\beamer@framepages {24}{31}}
|
||||
\headcommand {\slideentry {3}{0}{3}{32/36}{}{0}}
|
||||
\headcommand {\beamer@framepages {32}{36}}
|
||||
\headcommand {\beamer@sectionpages {23}{36}}
|
||||
\headcommand {\beamer@subsectionpages {23}{36}}
|
||||
\headcommand {\sectionentry {4}{Numerical Experiments}{37}{Numerical Experiments}{0}}
|
||||
\headcommand {\slideentry {4}{0}{1}{37/37}{}{0}}
|
||||
\headcommand {\beamer@framepages {37}{37}}
|
||||
\headcommand {\slideentry {4}{0}{2}{38/41}{}{0}}
|
||||
\headcommand {\beamer@framepages {38}{41}}
|
||||
\headcommand {\slideentry {4}{0}{3}{42/43}{}{0}}
|
||||
\headcommand {\beamer@framepages {42}{43}}
|
||||
\headcommand {\slideentry {4}{0}{4}{44/44}{}{0}}
|
||||
\headcommand {\beamer@framepages {44}{44}}
|
||||
\headcommand {\slideentry {4}{0}{5}{45/46}{}{0}}
|
||||
\headcommand {\beamer@framepages {45}{46}}
|
||||
\headcommand {\slideentry {4}{0}{6}{47/48}{}{0}}
|
||||
\headcommand {\beamer@framepages {47}{48}}
|
||||
\headcommand {\slideentry {4}{0}{7}{49/51}{}{0}}
|
||||
\headcommand {\beamer@framepages {49}{51}}
|
||||
\headcommand {\slideentry {4}{0}{8}{52/52}{}{0}}
|
||||
\headcommand {\beamer@framepages {52}{52}}
|
||||
\headcommand {\slideentry {4}{0}{9}{53/55}{}{0}}
|
||||
\headcommand {\beamer@framepages {53}{55}}
|
||||
\headcommand {\beamer@sectionpages {37}{55}}
|
||||
\headcommand {\beamer@subsectionpages {37}{55}}
|
||||
\headcommand {\sectionentry {5}{Conclusions}{56}{Conclusions}{0}}
|
||||
\headcommand {\slideentry {5}{0}{1}{56/56}{}{0}}
|
||||
\headcommand {\beamer@framepages {56}{56}}
|
||||
\headcommand {\slideentry {5}{0}{2}{57/62}{}{0}}
|
||||
\headcommand {\beamer@framepages {57}{62}}
|
||||
\headcommand {\slideentry {5}{0}{3}{63/63}{}{0}}
|
||||
\headcommand {\beamer@framepages {63}{63}}
|
||||
\headcommand {\beamer@partpages {1}{63}}
|
||||
\headcommand {\beamer@subsectionpages {56}{63}}
|
||||
\headcommand {\beamer@sectionpages {56}{63}}
|
||||
\headcommand {\beamer@documentpages {63}}
|
||||
\headcommand {\gdef \inserttotalframenumber {25}}
|
|
@ -0,0 +1,5 @@
|
|||
\BOOKMARK [2][]{Outline0.1}{4D flow MRI}{}% 1
|
||||
\BOOKMARK [2][]{Outline0.2}{The mathematical model}{}% 2
|
||||
\BOOKMARK [2][]{Outline0.3}{The inverse problem}{}% 3
|
||||
\BOOKMARK [2][]{Outline0.4}{Numerical Experiments}{}% 4
|
||||
\BOOKMARK [2][]{Outline0.5}{Conclusions}{}% 5
|
|
@ -135,14 +135,11 @@ University of Groningen\\[0.5cm]
|
|||
\footnotesize
|
||||
|
||||
\begin{itemize}
|
||||
\item<2-> Full 3D coverage of the region of interest
|
||||
\item<2-> Velocities encoded into the magnetization phase
|
||||
\item<3-> Rich post-proccesing: derived parameters
|
||||
\end{itemize}
|
||||
|
||||
\onslide<4-> Disadvantages:
|
||||
\begin{itemize}
|
||||
\item<5-> Long scan time
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
\column{.54\textwidth} % Right column and width
|
||||
|
@ -232,16 +229,26 @@ P_l = R_{p,l} \ Q_l + \pi_l
|
|||
|
||||
\begin{frame}
|
||||
\frametitle{The mathematical model}
|
||||
|
||||
\begin{columns}[c]
|
||||
\column{.5\textwidth} % Left column and width
|
||||
\footnotesize
|
||||
\begin{itemize}
|
||||
\item<1-> $u_{inlet} = -U f(t) \hat{n}$, with $f(t)$ the weaveform.
|
||||
\item<2-> Fractional step scheme.
|
||||
\item<3-> Semi-implicit Windkessel model.
|
||||
\item<4-> Stabilized $\mathbb{P}1/\mathbb{P}1$ finite elements.
|
||||
\item<4-> Implemented in FEniCS.
|
||||
\item Incompressible Navier-Stokes equations:
|
||||
\begin{equation}
|
||||
\begin{cases}
|
||||
\displaystyle \rho \frac{\partial \vec{u}}{\partial t} + \rho \big ( \vec{u} \cdot \nabla \big) \vec{u} - \mu \Delta \vec{u} + \nabla p = 0 \\[0.2cm]
|
||||
\nabla \cdot \vec{u} = 0 \quad \text{in} \quad \Omega \\[0.2cm]
|
||||
\vec{u} = \vec{u}_{inlet} \quad \text{on} \quad \Gamma_{in} \\[0.2cm]
|
||||
\vec{u} = 0 \quad \text{on} \quad \Gamma_{walls}
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
\emph{Three-element} Windkessel coupling at every outlet:
|
||||
\begin{equation}
|
||||
\begin{cases}
|
||||
\displaystyle C_{d,l} \frac{d \pi_l}{dt} + \frac{\pi_l}{R_{d,l}} = Q_l \\[0.2cm]
|
||||
P_l = R_{p,l} \ Q_l + \pi_l
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
@ -258,90 +265,105 @@ P_l = R_{p,l} \ Q_l + \pi_l
|
|||
|
||||
|
||||
|
||||
%\begin{frame}
|
||||
% \frametitle{The mathematical model}
|
||||
%
|
||||
% \begin{columns}[c]
|
||||
%\column{.5\textwidth} % Left column and width
|
||||
%\footnotesize
|
||||
%\begin{itemize}
|
||||
%\item<1-> $u_{inlet} = -U f(t) \hat{n}$, with $f(t)$ the weaveform.
|
||||
%\item<2-> Fractional step scheme.
|
||||
%\item<3-> Semi-implicit Windkessel model.
|
||||
%\item<4-> Stabilized $\mathbb{P}1/\mathbb{P}1$ finite elements.
|
||||
%\item<4-> Implemented in FEniCS.
|
||||
%\end{itemize}
|
||||
%
|
||||
%
|
||||
%\column{.54\textwidth} % Right column and width
|
||||
%\begin{figure}[!hbtp]
|
||||
% \begin{center}
|
||||
% \includegraphics[height=0.9\textwidth]{images/ref.png}
|
||||
% \caption{\footnotesize Reference solution at peak systole}
|
||||
% \end{center}
|
||||
% \end{figure}
|
||||
%\end{columns}
|
||||
%
|
||||
%\end{frame}
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{The inverse problem}
|
||||
\begin{itemize}
|
||||
\item<1-> Upon this solution $\Longrightarrow$ build a set of measurements
|
||||
\item<2-> Induce typical arifacts via a Magnetization vector: $M(\vec{x},t)= M_0(\vec{x}) exp(i\phi_0 + i \frac{\pi}{venc} u(\vec{x},t))$
|
||||
\item<2-> $M(\vec{x},t)= M_0(\vec{x}) exp(i\phi_0 + i \frac{\pi}{venc} u(\vec{x},t))$
|
||||
\item<3-> reconstructed velocity: $u \in \big ( -venc, + venc \big )$
|
||||
\item<4-> $VNR \sim 1/venc$
|
||||
\end{itemize}
|
||||
\onslide<3->
|
||||
\begin{columns}
|
||||
\column{.3\textwidth}
|
||||
\flushleft
|
||||
\begin{figure}
|
||||
\includegraphics[width=1.1\textwidth]{images/ref_int.png}
|
||||
\caption*{(a) Interpolated reference solution}
|
||||
\end{figure}
|
||||
\column{.67\textwidth}
|
||||
\centering
|
||||
\onslide<4-> \textbf{The measurements:}
|
||||
\onslide<5-> \textbf{The measurements:}
|
||||
\begin{itemize}
|
||||
\item<5-> Gaussian noise into the magnetization
|
||||
\item<6-> Different levels of aliasing varying the $venc$ parameter
|
||||
\item<7-> Only using the dominant component of the velocity: $u_z$
|
||||
\item<8-> Time interpolation $dt = 1 \ ms \Longrightarrow dt = 30 \ ms$
|
||||
\item<6-> Gaussian noise into the magnetization
|
||||
\item<7-> Spatial and temporal interpolation
|
||||
\item<8-> Only using the dominant component of the velocity: $u_z$
|
||||
\item<9-> Different levels of aliasing varying the $venc$ parameter
|
||||
\end{itemize}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{The inverse problem}
|
||||
\begin{itemize}
|
||||
\item Upon this solution $\Longrightarrow$ build a set of measurements
|
||||
\item $M(\vec{x},t)= M_0(\vec{x}) exp(i\phi_0 + i \frac{\pi}{venc} u(\vec{x},t))$
|
||||
\item reconstructed velocity: $u \in \big ( -venc, + venc \big )$
|
||||
\item $VNR \sim 1/venc$
|
||||
\end{itemize}
|
||||
\begin{figure}
|
||||
\includegraphics[width=0.7\textwidth]{images/supra_venc.png}
|
||||
\caption*{Aliased measurements with different $vencs = 120,70,30 \%$ of $u_{max}$}
|
||||
\hfill
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{The inverse problem}
|
||||
\begin{itemize}
|
||||
\item Upon this solution $\Longrightarrow$ build a set of measurements
|
||||
\item $M(\vec{x},t)= M_0(\vec{x}) exp(i\phi_0 + i \frac{\pi}{venc} u(\vec{x},t))$
|
||||
\item reconstructed velocity: $u \in \big ( -venc, + venc \big )$
|
||||
\item $VNR \sim 1/venc$
|
||||
\end{itemize}
|
||||
\begin{figure}
|
||||
\includegraphics[width=0.7\textwidth]{images/coartation.png}
|
||||
\caption*{ Aliased measurements with different $vencs = 120,70,30 \%$ of $u_{max}$}
|
||||
\hfill
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\section{The inverse problem}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{The inverse problem}
|
||||
\begin{itemize}
|
||||
\item Upon this solution $\Longrightarrow$ build a set of measurements
|
||||
\item Induce typical arifacts via a Magnetization vector: $M(\vec{x},t)= M_0(\vec{x}) exp(i\phi_0 + i \frac{\pi}{venc} u(\vec{x},t))$
|
||||
\end{itemize}
|
||||
\begin{columns}
|
||||
\column{.3\textwidth}
|
||||
\flushleft
|
||||
\begin{figure}
|
||||
\includegraphics[width=1.1\textwidth]{images/ref_int.png}
|
||||
\caption*{(a) Interpolated reference solution}
|
||||
\end{figure}
|
||||
\column{.67\textwidth}
|
||||
\flushleft
|
||||
\begin{figure}
|
||||
\includegraphics[width=1.1\textwidth]{images/supra_venc.png}
|
||||
\caption*{(b) Aliased measurements with different $vencs = 120,70,30 \%$ of $u_{max}$}
|
||||
\hfill
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{The inverse problem}
|
||||
\begin{itemize}
|
||||
\item Upon this solution $\Longrightarrow$ build a set of measurements
|
||||
\item Induce typical arifacts via a Magnetization vector: $M(\vec{x},t)= M_0(\vec{x}) exp(i\phi_0 + i \frac{\pi}{venc} u(\vec{x},t))$
|
||||
\end{itemize}
|
||||
\begin{columns}
|
||||
\column{.3\textwidth}
|
||||
\flushleft
|
||||
\begin{figure}
|
||||
\includegraphics[width=1.1\textwidth]{images/ref_int.png}
|
||||
\caption*{(a) Interpolated reference solution}
|
||||
\end{figure}
|
||||
\column{.67\textwidth}
|
||||
\flushleft
|
||||
\begin{figure}
|
||||
\includegraphics[width=1.1\textwidth]{images/coartation.png}
|
||||
\caption*{(b) Aliased measurements with different $vencs = 120,70,30 \%$ of $u_{max}$}
|
||||
\hfill
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
\begin{center}
|
||||
Parameter optimization
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{The Kalman Filter}
|
||||
\begin{itemize}
|
||||
\item<1-> We use a Reduced Order Unscendent Kalman Filter (ROUKF) to reconstruct the parameter vector $\theta$ solving the next optimization problem:
|
||||
\item<1-> We use a Reduced Order Unscendent Kalman Filter (ROUKF) to reconstruct the parameter vector $\theta$:
|
||||
|
||||
\onslide<2->
|
||||
\begin{equation*}
|
||||
|
@ -350,7 +372,7 @@ P_l = R_{p,l} \ Q_l + \pi_l
|
|||
\begin{equation}
|
||||
J(\theta) = \displaystyle \frac{1}{2} || \theta - \theta_0 ||^2_{P_0^{-1}} + \sum_{k=1}^N \frac{1}{2} || Z_k - \mathbb{H} X_k(\theta) ||^2_{W^{-1}}
|
||||
\end{equation}
|
||||
\onslide<3-> Where:
|
||||
\onslide<4-> Where:
|
||||
\begin{itemize}
|
||||
\item<4-> $Z$ the measurements and $X = (\vec{u} , \pi)$ the state variable
|
||||
\item<5-> $\mathbb{H}$ observation operator
|
||||
|
@ -372,32 +394,41 @@ The parameter vector:
|
|||
|
||||
\begin{itemize}
|
||||
\item<1-> Amplitude of the inlet velocity: $U$
|
||||
\item<2-> Since $R_p << R_d$, we only consider an optimization dependent on $\big ( R_{d,l}, C_l \big )$ for $l=1,...,n_l$
|
||||
\item<2-> Only the higher resistence: $R_d$
|
||||
\end{itemize}
|
||||
|
||||
\onslide<3-> $$\theta = (U,\vec{R_d},\vec{C})$$ \\ with $\vec{R_d} = R_{d,l}$, $\vec{C} = C_l$ for $l=1,..., \color{red} n_{l-1}$ \\[0.3cm]
|
||||
\onslide<4-> \color{red} Not all the resistences can be recovered at once $\Longrightarrow$ desc. aorta fixed.
|
||||
\onslide<4-> $$\theta = (U,\vec{R_d})$$ \\ with $\vec{R_d} = R_{d,l}$ for $l=1,..., \color{red} n_{l-1}$ \\[0.3cm]
|
||||
\onslide<5-> \color{red} Not all the resistences can be recovered at once $\Longrightarrow$ desc. aorta fixed.
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\section{Numerical Experiments}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Easy example}
|
||||
\frametitle{Numerical Experiments}
|
||||
\begin{center}
|
||||
Numerical Experiments
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Numerical Experiments}
|
||||
\footnotesize
|
||||
\begin{itemize}
|
||||
\item<1-> $\theta_{ref} = (U,\vec{R_d})$ , $U=75$, $\vec{R_d} = (7200,11520,11520)$
|
||||
\end{itemize}
|
||||
\onslide<1-> $\theta_{ref} = (U,\vec{R_d})$ , $U=75$, $\vec{R_d} = (7200,11520,11520)$
|
||||
\begin{columns}
|
||||
\footnotesize
|
||||
\column{.4\textwidth}
|
||||
\column{.45\textwidth}
|
||||
\begin{figure}
|
||||
\onslide<2-> \textbf{Test I:} $U_0 = 150$ $\vec{R_{d,0}}= (8760,8760,8760)$
|
||||
\onslide<3->
|
||||
\includegraphics[width=1.2\textwidth]{images/U_Pb.png}
|
||||
\onslide<2-> \textbf{Test I:} $U_0 = 150$ $\vec{R_{d,0}}= (17520,17520,17520)$
|
||||
\onslide<3-> \includegraphics[width=1.2\textwidth]{images/U_Pb.png}
|
||||
\includegraphics[width=1.2\textwidth]{images/Rd_Pb.png}
|
||||
\end{figure}
|
||||
\column{.4\textwidth}
|
||||
\column{.45\textwidth}
|
||||
\begin{figure}
|
||||
\onslide<2-> \textbf{Test II:} $U_0 = 40$ $\vec{R_{d,0}}= (4000,4000,4000)$
|
||||
\onslide<4->
|
||||
|
@ -415,32 +446,48 @@ The parameter vector:
|
|||
\begin{frame}
|
||||
\frametitle{Aliased data}
|
||||
\begin{center}
|
||||
What happend when $venc < u_{max}$ ?
|
||||
\onslide<1-> What happend when $venc < u_{max}$ ?
|
||||
\begin{figure}
|
||||
\onslide<2-> \includegraphics[width=0.45\textwidth]{images/v120.png}
|
||||
\caption{Measurement set with $venc = 120 \% u_{max}$}
|
||||
\end{figure}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Aliased data}
|
||||
\begin{center}
|
||||
What happend when $venc < u_{max}$ ?
|
||||
\begin{figure}
|
||||
\includegraphics[width=0.45\textwidth]{images/v70.png}
|
||||
\caption{Measurement set with $venc = 70 \% u_{max}$}
|
||||
\end{figure}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Easy example: with $venc = 70 \% u_{max}$}
|
||||
\footnotesize
|
||||
\begin{itemize}
|
||||
\item $\theta_{ref} = (U,\vec{R_d})$ , $U=75$, $\vec{R_d} = (7200,11520,11520)$
|
||||
\end{itemize}
|
||||
$\theta_{ref} = (U,\vec{R_d})$ , $U=75$, $\vec{R_d} = (7200,11520,11520)$
|
||||
\begin{columns}
|
||||
\footnotesize
|
||||
\column{.4\textwidth}
|
||||
\column{.45\textwidth}
|
||||
\begin{figure}
|
||||
\onslide<1-> \textbf{Test I:} $U_0 = 150$ $\vec{R_{d,0}}= (8760,8760,8760)$
|
||||
\onslide<1-> \textbf{Test I:} $U_0 = 150$ $\vec{R_{d,0}}= (17520,17520,17520)$
|
||||
\onslide<2->
|
||||
\includegraphics[width=1.2\textwidth]{images/U_Pb.png}
|
||||
\includegraphics[width=1.2\textwidth]{images/Rd_Pb.png}
|
||||
\includegraphics[width=1.2\textwidth]{images/U_Pb_V70.png}
|
||||
\includegraphics[width=1.2\textwidth]{images/Rd_Pb_V70.png}
|
||||
\end{figure}
|
||||
\column{.4\textwidth}
|
||||
\column{.45\textwidth}
|
||||
\begin{figure}
|
||||
\onslide<1-> \textbf{Test II:} $U_0 = 40$ $\vec{R_{d,0}}= (4000,4000,4000)$
|
||||
\onslide<2->
|
||||
\includegraphics[width=1.2\textwidth]{images/U_Pc.png}
|
||||
\includegraphics[width=1.2\textwidth]{images/Rd_Pc.png}
|
||||
\includegraphics[width=1.2\textwidth]{images/U_Pc_V70.png}
|
||||
\includegraphics[width=1.2\textwidth]{images/Rd_Pc_V70.png}
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
@ -465,30 +512,70 @@ J(\theta) = \displaystyle \frac{1}{2} || \theta - \theta_0 ||^2_{P_0^{-1}} + \
|
|||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\section{Numerical Experiments}
|
||||
\begin{frame}
|
||||
\frametitle{Easy example: with $venc = 70 \% u_{max}$}
|
||||
\footnotesize
|
||||
$\theta_{ref} = (U,\vec{R_d})$ , $U=75$, $\vec{R_d} = (7200,11520,11520)$
|
||||
\begin{columns}
|
||||
\footnotesize
|
||||
\column{.45\textwidth}
|
||||
\begin{figure}
|
||||
\onslide<1-> \textbf{Test I:} $U_0 = 150$ $\vec{R_{d,0}}= (17520,17520,17520)$
|
||||
\onslide<2->
|
||||
\includegraphics[width=1.2\textwidth]{images/HU_Pb_V70.png}
|
||||
\includegraphics[width=1.2\textwidth]{images/HRd_Pb_V70.png}
|
||||
\end{figure}
|
||||
\column{.45\textwidth}
|
||||
\begin{figure}
|
||||
\onslide<1-> \textbf{Test II:} $U_0 = 40$ $\vec{R_{d,0}}= (4000,4000,4000)$
|
||||
\onslide<3->
|
||||
\includegraphics[width=1.2\textwidth]{images/HU_Pc_V70.png}
|
||||
\includegraphics[width=1.2\textwidth]{images/HRd_Pc_V70.png}
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Numerical Experiments}
|
||||
\frametitle{Aliased data}
|
||||
\begin{center}
|
||||
Numerical Experiments
|
||||
Or even higher aliasing...
|
||||
\begin{figure}
|
||||
\includegraphics[width=0.45\textwidth]{images/v30.png}
|
||||
\caption{Measurement set with $venc = 30 \% u_{max}$}
|
||||
\end{figure}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Numerical Experiments}
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Easy example: with $venc = 30 \% u_{max}$}
|
||||
\footnotesize
|
||||
$\theta_{ref} = (U,\vec{R_d})$ , $U=75$, $\vec{R_d} = (7200,11520,11520)$
|
||||
\begin{columns}
|
||||
\footnotesize
|
||||
\column{.45\textwidth}
|
||||
\begin{figure}
|
||||
\onslide<1-> \textbf{Test I:} $U_0 = 150$ $\vec{R_{d,0}}= (17520,17520,17520)$
|
||||
\onslide<2->
|
||||
\includegraphics[width=1.2\textwidth]{images/HU_Pb_V30.png}
|
||||
\includegraphics[width=1.2\textwidth]{images/HRd_Pb_V30.png}
|
||||
\end{figure}
|
||||
\column{.45\textwidth}
|
||||
\begin{figure}
|
||||
\onslide<1-> \textbf{Test II:} $U_0 = 40$ $\vec{R_{d,0}}= (4000,4000,4000)$
|
||||
\onslide<3->
|
||||
\includegraphics[width=1.2\textwidth]{images/HU_Pc_V30.png}
|
||||
\includegraphics[width=1.2\textwidth]{images/HRd_Pc_V30.png}
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\section{Conclusions}
|
||||
|
||||
\begin{frame}
|
||||
|
@ -499,8 +586,32 @@ Conclusions
|
|||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Conclusions}
|
||||
\footnotesize
|
||||
\begin{itemize}
|
||||
\item<1-> 4D Flow measurements are promising for extracting data via inverse problems
|
||||
\item<2-> Noise and aliasing are the typical artifacts involved.
|
||||
\item<3-> Using a suitable Kalman filter, have shown to bypass aliasing defining the funcional in terms of the frequencies.
|
||||
\end{itemize}
|
||||
|
||||
\onslide<4-> Future Work
|
||||
|
||||
\begin{itemize}
|
||||
\item<5-> To include the capacitancies in the inverse problem (adding some pressure meas.)
|
||||
\item<6-> Real data!
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\begin{center}
|
||||
Thank you for your time!
|
||||
\end{center}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,6 @@
|
|||
\babel@toc {english}{}
|
||||
\beamer@sectionintoc {1}{4D flow MRI}{3}{0}{1}
|
||||
\beamer@sectionintoc {2}{The mathematical model}{6}{0}{2}
|
||||
\beamer@sectionintoc {3}{The inverse problem}{23}{0}{3}
|
||||
\beamer@sectionintoc {4}{Numerical Experiments}{37}{0}{4}
|
||||
\beamer@sectionintoc {5}{Conclusions}{56}{0}{5}
|