asd
This commit is contained in:
		
							
								
								
									
										205
									
								
								kalman/graphics/figureRd.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										205
									
								
								kalman/graphics/figureRd.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,205 @@
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
import numpy as np
 | 
			
		||||
from itertools import cycle
 | 
			
		||||
import argparse
 | 
			
		||||
import pickle
 | 
			
		||||
import yaml
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#import matplotlib.font_manager
 | 
			
		||||
from matplotlib import rc
 | 
			
		||||
rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
 | 
			
		||||
rc('text', usetex=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def is_ipython():
 | 
			
		||||
    ''' Check if script is run in IPython.
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        bool: True if IPython, else False '''
 | 
			
		||||
    try:
 | 
			
		||||
        get_ipython()
 | 
			
		||||
        ipy = True
 | 
			
		||||
    except NameError:
 | 
			
		||||
        ipy = False
 | 
			
		||||
 | 
			
		||||
    return ipy
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def load_data(file):
 | 
			
		||||
    ''' Load numpy data from file.
 | 
			
		||||
 | 
			
		||||
    Returns
 | 
			
		||||
        dict: data dictionary
 | 
			
		||||
    '''
 | 
			
		||||
    dat = np.load(file)
 | 
			
		||||
 | 
			
		||||
    return dat
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def plot_parameters(dat, input_file, deparameterize=False, ref=None):
 | 
			
		||||
    ''' Plot the parameters in separate subplots with uncertainties.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        dat (dict):  data dictionary
 | 
			
		||||
        deparameterize (bool):  flag indicating if parameters should be
 | 
			
		||||
          deparameterized via 2**theta
 | 
			
		||||
        ref:    reference value to be plotted with parameters
 | 
			
		||||
    '''
 | 
			
		||||
    if is_ipython():
 | 
			
		||||
        plt.ion()
 | 
			
		||||
 | 
			
		||||
    idx_a = input_file.find('/')
 | 
			
		||||
    idx_b = input_file[idx_a+1::].find('/')
 | 
			
		||||
    name_file = input_file[idx_a+1:idx_b+idx_a+1]
 | 
			
		||||
    inputfile_path = 'results/' + name_file + '/input.yaml'
 | 
			
		||||
 | 
			
		||||
    with open(inputfile_path) as file:
 | 
			
		||||
        inputfile = yaml.full_load(file)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
    true_values = {
 | 
			
		||||
            3: 4800,
 | 
			
		||||
            4: 7200,
 | 
			
		||||
            5: 11520,
 | 
			
		||||
            6: 11520,
 | 
			
		||||
            2: 75
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    dim = dat['theta'].shape[-1]
 | 
			
		||||
 | 
			
		||||
    current_val = []
 | 
			
		||||
    ids_type = []
 | 
			
		||||
    labels = []
 | 
			
		||||
    ids = []
 | 
			
		||||
 | 
			
		||||
    for bnd_c in inputfile['estimation']['boundary_conditions']:
 | 
			
		||||
        
 | 
			
		||||
        if 'windkessel' in bnd_c['type']:
 | 
			
		||||
            for bnd_set in inputfile['boundary_conditions']:
 | 
			
		||||
                if bnd_c['id'] == bnd_set['id']:
 | 
			
		||||
                    ids.append(bnd_c['id'])
 | 
			
		||||
                    ids_type.append('windkessel')
 | 
			
		||||
                    current_val.append(bnd_set['parameters']['R_d'])
 | 
			
		||||
                    labels.append('$R_' + str(bnd_c['id']-3))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        elif 'dirichlet' in bnd_c['type']:
 | 
			
		||||
            current_val.append(inputfile['boundary_conditions'][0]['parameters']['U'])
 | 
			
		||||
            ids.append(bnd_c['id'])
 | 
			
		||||
            ids_type.append('dirichlet')
 | 
			
		||||
            labels.append('$U')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    if 'windkessel' in ids_type:
 | 
			
		||||
        fig1, axes1 = plt.subplots(1,1,figsize=(12,7))
 | 
			
		||||
    if 'dirichlet' in ids_type: 
 | 
			
		||||
        fig3, axes3 = plt.subplots(1,1,figsize=(12,7))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    t = dat['times']
 | 
			
		||||
    theta = dat['theta']
 | 
			
		||||
    P = dat['P_theta']
 | 
			
		||||
 | 
			
		||||
    #col = cycle(['C0', 'C1', 'C2', 'C3','C4'])
 | 
			
		||||
    col = cycle(['orangered', 'dodgerblue', 'limegreen', 'C3','C4'])
 | 
			
		||||
    
 | 
			
		||||
    legends = cycle(labels)
 | 
			
		||||
 | 
			
		||||
    col_ = next(col)
 | 
			
		||||
    legends_=next(legends)
 | 
			
		||||
 | 
			
		||||
    if dim == 1:
 | 
			
		||||
        theta = theta.reshape((-1, 1))
 | 
			
		||||
        P = P.reshape((-1, 1, 1))
 | 
			
		||||
    
 | 
			
		||||
    idx = 0
 | 
			
		||||
 | 
			
		||||
    for i in range(len(ids)):
 | 
			
		||||
 | 
			
		||||
        cur_key = ids[i]
 | 
			
		||||
        rec_value = np.round(2**theta[-1, idx]*current_val[i],2)
 | 
			
		||||
        curve = 2**theta[:, idx]*current_val[i]
 | 
			
		||||
        std_down =  2**(-np.sqrt(P[:, idx, idx]))*curve
 | 
			
		||||
        std_up =  2**np.sqrt(P[:, idx, idx])*curve
 | 
			
		||||
        dash_curve = true_values[ids[i]]  + t*0
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        if ids_type[i] == 'dirichlet':
 | 
			
		||||
            axes3.plot(t, curve , '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key])  + '$', linewidth = 5)
 | 
			
		||||
            axes3.fill_between(t, std_down, std_up, alpha=0.3, color=col_)
 | 
			
		||||
            legends_=next(legends)
 | 
			
		||||
            axes3.plot(t, dash_curve , color=col_,ls='--' , linewidth = 3)
 | 
			
		||||
            axes3.set_ylabel(r'$U$',fontsize=36)
 | 
			
		||||
            axes3.legend(fontsize=36,loc='upper right')
 | 
			
		||||
            axes3.set_xlim([0,0.45])
 | 
			
		||||
            axes3.set_ylim([8,180])
 | 
			
		||||
            axes3.set_xlabel(r'$t  (s)$',fontsize=36)
 | 
			
		||||
            axes3.set_box_aspect(1/2)
 | 
			
		||||
            plt.xticks(fontsize=28)
 | 
			
		||||
            plt.yticks(fontsize=28)
 | 
			
		||||
            #plt.savefig('U_' + name_file + '.png')
 | 
			
		||||
            plt.close(fig3)
 | 
			
		||||
        else:
 | 
			
		||||
            axes1.plot(t, curve , '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key])  + '$', linewidth = 4)
 | 
			
		||||
            axes1.fill_between(t, std_down, std_up, alpha=0.3, color=col_)
 | 
			
		||||
            axes1.plot(t, dash_curve , color=col_,ls='--',linewidth = 3)
 | 
			
		||||
            legends_=next(legends)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        col_ = next(col)
 | 
			
		||||
        idx +=1
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    axes1.set_ylabel(r'$R_d$',fontsize=30)
 | 
			
		||||
    axes1.legend(fontsize=36,loc='upper right')
 | 
			
		||||
    axes1.set_xlim([0,0.51])
 | 
			
		||||
    axes1.set_ylim([-1000,65000])
 | 
			
		||||
    axes1.set_box_aspect(1/2)
 | 
			
		||||
    plt.xticks(fontsize=28)
 | 
			
		||||
    plt.yticks(fontsize=28)
 | 
			
		||||
    axes1.set_xlabel(r'$t  (s)$',fontsize=36)
 | 
			
		||||
 | 
			
		||||
    path_paper = '/home/yeye/A_aliasing_kalman/latex/0_preprint/Figures/'
 | 
			
		||||
    path_paper = '/home/yeye/Desktop/'
 | 
			
		||||
    #fig1.savefig('Rd_'+ name_file +'.png')
 | 
			
		||||
    fig1.savefig(path_paper + 'Rd_'+ name_file +'.png')
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_parser():
 | 
			
		||||
    parser = argparse.ArgumentParser(
 | 
			
		||||
        description='''
 | 
			
		||||
Plot the time evolution of the ROUKF estimated parameters.
 | 
			
		||||
 | 
			
		||||
To execute in IPython::
 | 
			
		||||
 | 
			
		||||
    %run plot_roukf_parameters.py [-d] [-r N [N \
 | 
			
		||||
...]] file
 | 
			
		||||
''',
 | 
			
		||||
        formatter_class=argparse.RawDescriptionHelpFormatter)
 | 
			
		||||
    parser.add_argument('file', type=str, help='path to ROUKF stats file')
 | 
			
		||||
    parser.add_argument('-d', '--deparameterize', action='store_true',
 | 
			
		||||
                        help='deparameterize the parameters by 2**theta')
 | 
			
		||||
    parser.add_argument('-r', '--ref', metavar='N', nargs='+', default=None,
 | 
			
		||||
                        type=float, help='Reference values for parameters')
 | 
			
		||||
 | 
			
		||||
    return parser
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    args = get_parser().parse_args()
 | 
			
		||||
 | 
			
		||||
    dat = load_data(args.file)
 | 
			
		||||
    
 | 
			
		||||
    plot_parameters(dat, args.file,deparameterize=args.deparameterize, ref=args.ref)
 | 
			
		||||
							
								
								
									
										153
									
								
								kalman/graphics/figureU.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										153
									
								
								kalman/graphics/figureU.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,153 @@
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
import numpy as np
 | 
			
		||||
from itertools import cycle
 | 
			
		||||
import argparse
 | 
			
		||||
import pickle
 | 
			
		||||
import yaml
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#import matplotlib.font_manager
 | 
			
		||||
from matplotlib import rc
 | 
			
		||||
rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
 | 
			
		||||
rc('text', usetex=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def plot_parameters():
 | 
			
		||||
    ''' Plot the parameters in separate subplots with uncertainties.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        dat (dict):  data dictionary
 | 
			
		||||
        deparameterize (bool):  flag indicating if parameters should be
 | 
			
		||||
          deparameterized via 2**theta
 | 
			
		||||
        ref:    reference value to be plotted with parameters
 | 
			
		||||
    '''
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    name_file = ['SNR12V120_Pf','SNR12V70_Pf','SNR12V30_Pf']
 | 
			
		||||
    #name_file = ['SNR12V120_Pf_MAG','SNR12V70_Pf_MAG','SNR12V30_Pf_MAG']
 | 
			
		||||
    #name_file = ['SNR12V120_Pb_MAG','SNR12V70_Pb_MAG','SNR12V30_Pb_MAG']
 | 
			
		||||
 | 
			
		||||
    name_file = ['slice2.3_Pa']
 | 
			
		||||
    vencs = ['180','105','45']
 | 
			
		||||
    path0 = '/home/yeye/Desktop/kalman/results/'
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    fig, axes = plt.subplots(1,1,figsize=(12,7))
 | 
			
		||||
    col = cycle(['orangered', 'dodgerblue', 'limegreen', 'C3','C4'])
 | 
			
		||||
 | 
			
		||||
    true_values = {
 | 
			
		||||
            3: 4800,
 | 
			
		||||
            4: 7200,
 | 
			
		||||
            5: 11520,
 | 
			
		||||
            6: 11520,
 | 
			
		||||
            2: 75
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    for nn,name in enumerate(name_file):
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        path1 = path0 + name + '/'
 | 
			
		||||
        inputfile_path = path1 + 'input.yaml'
 | 
			
		||||
        dat = np.load(path1 + 'theta_stats.npz')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        with open(inputfile_path) as file:
 | 
			
		||||
            inputfile = yaml.full_load(file)
 | 
			
		||||
 | 
			
		||||
        col_ = next(col)
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
        dim = dat['theta'].shape[-1]
 | 
			
		||||
 | 
			
		||||
        current_val = []
 | 
			
		||||
        ids_type = []
 | 
			
		||||
        labels = []
 | 
			
		||||
        ids = []
 | 
			
		||||
 | 
			
		||||
        for bnd_c in inputfile['estimation']['boundary_conditions']:
 | 
			
		||||
            
 | 
			
		||||
            if 'windkessel' in bnd_c['type']:
 | 
			
		||||
                for bnd_set in inputfile['boundary_conditions']:
 | 
			
		||||
                    if bnd_c['id'] == bnd_set['id']:
 | 
			
		||||
                        ids.append(bnd_c['id'])
 | 
			
		||||
                        ids_type.append('windkessel')
 | 
			
		||||
                        current_val.append(bnd_set['parameters']['R_d'])
 | 
			
		||||
                        
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
            elif 'dirichlet' in bnd_c['type']:
 | 
			
		||||
                current_val.append(inputfile['boundary_conditions'][0]['parameters']['U'])
 | 
			
		||||
                ids.append(bnd_c['id'])
 | 
			
		||||
                ids_type.append('dirichlet')
 | 
			
		||||
                labels.append('$U')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        t = dat['times']
 | 
			
		||||
        theta = dat['theta']
 | 
			
		||||
        P = dat['P_theta']
 | 
			
		||||
 | 
			
		||||
        legends = cycle(labels)
 | 
			
		||||
 | 
			
		||||
        legends_=next(legends)
 | 
			
		||||
 | 
			
		||||
        if dim == 1:
 | 
			
		||||
            theta = theta.reshape((-1, 1))
 | 
			
		||||
            P = P.reshape((-1, 1, 1))
 | 
			
		||||
        
 | 
			
		||||
        idx = 0
 | 
			
		||||
 | 
			
		||||
        for i in range(len(ids)):
 | 
			
		||||
 | 
			
		||||
            cur_key = ids[i]
 | 
			
		||||
            rec_value = np.round(2**theta[-1, idx]*current_val[i],2)
 | 
			
		||||
            curve = 2**theta[:, idx]*current_val[i]
 | 
			
		||||
            std_down =  2**(-np.sqrt(P[:, idx, idx]))*curve
 | 
			
		||||
            std_up =  2**np.sqrt(P[:, idx, idx])*curve
 | 
			
		||||
            dash_curve = true_values[ids[i]]  + t*0
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
            if ids_type[i] == 'dirichlet':
 | 
			
		||||
                axes.plot(t, curve , '-', color=col_,label= '$(venc \ '+ vencs[nn] + ' \ cm/s) \ U = ' + str(rec_value) + '/' + str(true_values[cur_key])  + '$', linewidth = 5)
 | 
			
		||||
                #axes.plot(t, curve , '-', color=col_,label= legends_ + vencs[nn] + ' \ cm/s$', linewidth = 5)
 | 
			
		||||
                axes.fill_between(t, std_down, std_up, alpha=0.3, color=col_)
 | 
			
		||||
                legends_=next(legends)
 | 
			
		||||
                axes.plot(t, dash_curve , color='black',ls='--' , linewidth = 3)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
            idx +=1
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    axes.set_ylabel(r'$U$',fontsize=36)
 | 
			
		||||
    axes.legend(fontsize=30,loc='upper right')
 | 
			
		||||
    axes.set_xlim([0,0.35])
 | 
			
		||||
    axes.set_ylim([10,160])
 | 
			
		||||
    axes.set_xlabel(r'$t  (s)$',fontsize=36)
 | 
			
		||||
    axes.set_box_aspect(1/2)
 | 
			
		||||
    plt.xticks(fontsize=28)
 | 
			
		||||
    plt.yticks(fontsize=28)
 | 
			
		||||
    plt.savefig('U.png')   
 | 
			
		||||
    plt.show()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    #path_paper = '/home/yeye/A_aliasing_kalman/latex/0_preprint/Figures/'
 | 
			
		||||
    #fig1.savefig('Rd_'+ name_file +'.png')
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
 | 
			
		||||
    plot_parameters()
 | 
			
		||||
@@ -8,7 +8,7 @@ fluid:
 | 
			
		||||
    state_velocity: 'update'
 | 
			
		||||
 | 
			
		||||
io:
 | 
			
		||||
    write_path: 'results/Pb_Hz2.3_Hz5.7'
 | 
			
		||||
    write_path: 'results/Pb_Hz2.3_SNR12V30'
 | 
			
		||||
    restart:
 | 
			
		||||
        path: ''  # './projects/nse_coa3d/results/test_restart2/' 
 | 
			
		||||
        time: 0
 | 
			
		||||
@@ -146,7 +146,7 @@ fem:
 | 
			
		||||
        streamline_diffusion:
 | 
			
		||||
            enabled: False
 | 
			
		||||
            parameter: 'standard'   # standard, shakib, codina, klr
 | 
			
		||||
            length_scale: 'metric' # average, max, metric
 | 
			
		||||
            length_scale: 'average' # average, max, metric
 | 
			
		||||
            parameter_element_constant: True
 | 
			
		||||
            Cinv: ~
 | 
			
		||||
        monolithic:
 | 
			
		||||
@@ -192,36 +192,39 @@ estimation:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    measurements:
 | 
			
		||||
        #-
 | 
			
		||||
        #    #mesh: '/home/yeye/NuMRI/kalman/meshes/coaortaH3_leo2.0.h5'
 | 
			
		||||
        #    mesh: '/home/yeye/Desktop/slices/slice_Hz5.7.h5'
 | 
			
		||||
        #    fe_degree: 0
 | 
			
		||||
        #    xdmf_file: 'measurements/slice_Hz5.7/Perturbation/Mg12V30/u_all.xdmf'
 | 
			
		||||
        #    file_root: 'measurements/slice_Hz5.7/Perturbation/Mg12V30/u{i}.h5'
 | 
			
		||||
        #    #xdmf_file: 'measurements/slice_Hz5.7/u_all.xdmf'
 | 
			
		||||
        #    #file_root: 'measurements/slice_Hz5.7/u{i}.h5'
 | 
			
		||||
        #    indices: 0 # indices of checkpoints to be processed. 0 == all
 | 
			
		||||
        #    velocity_direction: [0,0,1]
 | 
			
		||||
        #    #noise_stddev: 0     # standard deviation of Gaussian noise
 | 
			
		||||
        #    #noise_stddev: 22.39     # SNR 12 slice 5.7
 | 
			
		||||
        #    #noise_stddev: 15.76     # SNR 15 slice 5.7
 | 
			
		||||
        #    #noise_stddev: 8.75     # SNR 15 slice 2.3
 | 
			
		||||
        #    #noise_stddev: 12.15     # SNR 12 slice 2.3
 | 
			
		||||
        #    noise_stddev: 0.269
 | 
			
		||||
        #    VENC: 47
 | 
			
		||||
        #    module_meas_file_root: 'measurements/slice_Hz5.7/Perturbation/Mg12V30/module/M{i}.h5'
 | 
			
		||||
        -
 | 
			
		||||
            #mesh: '/home/yeye/NuMRI/kalman/meshes/coaortaH3_leo2.0.h5'
 | 
			
		||||
            mesh: '/home/yeye/Desktop/slices/slice_Hz2.3.h5'
 | 
			
		||||
            fe_degree: 0
 | 
			
		||||
            xdmf_file: 'measurements/slice_Hz2.3/Perturbation/Mg12V120/u_all.xdmf'
 | 
			
		||||
            file_root: 'measurements/slice_Hz2.3/Perturbation/Mg12V120/u{i}.h5'
 | 
			
		||||
            #xdmf_file: 'measurements/slice_Hz5.7/u_all.xdmf'
 | 
			
		||||
            #file_root: 'measurements/slice_Hz5.7/u{i}.h5'
 | 
			
		||||
            xdmf_file: 'measurements/slice_Hz2.3/Perturbation/Mg12V30/u_all.xdmf'
 | 
			
		||||
            file_root: 'measurements/slice_Hz2.3/Perturbation/Mg12V30/u{i}.h5'
 | 
			
		||||
            indices: 0 # indices of checkpoints to be processed. 0 == all
 | 
			
		||||
            velocity_direction: [0,0,1]
 | 
			
		||||
            #noise_stddev: 0     # standard deviation of Gaussian noise
 | 
			
		||||
            #noise_stddev: 22.39     # SNR 12 slice 5.7
 | 
			
		||||
            #noise_stddev: 15.76     # SNR 15 slice 5.7
 | 
			
		||||
            #noise_stddev: 8.75     # SNR 15 slice 2.3
 | 
			
		||||
            noise_stddev: 12.15     # SNR 12 slice 2.3
 | 
			
		||||
        -
 | 
			
		||||
            mesh: '/home/yeye/Desktop/slices/slice_Hz5.7.h5'
 | 
			
		||||
            fe_degree: 0
 | 
			
		||||
            xdmf_file: 'measurements/slice_Hz5.7/Perturbation/Mg12V120/u_all.xdmf'
 | 
			
		||||
            file_root: 'measurements/slice_Hz5.7/Perturbation/Mg12V120/u{i}.h5'
 | 
			
		||||
            indices: 0 # indices of checkpoints to be processed. 0 == all
 | 
			
		||||
            velocity_direction: [0,0,1]
 | 
			
		||||
            noise_stddev: 22.39     # SNR 12 slice 5.7
 | 
			
		||||
            noise_stddev: 0.25
 | 
			
		||||
            VENC: 26
 | 
			
		||||
            module_meas_file_root: 'measurements/slice_Hz2.3/Perturbation/Mg12V30/module/M{i}.h5'
 | 
			
		||||
 | 
			
		||||
            
 | 
			
		||||
    
 | 
			
		||||
    roukf:
 | 
			
		||||
        particles: 'simplex' # unique or simplex
 | 
			
		||||
        observation_operator: 'postprocessing'         #state or postprocessing
 | 
			
		||||
        reparameterize: True
 | 
			
		||||
        MAG_functional:
 | 
			
		||||
            enable: False
 | 
			
		||||
            VENC: 61
 | 
			
		||||
            module_meas_file_root: 'measurements/aorta_zdir/Perturbation/Mg15V30/module/M{i}.h5'
 | 
			
		||||
        MAG_functional: True
 | 
			
		||||
		Reference in New Issue
	
	Block a user