asd
This commit is contained in:
parent
639d1cdd74
commit
4fae3807fd
205
kalman/graphics/figureRd.py
Normal file
205
kalman/graphics/figureRd.py
Normal file
@ -0,0 +1,205 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from itertools import cycle
|
||||
import argparse
|
||||
import pickle
|
||||
import yaml
|
||||
|
||||
|
||||
#import matplotlib.font_manager
|
||||
from matplotlib import rc
|
||||
rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
|
||||
rc('text', usetex=True)
|
||||
|
||||
|
||||
|
||||
def is_ipython():
|
||||
''' Check if script is run in IPython.
|
||||
|
||||
Returns:
|
||||
bool: True if IPython, else False '''
|
||||
try:
|
||||
get_ipython()
|
||||
ipy = True
|
||||
except NameError:
|
||||
ipy = False
|
||||
|
||||
return ipy
|
||||
|
||||
|
||||
def load_data(file):
|
||||
''' Load numpy data from file.
|
||||
|
||||
Returns
|
||||
dict: data dictionary
|
||||
'''
|
||||
dat = np.load(file)
|
||||
|
||||
return dat
|
||||
|
||||
|
||||
def plot_parameters(dat, input_file, deparameterize=False, ref=None):
|
||||
''' Plot the parameters in separate subplots with uncertainties.
|
||||
|
||||
Args:
|
||||
dat (dict): data dictionary
|
||||
deparameterize (bool): flag indicating if parameters should be
|
||||
deparameterized via 2**theta
|
||||
ref: reference value to be plotted with parameters
|
||||
'''
|
||||
if is_ipython():
|
||||
plt.ion()
|
||||
|
||||
idx_a = input_file.find('/')
|
||||
idx_b = input_file[idx_a+1::].find('/')
|
||||
name_file = input_file[idx_a+1:idx_b+idx_a+1]
|
||||
inputfile_path = 'results/' + name_file + '/input.yaml'
|
||||
|
||||
with open(inputfile_path) as file:
|
||||
inputfile = yaml.full_load(file)
|
||||
|
||||
|
||||
|
||||
true_values = {
|
||||
3: 4800,
|
||||
4: 7200,
|
||||
5: 11520,
|
||||
6: 11520,
|
||||
2: 75
|
||||
}
|
||||
|
||||
|
||||
dim = dat['theta'].shape[-1]
|
||||
|
||||
current_val = []
|
||||
ids_type = []
|
||||
labels = []
|
||||
ids = []
|
||||
|
||||
for bnd_c in inputfile['estimation']['boundary_conditions']:
|
||||
|
||||
if 'windkessel' in bnd_c['type']:
|
||||
for bnd_set in inputfile['boundary_conditions']:
|
||||
if bnd_c['id'] == bnd_set['id']:
|
||||
ids.append(bnd_c['id'])
|
||||
ids_type.append('windkessel')
|
||||
current_val.append(bnd_set['parameters']['R_d'])
|
||||
labels.append('$R_' + str(bnd_c['id']-3))
|
||||
|
||||
|
||||
elif 'dirichlet' in bnd_c['type']:
|
||||
current_val.append(inputfile['boundary_conditions'][0]['parameters']['U'])
|
||||
ids.append(bnd_c['id'])
|
||||
ids_type.append('dirichlet')
|
||||
labels.append('$U')
|
||||
|
||||
|
||||
if 'windkessel' in ids_type:
|
||||
fig1, axes1 = plt.subplots(1,1,figsize=(12,7))
|
||||
if 'dirichlet' in ids_type:
|
||||
fig3, axes3 = plt.subplots(1,1,figsize=(12,7))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
t = dat['times']
|
||||
theta = dat['theta']
|
||||
P = dat['P_theta']
|
||||
|
||||
#col = cycle(['C0', 'C1', 'C2', 'C3','C4'])
|
||||
col = cycle(['orangered', 'dodgerblue', 'limegreen', 'C3','C4'])
|
||||
|
||||
legends = cycle(labels)
|
||||
|
||||
col_ = next(col)
|
||||
legends_=next(legends)
|
||||
|
||||
if dim == 1:
|
||||
theta = theta.reshape((-1, 1))
|
||||
P = P.reshape((-1, 1, 1))
|
||||
|
||||
idx = 0
|
||||
|
||||
for i in range(len(ids)):
|
||||
|
||||
cur_key = ids[i]
|
||||
rec_value = np.round(2**theta[-1, idx]*current_val[i],2)
|
||||
curve = 2**theta[:, idx]*current_val[i]
|
||||
std_down = 2**(-np.sqrt(P[:, idx, idx]))*curve
|
||||
std_up = 2**np.sqrt(P[:, idx, idx])*curve
|
||||
dash_curve = true_values[ids[i]] + t*0
|
||||
|
||||
|
||||
if ids_type[i] == 'dirichlet':
|
||||
axes3.plot(t, curve , '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key]) + '$', linewidth = 5)
|
||||
axes3.fill_between(t, std_down, std_up, alpha=0.3, color=col_)
|
||||
legends_=next(legends)
|
||||
axes3.plot(t, dash_curve , color=col_,ls='--' , linewidth = 3)
|
||||
axes3.set_ylabel(r'$U$',fontsize=36)
|
||||
axes3.legend(fontsize=36,loc='upper right')
|
||||
axes3.set_xlim([0,0.45])
|
||||
axes3.set_ylim([8,180])
|
||||
axes3.set_xlabel(r'$t (s)$',fontsize=36)
|
||||
axes3.set_box_aspect(1/2)
|
||||
plt.xticks(fontsize=28)
|
||||
plt.yticks(fontsize=28)
|
||||
#plt.savefig('U_' + name_file + '.png')
|
||||
plt.close(fig3)
|
||||
else:
|
||||
axes1.plot(t, curve , '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key]) + '$', linewidth = 4)
|
||||
axes1.fill_between(t, std_down, std_up, alpha=0.3, color=col_)
|
||||
axes1.plot(t, dash_curve , color=col_,ls='--',linewidth = 3)
|
||||
legends_=next(legends)
|
||||
|
||||
|
||||
col_ = next(col)
|
||||
idx +=1
|
||||
|
||||
|
||||
|
||||
|
||||
axes1.set_ylabel(r'$R_d$',fontsize=30)
|
||||
axes1.legend(fontsize=36,loc='upper right')
|
||||
axes1.set_xlim([0,0.51])
|
||||
axes1.set_ylim([-1000,65000])
|
||||
axes1.set_box_aspect(1/2)
|
||||
plt.xticks(fontsize=28)
|
||||
plt.yticks(fontsize=28)
|
||||
axes1.set_xlabel(r'$t (s)$',fontsize=36)
|
||||
|
||||
path_paper = '/home/yeye/A_aliasing_kalman/latex/0_preprint/Figures/'
|
||||
path_paper = '/home/yeye/Desktop/'
|
||||
#fig1.savefig('Rd_'+ name_file +'.png')
|
||||
fig1.savefig(path_paper + 'Rd_'+ name_file +'.png')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='''
|
||||
Plot the time evolution of the ROUKF estimated parameters.
|
||||
|
||||
To execute in IPython::
|
||||
|
||||
%run plot_roukf_parameters.py [-d] [-r N [N \
|
||||
...]] file
|
||||
''',
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter)
|
||||
parser.add_argument('file', type=str, help='path to ROUKF stats file')
|
||||
parser.add_argument('-d', '--deparameterize', action='store_true',
|
||||
help='deparameterize the parameters by 2**theta')
|
||||
parser.add_argument('-r', '--ref', metavar='N', nargs='+', default=None,
|
||||
type=float, help='Reference values for parameters')
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = get_parser().parse_args()
|
||||
|
||||
dat = load_data(args.file)
|
||||
|
||||
plot_parameters(dat, args.file,deparameterize=args.deparameterize, ref=args.ref)
|
153
kalman/graphics/figureU.py
Normal file
153
kalman/graphics/figureU.py
Normal file
@ -0,0 +1,153 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from itertools import cycle
|
||||
import argparse
|
||||
import pickle
|
||||
import yaml
|
||||
|
||||
|
||||
#import matplotlib.font_manager
|
||||
from matplotlib import rc
|
||||
rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
|
||||
rc('text', usetex=True)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def plot_parameters():
|
||||
''' Plot the parameters in separate subplots with uncertainties.
|
||||
|
||||
Args:
|
||||
dat (dict): data dictionary
|
||||
deparameterize (bool): flag indicating if parameters should be
|
||||
deparameterized via 2**theta
|
||||
ref: reference value to be plotted with parameters
|
||||
'''
|
||||
|
||||
|
||||
|
||||
name_file = ['SNR12V120_Pf','SNR12V70_Pf','SNR12V30_Pf']
|
||||
#name_file = ['SNR12V120_Pf_MAG','SNR12V70_Pf_MAG','SNR12V30_Pf_MAG']
|
||||
#name_file = ['SNR12V120_Pb_MAG','SNR12V70_Pb_MAG','SNR12V30_Pb_MAG']
|
||||
|
||||
name_file = ['slice2.3_Pa']
|
||||
vencs = ['180','105','45']
|
||||
path0 = '/home/yeye/Desktop/kalman/results/'
|
||||
|
||||
|
||||
fig, axes = plt.subplots(1,1,figsize=(12,7))
|
||||
col = cycle(['orangered', 'dodgerblue', 'limegreen', 'C3','C4'])
|
||||
|
||||
true_values = {
|
||||
3: 4800,
|
||||
4: 7200,
|
||||
5: 11520,
|
||||
6: 11520,
|
||||
2: 75
|
||||
}
|
||||
|
||||
|
||||
|
||||
for nn,name in enumerate(name_file):
|
||||
|
||||
|
||||
|
||||
path1 = path0 + name + '/'
|
||||
inputfile_path = path1 + 'input.yaml'
|
||||
dat = np.load(path1 + 'theta_stats.npz')
|
||||
|
||||
|
||||
with open(inputfile_path) as file:
|
||||
inputfile = yaml.full_load(file)
|
||||
|
||||
col_ = next(col)
|
||||
|
||||
|
||||
dim = dat['theta'].shape[-1]
|
||||
|
||||
current_val = []
|
||||
ids_type = []
|
||||
labels = []
|
||||
ids = []
|
||||
|
||||
for bnd_c in inputfile['estimation']['boundary_conditions']:
|
||||
|
||||
if 'windkessel' in bnd_c['type']:
|
||||
for bnd_set in inputfile['boundary_conditions']:
|
||||
if bnd_c['id'] == bnd_set['id']:
|
||||
ids.append(bnd_c['id'])
|
||||
ids_type.append('windkessel')
|
||||
current_val.append(bnd_set['parameters']['R_d'])
|
||||
|
||||
|
||||
|
||||
elif 'dirichlet' in bnd_c['type']:
|
||||
current_val.append(inputfile['boundary_conditions'][0]['parameters']['U'])
|
||||
ids.append(bnd_c['id'])
|
||||
ids_type.append('dirichlet')
|
||||
labels.append('$U')
|
||||
|
||||
|
||||
|
||||
|
||||
t = dat['times']
|
||||
theta = dat['theta']
|
||||
P = dat['P_theta']
|
||||
|
||||
legends = cycle(labels)
|
||||
|
||||
legends_=next(legends)
|
||||
|
||||
if dim == 1:
|
||||
theta = theta.reshape((-1, 1))
|
||||
P = P.reshape((-1, 1, 1))
|
||||
|
||||
idx = 0
|
||||
|
||||
for i in range(len(ids)):
|
||||
|
||||
cur_key = ids[i]
|
||||
rec_value = np.round(2**theta[-1, idx]*current_val[i],2)
|
||||
curve = 2**theta[:, idx]*current_val[i]
|
||||
std_down = 2**(-np.sqrt(P[:, idx, idx]))*curve
|
||||
std_up = 2**np.sqrt(P[:, idx, idx])*curve
|
||||
dash_curve = true_values[ids[i]] + t*0
|
||||
|
||||
|
||||
if ids_type[i] == 'dirichlet':
|
||||
axes.plot(t, curve , '-', color=col_,label= '$(venc \ '+ vencs[nn] + ' \ cm/s) \ U = ' + str(rec_value) + '/' + str(true_values[cur_key]) + '$', linewidth = 5)
|
||||
#axes.plot(t, curve , '-', color=col_,label= legends_ + vencs[nn] + ' \ cm/s$', linewidth = 5)
|
||||
axes.fill_between(t, std_down, std_up, alpha=0.3, color=col_)
|
||||
legends_=next(legends)
|
||||
axes.plot(t, dash_curve , color='black',ls='--' , linewidth = 3)
|
||||
|
||||
|
||||
idx +=1
|
||||
|
||||
|
||||
|
||||
axes.set_ylabel(r'$U$',fontsize=36)
|
||||
axes.legend(fontsize=30,loc='upper right')
|
||||
axes.set_xlim([0,0.35])
|
||||
axes.set_ylim([10,160])
|
||||
axes.set_xlabel(r'$t (s)$',fontsize=36)
|
||||
axes.set_box_aspect(1/2)
|
||||
plt.xticks(fontsize=28)
|
||||
plt.yticks(fontsize=28)
|
||||
plt.savefig('U.png')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
#path_paper = '/home/yeye/A_aliasing_kalman/latex/0_preprint/Figures/'
|
||||
#fig1.savefig('Rd_'+ name_file +'.png')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
plot_parameters()
|
@ -8,7 +8,7 @@ fluid:
|
||||
state_velocity: 'update'
|
||||
|
||||
io:
|
||||
write_path: 'results/Pb_Hz2.3_Hz5.7'
|
||||
write_path: 'results/Pb_Hz2.3_SNR12V30'
|
||||
restart:
|
||||
path: '' # './projects/nse_coa3d/results/test_restart2/'
|
||||
time: 0
|
||||
@ -146,7 +146,7 @@ fem:
|
||||
streamline_diffusion:
|
||||
enabled: False
|
||||
parameter: 'standard' # standard, shakib, codina, klr
|
||||
length_scale: 'metric' # average, max, metric
|
||||
length_scale: 'average' # average, max, metric
|
||||
parameter_element_constant: True
|
||||
Cinv: ~
|
||||
monolithic:
|
||||
@ -192,36 +192,39 @@ estimation:
|
||||
|
||||
|
||||
measurements:
|
||||
#-
|
||||
# #mesh: '/home/yeye/NuMRI/kalman/meshes/coaortaH3_leo2.0.h5'
|
||||
# mesh: '/home/yeye/Desktop/slices/slice_Hz5.7.h5'
|
||||
# fe_degree: 0
|
||||
# xdmf_file: 'measurements/slice_Hz5.7/Perturbation/Mg12V30/u_all.xdmf'
|
||||
# file_root: 'measurements/slice_Hz5.7/Perturbation/Mg12V30/u{i}.h5'
|
||||
# #xdmf_file: 'measurements/slice_Hz5.7/u_all.xdmf'
|
||||
# #file_root: 'measurements/slice_Hz5.7/u{i}.h5'
|
||||
# indices: 0 # indices of checkpoints to be processed. 0 == all
|
||||
# velocity_direction: [0,0,1]
|
||||
# #noise_stddev: 0 # standard deviation of Gaussian noise
|
||||
# #noise_stddev: 22.39 # SNR 12 slice 5.7
|
||||
# #noise_stddev: 15.76 # SNR 15 slice 5.7
|
||||
# #noise_stddev: 8.75 # SNR 15 slice 2.3
|
||||
# #noise_stddev: 12.15 # SNR 12 slice 2.3
|
||||
# noise_stddev: 0.269
|
||||
# VENC: 47
|
||||
# module_meas_file_root: 'measurements/slice_Hz5.7/Perturbation/Mg12V30/module/M{i}.h5'
|
||||
-
|
||||
#mesh: '/home/yeye/NuMRI/kalman/meshes/coaortaH3_leo2.0.h5'
|
||||
mesh: '/home/yeye/Desktop/slices/slice_Hz2.3.h5'
|
||||
fe_degree: 0
|
||||
xdmf_file: 'measurements/slice_Hz2.3/Perturbation/Mg12V120/u_all.xdmf'
|
||||
file_root: 'measurements/slice_Hz2.3/Perturbation/Mg12V120/u{i}.h5'
|
||||
#xdmf_file: 'measurements/slice_Hz5.7/u_all.xdmf'
|
||||
#file_root: 'measurements/slice_Hz5.7/u{i}.h5'
|
||||
xdmf_file: 'measurements/slice_Hz2.3/Perturbation/Mg12V30/u_all.xdmf'
|
||||
file_root: 'measurements/slice_Hz2.3/Perturbation/Mg12V30/u{i}.h5'
|
||||
indices: 0 # indices of checkpoints to be processed. 0 == all
|
||||
velocity_direction: [0,0,1]
|
||||
#noise_stddev: 0 # standard deviation of Gaussian noise
|
||||
#noise_stddev: 22.39 # SNR 12 slice 5.7
|
||||
#noise_stddev: 15.76 # SNR 15 slice 5.7
|
||||
#noise_stddev: 8.75 # SNR 15 slice 2.3
|
||||
noise_stddev: 12.15 # SNR 12 slice 2.3
|
||||
-
|
||||
mesh: '/home/yeye/Desktop/slices/slice_Hz5.7.h5'
|
||||
fe_degree: 0
|
||||
xdmf_file: 'measurements/slice_Hz5.7/Perturbation/Mg12V120/u_all.xdmf'
|
||||
file_root: 'measurements/slice_Hz5.7/Perturbation/Mg12V120/u{i}.h5'
|
||||
indices: 0 # indices of checkpoints to be processed. 0 == all
|
||||
velocity_direction: [0,0,1]
|
||||
noise_stddev: 22.39 # SNR 12 slice 5.7
|
||||
noise_stddev: 0.25
|
||||
VENC: 26
|
||||
module_meas_file_root: 'measurements/slice_Hz2.3/Perturbation/Mg12V30/module/M{i}.h5'
|
||||
|
||||
|
||||
|
||||
roukf:
|
||||
particles: 'simplex' # unique or simplex
|
||||
observation_operator: 'postprocessing' #state or postprocessing
|
||||
reparameterize: True
|
||||
MAG_functional:
|
||||
enable: False
|
||||
VENC: 61
|
||||
module_meas_file_root: 'measurements/aorta_zdir/Perturbation/Mg15V30/module/M{i}.h5'
|
||||
MAG_functional: True
|
Loading…
Reference in New Issue
Block a user