adding kalman

This commit is contained in:
J.E. Garay Labra 2020-11-23 13:41:11 +01:00
parent 8196e39547
commit ccf35cea16
19 changed files with 2177 additions and 6 deletions

133
kalman/aorta.yaml Executable file
View File

@ -0,0 +1,133 @@
mesh: '/home/yeye/Desktop/kalman/meshes/coaortaH1.h5'
# Physical parameters of the fluid
fluid:
density: 1.2
dynamic_viscosity: 0.035
io:
write_path: 'results/aorta/'
restart:
path: '' # './projects/nse_coa3d/results/test_restart2/'
time: 0
write_xdmf: True
write_checkpoints: True
write_hdf5_timeseries: False
write_velocity: 'update' # tentative
boundary_conditions:
-
id: 1
type: 'dirichlet'
value: ['0','0','0']
-
id: 2
type: 'dirichlet'
value: ['0','0','-U*sin(DOLFIN_PI*t/Th)*(t<=Th) + (Th<t)*(-3.67949466208*U*sin(9*DOLFIN_PI*t/Th)*exp(-t*10))']
parameters:
U: 30
Th: 0.35
t: 0
-
id: 3
type: 'windkessel'
value: [10,0.01,1000]
p0: [47,1333.223874]
-
id: 4
type: 'windkessel'
value: [250,0.0001,8000]
p0: [47,1333.223874]
-
id: 5
type: 'windkessel'
value: [250,0.0001,8000]
p0: [47,1333.223874]
-
id: 6
type: 'windkessel'
value: [250,0.0001,8000]
p0: [47,1333.223874]
timemarching:
velocity_pressure_coupling: 'fractionalstep' # monolithic, fractionalstep
monolithic:
timescheme: 'gmp' # generalized midpoint, steady FIXME TODO
theta: 1 # 1: Euler, 0.5: implicit midpoint rule (one-legged)
nonlinear:
method: 'constant_extrapolation' # constant_extrapolation, linear_extrapolation, newton, picard, snes
maxit: 20
init_steps: 30
use_aitken: 1 # 0: False, 1: Picard only, 2: all
report: 1 # 0: None, 1: residuals, 2: residuals and energy (inflow/driving/forcing via ESSENTIAL Dbcs!)
atol: 1.e-6 # note: dot required!!
rtol: 1.e-16
stol: 0.0
fractionalstep:
scheme: 'CT' # CT, IPCS
coupled_velocity: False # False faster, True needed if robin_bc implicit
robin_bc_velocity_scheme: 'implicit' # explicit, semi-implicit, implicit
transpiration_bc_projection: 'robin' # robin, dirichlet
flux_report_normalize_boundary: 1
T: 0.8 # end time
dt: 0.01
write_dt: 0.04
checkpoint_dt: 0.04 # <= 0: only last; else value + last
report: 1 # 0: print nothing, 1: print time step and writeout, 2: 1 + flux
# solver setup
fem:
velocity_space: p1 # p1 p1b/p1+ p2
pressure_space: p1 # p1 p0/dg0 dg1
strain_symmetric: False
convection_skew_symmetric: True # aka Temam term
stabilization:
forced_normal:
enabled: True
boundaries: [6]
gamma: 10
backflow_boundaries: [3,4,5,6]
streamline_diffusion:
enabled: False
parameter: 'standard' # standard, shakib, codina, klr
length_scale: 'metric' # average, max, metric
parameter_element_constant: True
Cinv: ~
monolithic:
infsup: 'pspg' # pspg, pressure-stabilization
graddiv: False
consistent: False
pressure_stab_constant: 1.
fix_pressure: False
fix_pressure_point: [0., 0. , 0.]
linear_solver:
method: 'lu'
estimation:
boundary_conditions:
-
id: 2
type: 'dirichlet'
parameters: 'U'
initial_stddev: 1
measurements:
-
mesh: '/home/yeye/Desktop/kalman/meshes/coaortaH1.h5'
fe_degree: 1
xdmf_file: 'results/aorta/measurements/u_all.xdmf'
file_root: 'results/aorta/measurements/u{i}.h5'
indices: 0 # indices of checkpoints to be processed. 0 == all
velocity_direction: ~
noise_stddev: 3.5 # standard deviation of Gaussian noise
roukf:
particles: 'simplex' # unique or simplex
observation_operator: 'postprocessing' #state or postprocessing
reparameterize: True

153
kalman/channel2d.yaml Executable file
View File

@ -0,0 +1,153 @@
mesh: '/home/yeye/Desktop/kalman/meshes/channel2d.h5'
# Physical parameters of the fluid
fluid:
density: 1.2
dynamic_viscosity: 0.035
io:
write_path: 'results/channel2d/'
restart:
path: '' # './projects/nse_coa3d/results/test_restart2/'
time: 0
write_xdmf: True
write_checkpoints: True
write_hdf5_timeseries: False
write_velocity: 'update' # update or tentative
boundary_conditions:
-
id: 1
type: 'dirichlet'
value: ['0','0']
-
id: 2
type: 'dirichlet'
value: ['U*(1- (x[1]-1)*(x[1]-1) )*sin(DOLFIN_PI*t/T)','0']
parameters:
U: 30
T: 0.9
t: 0
-
id: 3
type: 'neumann'
value: '0'
ale:
type: 'manual'
io:
# read XDMF files from external solver
read_checkpoints: False # True, False
# path where displacement files are stored
#
read_path:
# origin mesh path
mesh_path:
# fem space of solution files
fem_type: p1
# Settings of the time integration method
timemarching:
# Time step for reading the input file
read_dt: # 0.05
fem:
# function spaces for the displacement
# options available: p1 p2
displacement_space: p1
lifting:
type: 'elastic_element' # 'harmonic', 'elastic', 'elastic_element'
# when chosing 'harmonic', no parameters required (ignored)
# otherwise, they must be specified below.
parameters:
mu: 0.0 # float value e.g. 1., 0.1, 0.01
# deformations will be read whenever chosen 'manual'
# if chosen 'external' then deformations list will be OMITTED!.
deformations:
# The dashes separate the list entries
-
id : 1
type: 'dirichlet'
value: ['0.', '0.']
timemarching:
velocity_pressure_coupling: 'fractionalstep' # monolithic, fractionalstep
monolithic:
timescheme: 'gmp' # generalized midpoint, steady FIXME TODO
theta: 1 # 1: Euler, 0.5: implicit midpoint rule (one-legged)
nonlinear:
method: 'constant_extrapolation' # constant_extrapolation, linear_extrapolation, newton, picard, snes
maxit: 20
init_steps: 30
use_aitken: 1 # 0: False, 1: Picard only, 2: all
report: 1 # 0: None, 1: residuals, 2: residuals and energy (inflow/driving/forcing via ESSENTIAL Dbcs!)
atol: 1.e-6 # note: dot required!!
rtol: 1.e-16
stol: 0.0
fractionalstep:
scheme: 'CT' # CT, IPCS
coupled_velocity: False # False faster, True needed if robin_bc implicit
robin_bc_velocity_scheme: 'implicit' # explicit, semi-implicit, implicit
transpiration_bc_projection: 'robin' # robin, dirichlet
flux_report_normalize_boundary: 1
T: 0.8 # end time
dt: 0.01
write_dt: 0.04
checkpoint_dt: 0.04 # <= 0: only last; else value + last
report: 1 # 0: print nothing, 1: print time step and writeout, 2: 1 + flux
# solver setup
fem:
velocity_space: p1 # p1 p1b/p1+ p2
pressure_space: p1 # p1 p0/dg0 dg1
strain_symmetric: False
convection_skew_symmetric: True # aka Temam term
stabilization:
forced_normal:
enabled: False
boundaries: [6]
gamma: 10
backflow_boundaries: []
streamline_diffusion:
enabled: False
parameter: 'standard' # standard, shakib, codina, klr
length_scale: 'metric' # average, max, metric
parameter_element_constant: True
Cinv: ~
monolithic:
infsup: 'pspg' # pspg, pressure-stabilization
graddiv: False
consistent: False
pressure_stab_constant: 1.
fix_pressure: False
fix_pressure_point: [0., 0.]
linear_solver:
method: 'lu'
estimation:
boundary_conditions:
-
id: 2
type: 'dirichlet'
parameters: 'U'
initial_stddev: 1
measurements:
-
mesh: '/home/yeye/Desktop/kalman/meshes/channel2d.h5'
fe_degree: 0
xdmf_file: 'results/channel2d/measurements/u_all.xdmf'
file_root: 'results/channel2d/measurements/u{i}.h5'
indices: 0 # indices of checkpoints to be processed. 0 == all
velocity_direction: ~
noise_stddev: 1.0 # standard deviation of Gaussian noise
roukf:
particles: 'simplex' # unique or simplex
observation_operator: 'postprocessing' #state or postprocessing
reparameterize: True

155
kalman/channel3d.yaml Executable file
View File

@ -0,0 +1,155 @@
mesh: '/home/yeye/Desktop/kalman/meshes/channel3d.h5'
# Physical parameters of the fluid
fluid:
density: 1.2
dynamic_viscosity: 0.035
io:
write_path: 'results/channel3d/'
restart:
path: '' # './projects/nse_coa3d/results/test_restart2/'
time: 0
write_xdmf: True
write_checkpoints: True
write_hdf5_timeseries: False
write_velocity: 'update' # update or tentative
ale:
type: 'manual'
io:
# read XDMF files from external solver
read_checkpoints: False # True, False
# path where displacement files are stored
#
read_path:
# origin mesh path
mesh_path:
# fem space of solution files
fem_type: p1
# Settings of the time integration method
timemarching:
# Time step for reading the input file
read_dt: # 0.05
fem:
# function spaces for the displacement
# options available: p1 p2
displacement_space: p1
lifting:
type: 'elastic_element' # 'harmonic', 'elastic', 'elastic_element'
# when chosing 'harmonic', no parameters required (ignored)
# otherwise, they must be specified below.
parameters:
mu: 0.0 # float value e.g. 1., 0.1, 0.01
# deformations will be read whenever chosen 'manual'
# if chosen 'external' then deformations list will be OMITTED!.
deformations:
# The dashes separate the list entries
-
id : 1
type: 'dirichlet'
value: ['0.', '0.', '0.']
boundary_conditions:
-
id: 1
type: 'dirichlet'
value: ['0','0','0']
-
id: 2
type: 'dirichlet'
value: ['0','0','U*(1-x[0]*x[0] - x[1]*x[1])*sin(DOLFIN_PI*t/T)']
parameters:
U: 30
T: 0.9
t: 0
-
id: 3
type: 'neumann'
value: '0'
timemarching:
velocity_pressure_coupling: 'fractionalstep' # monolithic, fractionalstep
monolithic:
timescheme: 'gmp' # generalized midpoint, steady FIXME TODO
theta: 1 # 1: Euler, 0.5: implicit midpoint rule (one-legged)
nonlinear:
method: 'constant_extrapolation' # constant_extrapolation, linear_extrapolation, newton, picard, snes
maxit: 20
init_steps: 30
use_aitken: 1 # 0: False, 1: Picard only, 2: all
report: 1 # 0: None, 1: residuals, 2: residuals and energy (inflow/driving/forcing via ESSENTIAL Dbcs!)
atol: 1.e-6 # note: dot required!!
rtol: 1.e-16
stol: 0.0
fractionalstep:
scheme: 'CT' # CT, IPCS
coupled_velocity: False # False faster, True needed if robin_bc implicit
robin_bc_velocity_scheme: 'implicit' # explicit, semi-implicit, implicit
transpiration_bc_projection: 'robin' # robin, dirichlet
flux_report_normalize_boundary: 1
T: 0.8 # end time
dt: 0.01
write_dt: 0.04
checkpoint_dt: 0.04 # <= 0: only last; else value + last
report: 1 # 0: print nothing, 1: print time step and writeout, 2: 1 + flux
# solver setup
fem:
velocity_space: p1 # p1 p1b/p1+ p2
pressure_space: p1 # p1 p0/dg0 dg1
strain_symmetric: False
convection_skew_symmetric: True # aka Temam term
stabilization:
forced_normal:
enabled: False
boundaries: [6]
gamma: 10
backflow_boundaries: []
streamline_diffusion:
enabled: False
parameter: 'standard' # standard, shakib, codina, klr
length_scale: 'metric' # average, max, metric
parameter_element_constant: True
Cinv: ~
monolithic:
infsup: 'pspg' # pspg, pressure-stabilization
graddiv: False
consistent: False
pressure_stab_constant: 1.
fix_pressure: False
fix_pressure_point: [0., 0. , 0.]
linear_solver:
method: 'lu'
estimation:
boundary_conditions:
-
id: 2
type: 'dirichlet'
parameters: 'U'
initial_stddev: 1
measurements:
-
mesh: '/home/yeye/Desktop/kalman/meshes/channel3d.h5'
fe_degree: 0
xdmf_file: 'results/channel3d/measurements/u_all.xdmf'
file_root: 'results/channel3d/measurements/u{i}.h5'
indices: 0 # indices of checkpoints to be processed. 0 == all
velocity_direction: ~
noise_stddev: 1.0 # standard deviation of Gaussian noise
roukf:
particles: 'simplex' # unique or simplex
observation_operator: 'postprocessing' #state or postprocessing
reparameterize: True

View File

@ -0,0 +1,185 @@
from dolfin import *
import numpy as np
from common import inout
from pathlib import Path
import argparse
def get_indices_glob(path):
path_all = list(Path().glob(path.format(i='*')))
indices = sorted(int(str(s).split('/')[-2]) for s in path_all)
return indices
def find_checkpoints(options, path_checkpoint):
indices = options['estimation']['measurements'][0]['indices']
# look for u.h5 checkpoints
chkpt_root = str(Path(path_checkpoint).joinpath('{i}/u.h5'))
# if indices were given in input file, check if u.h5 checkpoints or X0.h5
if indices:
if not Path(chkpt_root.format(indices[0])).is_file():
chkpt_root = str(Path(path_checkpoint).joinpath('{i}/X0.h5'))
if not Path(chkpt_root.format(indices[0])).is_file():
raise Exception('No checkpoints found in folder ' + chkpt_root)
else:
# get indices from folder names of u.h5 checkpoints
indices = get_indices_glob(chkpt_root)
# if no indices were found, look for X0.h5 files
if not indices:
chkpt_root = str(Path(path_checkpoint).joinpath('{i}/X0.h5'))
indices = get_indices_glob(chkpt_root)
# still no indices? raise Exception
if not indices:
print(chkpt_root)
raise Exception('No checkpoint indices found')
dt = options['timemarching']['dt']
times = dt*np.array(indices)
if MPI.rank(MPI.comm_world) == 0:
print('indices: \n')
print('\t', indices)
print('times: \n')
print('\t', times)
files = [chkpt_root.format(i=i) for i in indices]
# check if all files are found
for f in files:
if not Path(f).is_file():
raise FileNotFoundError(f)
return indices, times, files
def get_h5_fun_name(file):
if 'X0.h5' in file:
fun = '/X'
else:
fun = '/u'
return fun
def filter_indices(ind1, ind2, files1, files2):
''' Filter indices and files such that only maching files and indicies
remain.
Args:
ind1 (list): list of indices of dataset 1
ind2 (list): list of indices of dataset 2
files1 (list): list of files of dataset 1
files2 (list): list of files of dataset 2
'''
ind = []
files_filt1 = []
files_filt2 = []
for i in ind1:
if i in ind2:
ind.append(i)
files_filt1.append(files1[list(ind1).index(i)])
files_filt2.append(files2[list(ind2).index(i)])
return ind, files_filt1, files_filt2
def compute_errors(inputfile, path_checkpoint_1,
path_checkpoint_2, relative=False):
options = inout.read_parameters(inputfile)
indices1, times1, files1 = find_checkpoints(options, path_checkpoint_1)
indices2, times2, files2 = find_checkpoints(options, path_checkpoint_2)
indices, files1, files2 = filter_indices(indices1, indices2, files1,
files2)
fun1 = get_h5_fun_name(files1[0])
fun2 = get_h5_fun_name(files2[0])
# assert np.allclose(indices1, indices2), 'Indices do not match!'
# assert np.allclose(times1, times2), 'Time stamps do not match!'
mesh, _, _ = inout.read_mesh(options['mesh'])
if 'fluid' in options:
assert options['fem']['velocity_space'] in ('p1', 'p2'), (
'velocity space not supported, use p1 or p2')
deg = int(options['fem']['velocity_space'][-1])
elif 'material' in options:
deg = options['solver']['fe_degree']
V = VectorFunctionSpace(mesh, 'P', deg)
u1 = Function(V)
u2 = Function(V)
err_l2 = []
err_linf = []
for i, (f1, f2) in enumerate(zip(files1, files2)):
# file_ref = str(Path(path_fwd_tentative_checkpoint).joinpath(
# '{i}/u.h5'.format(i=i)))
# file_roukf = str(Path(path_roukf_state_checkpoint).joinpath(
# '{i}/X0.h5'.format(i=i)))
t0 = inout.read_HDF5_data(V.mesh().mpi_comm(), f1, u1, fun1)
t1 = inout.read_HDF5_data(V.mesh().mpi_comm(), f2, u2, fun2)
assert np.allclose(t0, t1), ('Timestamps do not match! {} vs {} '
'(HDF5 files)'.format(t0, t1))
if relative:
u_l2 = norm(u1, 'l2')
u_linf = norm(u1.vector(), 'linf')
if u_l2 == 0:
u_l2 = 1
print('i = {} \t norm(u1) == 0, do not normalize!'.format(i))
if u_linf == 0:
u_linf = 1
print('i = {} \t max(u1) == 0, do not normalize!'.format(i))
else:
u_l2 = u_linf = 1
err_l2.append(errornorm(u1, u2, 'l2', degree_rise=0)/u_l2)
err_linf.append(norm(u1.vector() - u2.vector(), 'linf')/u_linf)
print('i = {} \t L2 error: {} \t Linf error: {}'.format(i, err_l2[-1],
err_linf[-1]))
print('max L2 error: {}'.format(max(err_l2)))
print('max Linf error: {}'.format(max(err_linf)))
def get_parser():
parser = argparse.ArgumentParser(
description='''
Compute errors between vector function checkpoints of two simulations.
Can be ROUKF checkpoints, but if forward and ROUKF
files are found in the same checkpoint folder (0/u.h5 and 0/X.5),
the forward file will be preferred.''',
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('inputfile', type=str, help='path to yaml input file')
parser.add_argument('path_checkpoint_1', type=str,
help='Path to checkpoints of simulation 1')
parser.add_argument('path_checkpoint_2', type=str,
help='Path to checkpoints of simulation 2')
parser.add_argument('-r', '--relative', action='store_true',
help='compute relative errors')
return parser
if __name__ == '__main__':
args = get_parser().parse_args()
compute_errors(args.inputfile, args.path_checkpoint_1,
args.path_checkpoint_2, relative=args.relative)

View File

@ -0,0 +1,505 @@
from dolfin import *
import dolfin
import argparse
from common import inout
import numpy as np
import sys
# import ruamel.yaml as yaml
from pathlib import Path
import csv
import shutil
# parameters['allow_extrapolation'] = True
# careful with this option... can give nonsensical results outside
if '2017' in dolfin.__version__:
class MPI(MPI):
comm_world = MPI.comm_world
def solution_function_space(options):
''' Create function space to read in solution checkpoints, as specified in
options.
Args:
options (dict): Options dictionary (from input file)
Returns:
FunctionSpace: Solution checkpoint function space
'''
mesh, _, _ = inout.read_mesh(options['mesh'])
if 'fluid' in options:
if options['fem']['velocity_space'].lower() == 'p2':
Evel = VectorElement('P', mesh.ufl_cell(), 2)
elif options['fem']['velocity_space'].lower() == 'p1':
Evel = VectorElement('P', mesh.ufl_cell(), 1)
else:
raise Exception('Velocity space {} not yet implemented!'.format(
options['fem']['velocity_space'].lower()))
elif 'material' in options:
if options['incompressibility']['mixed_formulation']:
raise Exception('Only compressible hyperelasticity data is '
'supported here, for simplicity')
deg = options['solver']['fe_degree']
Evel = VectorElement('P', mesh.ufl_cell(), deg)
V = FunctionSpace(mesh, Evel)
return V
def measurement_function_spaces(options):
''' Create function space for measurements, as specified in
options.
Args:
options (dict): Options dictionary (from input file)
Returns:
list((Vector)FunctionSpace): list of function spaces on measurement
mesh, scalar if measurements are scalar, else VectorFunctionSpace
list(VectorFunctionSpace): if scalar measurements, a list of
corresponding VectorFunctionSpace for interpolation, else empty
list
'''
measurement_lst = options['estimation']['measurements']
if not isinstance(measurement_lst, list):
measurement_lst = [measurement_lst]
meshes = [meas['mesh'] for meas in measurement_lst]
if 'fe_degree' in options['estimation']['measurements'][0]:
degree = options['estimation']['measurements'][0]['fe_degree']
else:
degree = 1
for measurement in measurement_lst[1:]:
if not degree == measurement['fe_degree']:
raise Exception('fe_degree must the the same for all '
'measurements!')
if degree in (1, 2):
element_family = 'P'
elif degree == 0:
element_family = 'DG'
else:
raise Exception('Unsupported measurement FE degree: {}'
.format(degree))
scalar = [False]*len(measurement_lst)
for i, measurement in enumerate(measurement_lst):
if 'velocity_direction' in measurement:
direction = measurement['velocity_direction']
if direction and None not in direction and sum(direction) > 0:
scalar[i] = True
V = []
V_aux = []
for scal, file in zip(scalar, meshes):
mesh, _, _ = inout.read_mesh(file)
if scal:
V.append(FunctionSpace(mesh, element_family, degree))
# 1. interpolate velocity vector onto measurement grid (V_aux)
# 2. perform component projection in the measurement space
# ---> need to store both scalar and vector spaces
V_aux.append(VectorFunctionSpace(mesh, element_family, degree))
else:
V.append(VectorFunctionSpace(mesh, element_family, degree))
return V, V_aux
def find_checkpoints(options):
''' Find all checkpoints of a simulation from configuration in options
dictionary.
Args:
options (dict): Options dictionary (from YAML input file)
Returns:
list: List of found checkpoint indices
list: List of found checkpoint times
list: List of found checkpoint files
'''
if MPI.rank(MPI.comm_world) > 0:
return
chkpt_root = options['io']['write_path'] + '/checkpoint/{i}/u.h5'
indices = options['estimation']['measurements'][0]['indices']
if not indices:
path_all = list(Path().glob(chkpt_root.format(i='*')))
indices = sorted(int(str(s).split('/')[-2]) for s in path_all)
# dt_meas = options['timemarching']['checkpoint_dt']
# times = np.concatenate(([options['timemarching']['dt']],
# dt_meas*np.array(indices[1:])))
dt = options['timemarching']['dt']
times = dt*np.array(indices)
print('indices: \n')
print('\t', indices)
print('times: \n')
print('\t', times)
files = [chkpt_root.format(i=i) for i in indices]
# check if all files are found
for f in files:
if not Path(f).is_file():
raise FileNotFoundError(f)
return indices, times, files
def generate(options, seed_lst, print_norms=False):
''' Generate measurements.
Args:
options (dict): Options dictionary (from input file)
seed_lst (list): list of random seeds
print_norms (bool): switch for printing norms of measurements
'''
V = solution_function_space(options)
ndim = V.mesh().topology().dim()
u = Function(V)
V_meas_lst, V_aux_lst = measurement_function_spaces(options)
u_meas_lst = [Function(V_meas, name='measurement') for V_meas in
V_meas_lst]
u_meas_cpy = [Function(V_meas, name='measurement') for V_meas in
V_meas_lst]
LI = LagrangeInterpolator
if V_aux_lst:
u_aux_lst = [Function(V_aux) for V_aux in V_aux_lst]
comp_assigner = [FunctionAssigner([V]*ndim, V_aux) for V, V_aux in
zip(V_meas_lst, V_aux_lst)]
measurement_lst = options['estimation']['measurements']
noise_sd = [meas['noise_stddev'] for meas in measurement_lst]
# if 'project' in options['estimation']['measurements']:
# project_switch = bool(options['estimation']['measurements']
# ['project'])
# else:
# project_switch = False
project_switch = False
indices, times, files = find_checkpoints(options)
outfile_root_lst = [meas['file_root'] for meas in measurement_lst]
xdmf_paths = [meas['xdmf_file'] for meas in measurement_lst]
# don't automatically append seed{s} do path anymore!
# suppose seed{s} is included
# if seed_lst[0] > 0:
# for i, (out, xdmf) in enumerate(zip(outfile_root_lst, xdmf_paths)):
# # if isinstance(out, str) and 'seed{s}' not in out:
# # out_ = out.split('/')
# # outfile_root_lst[i] = '/'.join(out_[:-1] + ['seed{s}',
# # out_[-1]])
# if isinstance(xdmf, str) and 'seed{s}' not in xdmf:
# xdmf_ = xdmf.split('/')
# xdmf_paths[i] = '/'.join(xdmf_[:-1] + ['seed{s}', xdmf_[-1]])
# check if a list of seeds is given that {s} is included in path
if len(seed_lst) > 1:
for out in outfile_root_lst:
assert '{s}' in out, ('For a list of seeds, the string \'{s}\' '
'must be included in the file_root and will '
'be replaced by the seed number')
if any(xdmf_paths):
xdmf_lst = []
for pth in xdmf_paths:
if not isinstance(pth, str):
raise TypeError('xdmf_file setting must be None or a string '
'indicating the target XDMF file. Got type {}'.
format(type(pth)))
seed_dict = {}
for seed in seed_lst:
file = XDMFFile(pth.format(s=seed))
file.parameters['rewrite_function_mesh'] = False
seed_dict[seed] = file
xdmf_lst.append(seed_dict)
else:
xdmf_lst = [None]*len(u_meas_lst)
for count, (index, time, infile) in enumerate(zip(indices, times, files)):
if MPI.rank(MPI.comm_world) == 0:
print('Processing {} at t = {}'.format(infile, time))
t_ = inout.read_HDF5_data(u.function_space().mesh().mpi_comm(), infile,
u, '/u')
assert np.allclose(time, t_), ('Timestamps do not match! {} vs {} '
'(HDF5 file)'.format(time, t_))
# interpolate u to measurement meshes
for k, (u_meas, outfile_root, xdmf, sd) in enumerate(zip(
u_meas_lst, outfile_root_lst, xdmf_lst, noise_sd)):
if project_switch:
u_meas.assign(project(u, u_meas.function_space()))
else:
if V_aux_lst:
if MPI.rank(MPI.comm_world) == 0:
print('- Scalar velocity component')
direction = (options['estimation']['measurements'][k]
['velocity_direction'])
if direction.count(0) == 2 and direction.count(1) == 1:
LI.interpolate(u_meas, u.sub(direction.index(1)))
else:
assert u_meas.value_shape() == []
# normalize projection direction
direction = np.array(direction, dtype=np.float64)
direction /= np.sqrt(np.dot(direction, direction))
if MPI.rank(MPI.comm_world) == 0:
print('- direction: {}'.format(direction))
LagrangeInterpolator.interpolate(u_aux_lst[k], u)
# This is faster than simply Xobs_aux.split(True) !
u_i = [u_meas] + [u_meas.copy(True) for j in
range(ndim - 1)]
comp_assigner[k].assign(u_i, u_aux_lst[k])
u_meas.vector()[:] *= direction[0]
for ui, d in zip(u_i[1:], direction[1:]):
if d:
u_meas.vector().axpy(d, ui.vector())
else:
if MPI.rank(MPI.comm_world) == 0:
print('- Full velocity vector')
LI.interpolate(u_meas, u)
if sd:
u_meas_cpy[k].assign(u_meas)
# add noise
for seed in seed_lst:
if sd:
if seed > 0:
np.random.seed(seed + count)
if MPI.rank(MPI.comm_world) == 0:
print('- Add noise with stddev = {}, seed = {}'
.format(sd, seed + count))
noise = np.random.normal(0., sd,
u_meas.vector().local_size())
u_meas.assign(u_meas_cpy[k])
u_meas.vector()[:] += noise
if MPI.rank(MPI.comm_world) == 0:
if print_norms:
print('Writing file at t = {}\t |u_m| = {}'.format(
time, norm(u_meas)))
else:
print('Writing file at t = {}\t'.format(time))
outfile = outfile_root.format(i=index, s=seed)
inout.write_HDF5_data(
u_meas.function_space().mesh().mpi_comm(), outfile, u_meas,
'/u', time)
if xdmf:
xdmf[seed].write(u_meas, time)
# THIS IS OBSOLETE NOW
# write indices and timesteps
# write_timestamps(options, indices, times, seed_lst)
def write_timestamps(options, indices, times, seed_lst):
''' Write time stamps of measurements to csv file.
Args:
options (dict): Options dictionary (from YAML input file)
indices (list): List of checkpoint indices
times (list): List of checpoint times
seed_lst (list): List of random seeds
'''
if MPI.rank(MPI.comm_world) > 0:
return
warning('timestamps.csv is OBSOLETE!')
file_root_lst = [meas['file_root'] for meas in options['estimation']
['measurements']]
# if seed_lst[0]:
# for i, out in enumerate(file_root_lst):
# if isinstance(out, str) and 'seed{s}' not in out:
# out_ = out.split('/')
# file_root_lst[i] = '/'.join(out_[:-1]
# + ['seed{s}', out_[-1]])
for file_root in file_root_lst:
for seed in seed_lst:
path = Path(file_root.format(s=seed, i=-1)).parent
if seed > 0 and 'seed{s}'.format(s=seed) not in str(path):
path = path.joinpath('seed{s}'.format(s=seed))
path = path.joinpath('timestamps.csv')
print('Writing timestamps to file: {}'.format(path))
with path.open('w') as file:
writer = csv.writer(file, delimiter=' ')
for i, t in zip(indices, times):
writer.writerow((i, t))
def copy_inputfile(options, inputfile, seed_lst):
''' Copy input file of reference solution to measurements directory.
Args:
options (dict): Options dictionary (from YAML input file)
inputfile (str): Path of input file to be copied
seed_lst (list): List of random seeds
'''
if MPI.rank(MPI.comm_world) > 0:
return
file_root_lst = [meas['file_root'] for meas in options['estimation']
['measurements']]
for file_root in file_root_lst:
for seed in seed_lst:
path = Path(file_root.format(s=seed, i=-1)).parent
# if seed > 0 and 'seed{s}'.format(s=seed) not in str(path):
# path = path.joinpath('seed{s}'.format(s=seed))
path = path.joinpath('input.yaml')
# path.parent.mkdir(parents=True, exist_ok=True)
shutil.copy2(str(inputfile), str(path))
print('Copied input file to {}'.format(path))
def dump_example_options(path):
''' Dump example options to given path and exit.
Args:
path (str): Path to input file
'''
example = '''\
# example fractional step inputfile for gen_measurements_from_checkpoints.py
mesh: './meshes/mesh.h5'
io:
# Path containing checkpoints in a checkpoints/ folder
write_path: './results/test/'
timemarching:
# final time of simulation to be processed
T: 0.4
# simulation time step size (not dt_checkpoint)
dt: 0.001
fem:
# Velocity and presse (for monolithic) function spaces of checkpoints
velocity_space: 'p1'
pressure_space: 'p1'
estimation:
measurements:
# List of measurements
-
# Mesh of 1. measurement set
mesh: './measurements/mesh_meas.h5'
# degree of finite element function space
# (1 for linear, 0 for discontinuous piece-wise constant)
fe_degree: 0
# velocity measurement files to be written by this tool
# {i} will be replaced by the corresponding index of the checkpoint
# if given, {s} may be replaced by the seed number, for instance
# path/seed{s}/u{i}.h5
file_root: './measurements/u{i}.h5'
# XDMF file where measurements are optionally stored for
# visualization (one file for all time steps)
xdmf_file: './measurements/meas.xdmf'
# Select a velocity component:
# * None (~) means "use complete vector"
# * else, use a scalar velocity by projecting onto the given
# direction vector, [x, y, (z)]
velocity_direction: ~
# (absolute) standard deviation of Gaussian noise
noise_stddev: 10.
# indices of checkpoints to be processed:
# * 0 == all
# * a list of integes
indices: 0
-
# second measurement ...
-
# further measurements ...
'''
with open(path, 'w') as f:
f.write(example)
print('Example options:\n\n')
print(example)
print('\ndumped example options to file: {}'.format(path))
sys.exit(0)
def get_parser():
parser = argparse.ArgumentParser(description='''\
Generate measurements from HDF5 checkpoints, generated by the Fractional-Step
or the monolithic Navier-Stokes solvers.
Reads options from the given input file.
See the example options for further explanations::
(`gen_measurements_from_checkpoints.py -d example.yaml`).
''', formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('inputfile', type=str, help='path to yaml input file')
# parser.add_argument('-s', '--seed', type=int, default=-1,
# help='seed for random generator')
parser.add_argument('-s', '--seed', nargs='+', help='seed or list of seeds'
' for noise random number generator. '
'Will take the given seed for the first time step '
'and increment by +1 for all subsequent time steps, '
'so that noise is different for all times '
'but reproducible', default=[-1], type=int)
parser.add_argument('-n', '--print_norms', action='store_true',
help='print norms')
parser.add_argument('-d', '--dump', action='store_true',
help='dump minimal example parameters to inputfile')
return parser
if __name__ == '__main__':
args = get_parser().parse_args()
if args.dump:
dump_example_options(args.inputfile)
seed = args.seed
if seed[0] <= 0:
assert len(seed) == 1, 'if multiple seeds are given, all should be > 0'
try:
options = inout.read_parameters(args.inputfile)
except IOError:
raise IOError('File could not be read: {}'.format(args.inputfile))
generate(options, seed, args.print_norms)
copy_inputfile(options, args.inputfile, seed)

BIN
kalman/meshes/channel2d.h5 Normal file

Binary file not shown.

BIN
kalman/meshes/channel3d.h5 Normal file

Binary file not shown.

BIN
kalman/meshes/channel3d_leo.h5 Executable file

Binary file not shown.

BIN
kalman/meshes/coaortaH1.h5 Executable file

Binary file not shown.

View File

@ -0,0 +1,137 @@
from common import inout
from gen_measurements_from_checkpoints import generate, copy_inputfile
path_chan2d = './projects/DA_testbench/input/channel2d/measurements/'
inputfiles_chan2d = [
# 'chan2d_CT_Rtop0.9_slip0.332_no-pen_h0.05_noise0.yaml',
# 'chan2d_CT_Rtop0.9_slip0.332_no-pen_h0.05_noise6.5.yaml',
# # # 'chan2d_CT_Rtop0.9_slip0.332_no-pen_dt0.001_h0.05_noise0.yaml',
# # # 'chan2d_CT_Rtop0.9_slip0.332_no-pen_dt0.001_h0.05_noise6.5.yaml',
# 'chan2d_CT_Rtop0.9_slip0.332_trans3600_h0.05_noise0.yaml',
'chan2d_CT_Rtop0.9_slip0.332_trans3600_h0.05_noise6.5.yaml',
# 'chan2d_CT_R1_no-slip_h0.05_noise0.yaml',
# 'chan2d_CT_R1_no-slip_h0.05_noise6.5.yaml',
# # 'chan2d_CT_R1_no-slip_steady_h0.05_noise0.yaml',
# # 'chan2d_CT_R1_no-slip_steady_h0.05_noise6.5.yaml',
# 'chan2d_mono_Rtop0.9_slip0.332_no-pen_h0.05_noise0.yaml',
# 'chan2d_mono_Rtop0.9_slip0.332_no-pen_h0.05_noise6.5.yaml',
# # 'chan2d_mono_Rtop0.9_slip0.332_no-pen_dt0.001_h0.05_noise0.yaml',
# # 'chan2d_mono_Rtop0.9_slip0.332_no-pen_dt0.001_h0.05_noise6.5.yaml',
# 'chan2d_mono_Rtop0.9_slip0.332_trans3600_h0.05_noise0.yaml',
# 'chan2d_mono_Rtop0.9_slip0.332_trans3600_h0.05_noise6.5.yaml',
# 'chan2d_mono_R1_no-slip_h0.05_noise0.yaml',
# 'chan2d_mono_R1_no-slip_h0.05_noise6.5.yaml',
# # 'chan2d_mono_R1_no-slip_steady_h0.05_noise0.yaml',
# # 'chan2d_mono_R1_no-slip_steady_h0.05_noise6.5.yaml',
# #
# # 'chan2d_CT_Rtop0.9_slip0.332_no-pen_h0.05_state_noise0.yaml',
]
path_coa2d = './projects/DA_testbench/input/coa2d/measurements/'
inputfiles_coa2d = [
# CT H=h, DT=dt
# 'coa2d_CT_d0.1_slip0.001_trans1000_h0.025_supg_noise0.yaml',
# 'coa2d_CT_d0.1_slip0.332_trans3600_h0.025_supg_noise0.yaml',
# 'coa2d_CT_d0.1_slip0.001_trans1000_h0.025_supg_noise10.yaml',
# 'coa2d_CT_d0.1_slip0.332_trans3600_h0.025_supg_noise10.yaml',
# 'coa2d_CT_d0_noslip_h0.025_supg_noise10.yaml',
# 'coa2d_CT_d0_noslip_h0.025_supg_noise0.yaml',
# MONO
# 'coa2d/coa2d_mono_d0.1_slip0.001_trans1000_h0.025_supg.yaml',
# 'coa2d/coa2d_mono_d0.1_slip0.332_trans3600_h0.025_supg.yaml',
# 'coa2d/coa2d_mono_d0_noslip_h0.025_supg.yaml',
# H, DT var
# 'coa2d_CT_d0_noslip_h0.025_supg_d0.1_H0.1.yaml',
# 'coa2d_CT_d0_noslip_h0.025_supg_DT0.01_H0.025.yaml',
# 'coa2d_CT_d0_noslip_h0.025_supg_DT0.02_H0.025.yaml',
# 'coa2d_CT_d0_noslip_h0.025_supg_DT0.02_H0.1.yaml',
# PLUG FLOW
# 'coa2d_CT_d0_noslip_h0.025_supg_plug_d0_H0.1.yaml',
'coa2d_CT_d0_noslip_h0.025_supg_plug_d0.1_H0.1.yaml',
# 'coa2d_CT_d0_noslip_h0.025_supg_plug_d0.2_H0.2.yaml',
]
path_pipe3d = './projects/DA_testbench/input/pipe3d/measurements/'
inputfiles_pipe3d = [
'pipe3d_CT_R0.9_slip0.332_trans3600_h0.05_noise0.yaml',
'pipe3d_CT_R0.9_slip0.332_trans3600_h0.05_noise10.yaml',
'pipe3d_CT_R0.9_slip0.332_trans3600_h0.1_noise0.yaml',
'pipe3d_CT_R0.9_slip0.332_trans3600_h0.1_noise10.yaml',
'pipe3d_CT_R1_noslip_h0.1_noise10.yaml',
'pipe3d_CT_R1_noslip_h0.05_noise10.yaml',
]
path_coa3d = './projects/DA_testbench/input/coa3d/measurements/'
inputfiles_coa3d = [
# 'coa3d_CT_R0.9_slip0.001_trans1000_h0.025_noise0.yaml',
# 'coa3d_CT_R0.9_slip0.001_trans1000_h0.025_noise10.yaml',
# 'coa3d_CT_R1_noslip_h0.025_noise0.yaml',
# 'coa3d_CT_R1_noslip_h0.025_noise10.yaml',
# 'coa3d_CT_R1_noslip_h0.025_H0.1_DT0.001_noise10.yaml',
# 'coa3d_CT_R1_noslip_h0.025_H0.1_DT0.01_noise10.yaml',
# 'coa3d_CT_R1_noslip_h0.025_H0.1_DT0.02_noise10.yaml',
# 'coa3d_CT_R1_noslip_h0.025_H0.025_DT0.01_noise10.yaml',
# 'coa3d_CT_R1_noslip_h0.025_H0.025_DT0.02_noise10.yaml',
# 'coa3d_CT_R1_noslip_h0.025_H0.025_DT0.02_noise10.yaml',
# 'coa3d_asym_CT_R1_noslip_h0.025_H0.1_DT0.02_noise10.yaml',
# 'coa3d_asym_CT_R1_noslip_h0.025_H0.2_DT0.02_noise10.yaml',
# 'coa3d_bend_CT_R1_noslip_h0.025_H0.1_DT0.02_noise10.yaml',
# 'coa3d_bend_CT_R1_noslip_h0.025_H0.2_DT0.02_noise10.yaml',
# PLUG FLOW
# 'coa3d_bend_CT_R1_noslip_plug_h0.025_d0_H0.1_DT0.02_noise10.yaml',
# 'coa3d_bend_CT_R1_noslip_plug_h0.025_H0.1_DT0.02_noise10.yaml',
# 'coa3d_bend_CT_R1_noslip_plug_h0.025_H0.2_DT0.02_noise10.yaml',
# slices
# 'coa3d_CT_R1_noslip_plug_h0.025_H0.1_DT0.02_noise10.yaml',
# 'coa3d_CT_R1_noslip_plug_h0.025_H0.2_DT0.02_noise10.yaml',
# 'coa3d_CT_R1_noslip_plug_h0.025_slices_isZY_H0.1_DT0.02_noise10.yaml',
# 'coa3d_CT_R1_noslip_plug_h0.025_slices_Z_P0_H0.1_DT0.02_noise10.yaml',
# 'coa3d_CT_R1_noslip_plug_h0.025_slices_Z_P0_H0.2_DT0.02_noise10.yaml',
# 'coa3d_CT_R1_noslip_plug_h0.025_slices_isZY_P0_H0.1_DT0.02_noise10.yaml',
# 'coa3d_CT_R1_noslip_plug_h0.025_slices_isZY_H0.2_DT0.02_noise10.yaml'
# 'coa3d_bend_f0.3_CT_R1_noslip_plug_h0.025_slices_P0_H0.1-0.2_DT0.02_noise48.yaml',
# 'coa3d_bend_f0.3_CT_R1_noslip_plug_h0.025_slices_P0_H0.1-0.2_DT0.02_noise0.yaml',
# 'coa3d_bend_CT_R1_noslip_plug_h0.025_slices_P0_H0.1-0.2_DT0.02_noise48.yaml',
# 'coa3d_bend_CT_R1_noslip_plug_h0.025_slices_P0_H0.1-0.2_DT0.02_noise0.yaml',
# 'coa3d_bend_f0.0_CT_R1_noslip_plug_h0.025_slices_P0_H0.1-0.2_DT0.02_noise0.yaml', # <------ compute these!
# 'coa3d_bend_f0.0_CT_R1_noslip_plug_h0.025_slices_P0_H0.1-0.2_DT0.02_noise48.yaml',
# 'coa3d_bend_f0.5_CT_R1_noslip_plug_h0.025_slices_P0_H0.1-0.2_DT0.02_noise0.yaml',
# 'coa3d_bend_f0.5_CT_R1_noslip_plug_h0.025_slices_P0_H0.1-0.2_DT0.02_noise48.yaml',
# 'coa3d_bend_f0.5_CT_R1_noslip_plug_h0.025_slices_P0_H0.1-0.2_DT0.02_noise10.yaml',
# 'coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025_slices_P0_H0.1-0.2_DT0.02_noise0.yaml',
# 'coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025_slices_P0_H0.1-0.2_DT0.02_noiseVENC.yaml',
# 'coa3d_bend_f0.5_CT_R1_noslip_plug_h0.025_slices_P0_H0.1-0.2_DT0.02_noiseVENC.yaml',
# 'coa3d_bend_f0.6_CT_R1_noslip_plug_h0.025_slices_P0_H0.1-0.2_DT0.02_noiseVENC.yaml',
'coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025_slices_par_P0_H0.1-0.2_DT0.02_noiseVENC.yaml',
'coa3d_bend_f0.5_CT_R1_noslip_plug_h0.025_slices_par_P0_H0.1-0.2_DT0.02_noiseVENC.yaml',
'coa3d_bend_f0.6_CT_R1_noslip_plug_h0.025_slices_par_P0_H0.1-0.2_DT0.02_noiseVENC.yaml',
]
seed = range(11, 51)
# seed = 2
path = path_coa3d
inputfiles = inputfiles_coa3d
#
if isinstance(seed, range):
seed = list(seed)
elif isinstance(seed, int):
seed = [seed]
assert isinstance(seed, list), ('type(seed) must be list, but is {}'.
format(type(seed)))
for inpfile in inputfiles:
try:
options = inout.read_parameters(path + inpfile)
except IOError:
raise IOError('File could not be read: {}'.format(path + inpfile))
generate(options, seed, False)
copy_inputfile(options, path + inpfile, seed)

View File

@ -0,0 +1,173 @@
# Set of default parameters for steady Navier-Stokes
mesh: './meshes/coa3d_bend_Lc2_L6.3_f0.4_d0_ns1_h0.025.h5'
density: 1.0
dynamic_viscosity: 0.035
stokes: False
io:
write_hdf5: False
write_hdf5_timeseries: False
write_xdmf: True
write_path: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/'
restart:
path: '' # './projects/nse_coa3d/results/test_restart2/'
time: 0
write_checkpoints: True
write_velocity: 'update'
log: True
boundary_conditions:
- id: 1
preset: 'sine_parabola_inlet'
value:
R: 1.0
U: 43.75
a: 2.5
flow_direction: 0 # (0, 1, 2)
symmetric: False
- id: 2
preset: 'outlet'
value: 0.
- id: 3
type: 'dirichlet'
value: [0, 0, 0]
timemarching:
velocity_pressure_coupling: 'fractionalstep' # monolithic, fractionalstep
monolithic:
timescheme: 'gmp' # generalized midpoint, steady FIXME TODO
theta: 1 # 1: Euler, 2: implicit midpoint rule (one-legged)
nonlinear:
method: 'constant_extrapolation' # constant_extrapolation, linear_extrapolation, newton, picard, snes
maxit: 20
init_steps: 30
use_aitken: 1 # 0: False, 1: Picard only, 2: all
report: 1 # 0: None, 1: residuals, 2: residuals and energy (inflow/driving/forcing via ESSENTIAL Dbcs!)
atol: 1.e-6 # note: dot required!!
rtol: 1.e-16
stol: 0.0
fractionalstep:
scheme: 'CT' # CT, IPCS
coupled_velocity: False
robin_bc_velocity_scheme: 'implicit' # explicit, semi-implicit, implicit
transpiration_bc_projection: 'robin' # robin, dirichlet
flux_report_normalize_boundary: 1
T: 0.4
dt: 0.001
write_dt: 0.001
checkpoint_dt: 0.02 # <= 0: only last; else value + last
report: 1 # 0: print nothing, 1: print time step and writeout, 2: 1 + flux
estimation:
boundary_conditions:
- id: 3
type: 'navierslip'
initial_stddev: 1
- id: 3
type: 'transpiration'
initial_stddev: 1
measurements:
# -
# mesh: './meshes/coa3d_bend_slice_XZ_H0.1.h5'
# fe_degree: 0
# xdmf_file: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/measurements/slice_XZ_par_P0_H0.1_DT0.02_noise0/u_meas.xdmf'
# file_root: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/measurements/slice_XZ_par_P0_H0.1_DT0.02_noise0/u{i}.h5'
# indices: [1, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400]
# noise_stddev: 0 # standard deviation of Gaussian noise
# # noise level 48 ==> 15% of max(u) = 320
# -
# mesh: './meshes/coa3d_bend_slice_XZ_H0.2.h5'
# fe_degree: 0
# xdmf_file: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/measurements/slice_XZ_par_P0_H0.2_DT0.02_noise0/u_meas.xdmf'
# file_root: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/measurements/slice_XZ_par_P0_H0.2_DT0.02_noise0/u{i}.h5'
# indices: [1, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400]
# noise_stddev: 0 # standard deviation of Gaussian noise
# # noise level 48 ==> 15% of max(u) = 320
-
mesh: './meshes/coa3d_bend_slice_inlet_H0.1.h5'
fe_degree: 0
xdmf_file: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/measurements/slice_inlet_par_P0_H0.1_DT0.02_noiseVENC/u_meas.xdmf'
file_root: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/measurements/slice_inlet_par_P0_H0.1_DT0.02_noiseVENC/u{i}.h5'
indices: [1, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400]
velocity_direction: [1, 0, 0]
noise_stddev: 6.5625 # standard deviation of Gaussian noise
# noise level 48 ==> 15% of max(u) = 320
-
mesh: './meshes/coa3d_bend_slice_inlet_H0.2.h5'
fe_degree: 0
xdmf_file: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/measurements/slice_inlet_par_P0_H0.2_DT0.02_noiseVENC/u_meas.xdmf'
file_root: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/measurements/slice_inlet_par_P0_H0.2_DT0.02_noiseVENC/u{i}.h5'
indices: [1, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400]
velocity_direction: [1, 0, 0]
noise_stddev: 6.5625 # standard deviation of Gaussian noise
# noise level 48 ==> 15% of max(u) = 320
# -
# mesh: './meshes/coa3d_bend_slice_inclined2_H0.1.h5'
# fe_degree: 0
# xdmf_file: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/measurements/slice_inclined2_par_P0_H0.1_DT0.02_noise0/u_meas.xdmf'
# file_root: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/measurements/slice_inclined2_par_P0_H0.1_DT0.02_noise0/u{i}.h5'
# indices: [1, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400]
# noise_stddev: 0 # standard deviation of Gaussian noise
# # noise level 48 ==> 15% of max(u) = 320
# -
# mesh: './meshes/coa3d_bend_slice_inclined2_H0.2.h5'
# fe_degree: 0
# xdmf_file: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/measurements/slice_inclined2_par_P0_H0.2_DT0.02_noise0/u_meas.xdmf'
# file_root: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/measurements/slice_inclined2_par_P0_H0.2_DT0.02_noise0/u{i}.h5'
# indices: [1, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400]
# noise_stddev: 0 # standard deviation of Gaussian noise
# # noise level 48 ==> 15% of max(u) = 320
-
mesh: './meshes/coa3d_bend_slice_inclined3_H0.1.h5'
fe_degree: 0
xdmf_file: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/measurements/slice_inclined3_par_P0_H0.1_DT0.02_noiseVENC/u_meas.xdmf'
file_root: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/measurements/slice_inclined3_par_P0_H0.1_DT0.02_noiseVENC/u{i}.h5'
indices: [1, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400]
velocity_direction: [0.98426389, 0., -0.17670481]
noise_stddev: 21 # standard deviation of Gaussian noise
# noise level 48 ==> 15% of max(u) = 320
-
mesh: './meshes/coa3d_bend_slice_inclined3_H0.2.h5'
fe_degree: 0
xdmf_file: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/measurements/slice_inclined3_par_P0_H0.2_DT0.02_noiseVENC/u_meas.xdmf'
file_root: './projects/DA_testbench/results/coa3d/coa3d_bend_f0.4_CT_R1_noslip_plug_h0.025/measurements/slice_inclined3_par_P0_H0.2_DT0.02_noiseVENC/u{i}.h5'
indices: [1, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400]
velocity_direction: [0.98426389, 0., -0.17670481]
noise_stddev: 21 # standard deviation of Gaussian noise
# noise level 48 ==> 15% of max(u) = 320
roukf:
particles: 'simplex'
observation_operator: 'postprocessing'
reparameterize: True
# solver setup
fem:
velocity_space: p1 # p1 p1b/p1+ p2
pressure_space: p1 # p1 p0/dg0 dg1
strain_symmetric: 0
convection_skew_symmetric: 1 # aka Temam term
stabilization:
backflow_boundaries: [2]
streamline_diffusion:
enabled: True
parameter: 'shakib' # standard, shakib, codina, klr
length_scale: 'metric' # average, max, metric
consistent: False # deprecated
Cinv: ~
monolithic:
infsup: False # pspg, pressure-stabilization
graddiv: False
consistent: False
pressure_stab_constant: 1.
fix_pressure: False
fix_pressure_point: [0., 0.]
linear_solver:
method: 'default'
# inputfile: './projects/nse_coa3d/input/pc/MUMPS_default.yaml'
# inputfile: './input/pc/fgmres_gamg_rtol1e-6.yaml'

View File

@ -0,0 +1,376 @@
from dolfin import *
import dolfin
import argparse
from common import inout
import numpy as np
import sys
# import ruamel.yaml as yaml
from pathlib import Path
import csv
import shutil
# parameters['allow_extrapolation'] = True
# careful with this option... can give nonsensical results outside
from mpi4py import MPI
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
def solution_function_space(options):
mesh, _, _ = inout.read_mesh(options['mesh'])
if options['fem']['velocity_space'].lower() == 'p2':
Evel = VectorElement('P', mesh.ufl_cell(), 2)
elif options['fem']['velocity_space'].lower() == 'p1':
Evel = VectorElement('P', mesh.ufl_cell(), 1)
else:
raise Exception('Velocity space {} not yet implemented!'.format(
options['fem']['velocity_space'].lower()))
V = FunctionSpace(mesh, Evel)
return V
def measurement_function_spaces(options):
measurement_lst = options['estimation']['measurements']
if not isinstance(measurement_lst, list):
measurement_lst = [measurement_lst]
meshes = [meas['mesh'] for meas in measurement_lst]
if 'fe_degree' in options['estimation']['measurements'][0]:
degree = options['estimation']['measurements'][0]['fe_degree']
else:
degree = 1
for measurement in measurement_lst[1:]:
if not degree == measurement['fe_degree']:
raise Exception('fe_degree must the the same for all '
'measurements!')
if degree == 1:
element_family = 'P'
elif degree == 0:
element_family = 'DG'
else:
raise Exception('Unsupported measurement FE degree: {}'
.format(degree))
scalar = [False]*len(measurement_lst)
for i, measurement in enumerate(measurement_lst):
if 'velocity_direction' in measurement:
direction = measurement['velocity_direction']
if direction and None not in direction and sum(direction) > 0:
scalar[i] = True
V = []
V_aux = []
for scal, file in zip(scalar, meshes):
mesh, _, _ = inout.read_mesh(file)
if scal:
V.append(FunctionSpace(mesh, element_family, degree))
# 1. interpolate velocity vector onto measurement grid (V_aux)
# 2. perform component projection in the measurement space
# ---> need to store both scalar and vector spaces
V_aux.append(VectorFunctionSpace(mesh, element_family, degree))
else:
V.append(VectorFunctionSpace(mesh, element_family, degree))
return V, V_aux
def find_checkpoints(options):
chkpt_root = options['io']['write_path'] + '/checkpoint/{i}/u.h5'
indices = options['estimation']['measurements'][0]['indices']
if not indices:
# its seems not work now
#path_all = list(Path().glob(chkpt_root.format(i='*')))
#indices = sorted(int(str(s).split('/')[-2]) for s in path_all)
from glob import glob
chkpt_root2 = options['io']['write_path'] + '/checkpoint/*'
paths = glob(chkpt_root2)
pathsclean = paths
pathff = []
for l in range(len(paths)):
pathsclean[l] = paths[l].replace(options['io']['write_path'] + '/checkpoint/','')
pathff.append(int(pathsclean[l]))
indices = [int(x) for x in pathff]
indices.sort()
# dt_meas = options['timemarching']['checkpoint_dt']
# times = np.concatenate(([options['timemarching']['dt']],
# dt_meas*np.array(indices[1:])))
dt = options['timemarching']['dt']
times = dt*np.array(indices)
if rank == 0:
print('indices: \n')
print('\t', indices)
print('times: \n')
print('\t', times)
files = [chkpt_root.format(i=i) for i in indices]
# check if all files are found
# try:
# for f in files:
# # Path(f).resolve(strict=True)
# Path(f).is_file()
# except FileNotFoundError:
# raise
for f in files:
if not Path(f).is_file():
raise FileNotFoundError(f)
return indices, times, files
def generate(options, seed_lst, print_norms=False):
V = solution_function_space(options)
ndim = V.mesh().topology().dim()
u = Function(V)
V_meas_lst, V_aux_lst = measurement_function_spaces(options)
u_meas_lst = [Function(V_meas) for V_meas in V_meas_lst]
u_meas_cpy = [Function(V_meas) for V_meas in V_meas_lst]
#LI = LagrangeInterpolator()
if V_aux_lst:
u_aux_lst = [Function(V_aux) for V_aux in V_aux_lst]
comp_assigner = [FunctionAssigner([V]*ndim, V_aux) for V, V_aux in
zip(V_meas_lst, V_aux_lst)]
measurement_lst = options['estimation']['measurements']
noise_sd = [meas['noise_stddev'] for meas in measurement_lst]
# if 'project' in options['estimation']['measurements']:
# project_switch = bool(options['estimation']['measurements']
# ['project'])
# else:
# project_switch = False
project_switch = False
indices, times, files = find_checkpoints(options)
outfile_root_lst = [meas['file_root'] for meas in measurement_lst]
xdmf_paths = [meas['xdmf_file'] for meas in measurement_lst]
if seed_lst[0] > 0:
for i, (out, xdmf) in enumerate(zip(outfile_root_lst, xdmf_paths)):
if isinstance(out, str) and 'seed{s}' not in out:
out_ = out.split('/')
outfile_root_lst[i] = '/'.join(out_[:-1] + ['seed{s}',
out_[-1]])
if isinstance(xdmf, str) and 'seed{s}' not in xdmf:
xdmf_ = xdmf.split('/')
xdmf_paths[i] = '/'.join(xdmf_[:-1] + ['seed{s}', xdmf_[-1]])
if any(xdmf_paths):
xdmf_lst = []
for pth in xdmf_paths:
seed_dict = {}
for seed in seed_lst:
file = XDMFFile(pth.format(s=seed))
file.parameters['rewrite_function_mesh'] = False
seed_dict[seed] = file
xdmf_lst.append(seed_dict)
else:
xdmf_lst = [None]*len(u_meas_lst)
for i, t, infile in zip(indices, times, files):
print('Processing {} at t = {}'.format(infile, t))
t_ = inout.read_HDF5_data(u.function_space().mesh().mpi_comm(), infile,
u, '/u')
assert np.allclose(t, t_), ('Timestamps do not match! {} vs {} (HDF5 '
'file)'.format(t, t_))
# interpolate u to measurement meshes
for k, (u_meas, outfile_root, xdmf, sd) in enumerate(zip(
u_meas_lst, outfile_root_lst, xdmf_lst, noise_sd)):
if project_switch:
u_meas.assign(project(u, u_meas.function_space()))
else:
if V_aux_lst:
print('scalar')
direction = (options['estimation']['measurements'][k]
['velocity_direction'])
if direction.count(0) == 2 and direction.count(1) == 1:
LagrangeInterpolator.interpolate(u_meas, u.sub(direction.index(1)))
else:
assert u_meas.value_size() == 1
# normalize projection direction
direction = np.array(direction, dtype=np.float64)
direction /= np.sqrt(np.dot(direction, direction))
print('d = {}'.format(direction))
LagrangeInterpolator().interpolate(u_aux_lst[k], u)
# This is faster than simply Xobs_aux.split(True) !
u_i = [u_meas] + [u_meas.copy(True) for j in
range(ndim - 1)]
comp_assigner[k].assign(u_i, u_aux_lst[k])
u_meas.vector()[:] *= direction[0]
for ui, d in zip(u_i[1:], direction[1:]):
if d:
u_meas.vector().axpy(d, ui.vector())
else:
LagrangeInterpolator.interpolate(u_meas, u)
if sd:
u_meas_cpy[k].assign(u_meas)
# add noise
for seed in seed_lst:
if sd:
# this makes no sense, sorry...
# if seed > 0:
# np.random.seed(seed + i)
noise = np.random.normal(0., sd,
u_meas.vector().local_size())
u_meas.assign(u_meas_cpy[k])
u_meas.vector()[:] += noise
if rank == 0:
if print_norms:
print('Writing file at t = {}\t |u_m| = {}'.format(
t, norm(u_meas)))
else:
print('Writing file at t = {}\t'.format(t))
outfile = outfile_root.format(i=i, s=seed)
inout.write_HDF5_data(
u_meas.function_space().mesh().mpi_comm(), outfile, u_meas,
'/u', t)
if xdmf:
xdmf[seed].write(u_meas, t)
# write indices and timesteps
write_timestamps(options, indices, times, seed_lst)
def write_timestamps(options, indices, times, seed_lst):
file_root_lst = [meas['file_root'] for meas in options['estimation']
['measurements']]
# if seed_lst[0]:
# for i, out in enumerate(file_root_lst):
# if isinstance(out, str) and 'seed{s}' not in out:
# out_ = out.split('/')
# file_root_lst[i] = '/'.join(out_[:-1] + ['seed{s}', out_[-1]])
for file_root in file_root_lst:
for seed in seed_lst:
path = Path(file_root.format(s=seed, i=-1)).parent
if seed > 0 and 'seed{s}'.format(s=seed) not in str(path):
path = path.joinpath('seed{s}'.format(s=seed))
path = path.joinpath('timestamps.csv')
if rank == 0:
print('Writing timestamps to file: {}'.format(path))
with path.open('w') as file:
writer = csv.writer(file, delimiter=' ')
for i, t in zip(indices, times):
writer.writerow((i, t))
def copy_inputfile(options, inputfile, seed_lst):
if rank == 0:
file_root_lst = [meas['file_root'] for meas in options['estimation']
['measurements']]
for file_root in file_root_lst:
for seed in seed_lst:
path = Path(file_root.format(s=seed, i=-1)).parent
if seed > 0 and 'seed{s}'.format(s=seed) not in str(path):
path = path.joinpath('seed{s}'.format(s=seed))
path = path.joinpath('input.yaml')
shutil.copy2(str(inputfile), str(path))
print('Copied input file to {}'.format(path))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='''\
Generate measurements from HDF5 checkpoints, generated by the Fractional-Step
or the monolithic Navier-Stokes solvers.
Reads options from the given input file.
''', formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('inputfile', type=str, help='path to yaml input file')
# parser.add_argument('-s', '--seed', type=int, default=-1,
# help='seed for random generator')
parser.add_argument('-s', '--seed', nargs='+', help='seed or list of seeds'
' for repitions of RNG. not really a seed, noise is '
' different for all timesteps', default=[-1])
parser.add_argument('-n', '--print_norms', action='store_true',
help='print norms')
parser.add_argument('-d', '--dump', action='store_true',
help='dump minimal default parameters to inputfile')
args = parser.parse_args()
if args.dump:
default = '''\
# default inputfile for gen_measurements_from_checkpoints.py
mesh: ./meshes/mesh.h5
io:
write_path: ./results/test/ # path to checkpoints
timemarching:
T: 0.4
dt: 0.001
fem:
velocity_space: p1 # p1, p2
pressure_space: p1
estimation:
measurements:
- mesh: ./measurements/mesh_meas.h5 # measurement mesh
fe_degree: 0 # 0 or 1
file_root: ./measurements/u{{i}}.h5 # velocity measurements \
to be written by the program, {{i}} will be replaced by the corresponding \
index of the checkpoint
xdmf_file: ./measurements/meas.xdmf # path for optional XDMF output
noise_stddev: 10. # absolute standard deviation of Gaussian \
noise
indices: 0 # indices of checkpoints to be processed. 0 == all
- # second measurement ...
- ...
'''
with open(args.inputfile, 'w') as f:
f.write(default)
print('dumped default options to file: {}'.format(args.inputfile))
sys.exit(0)
seed = args.seed
if seed[0] <= 0:
assert len(seed) == 1, 'if multiple seeds are given, all should be > 0'
try:
options = inout.read_parameters(args.inputfile)
except IOError:
raise IOError('File could not be read: {}'.format(args.inputfile))
generate(options, seed, args.print_norms)
copy_inputfile(options, args.inputfile, seed)

22
kalman/other/input_meas.yaml Executable file
View File

@ -0,0 +1,22 @@
mesh: /home/yeye/Desktop/PhD/AORTA/MESH/aorta_fine2/aorta_fine2_marked.h5
io:
write_path: '/home/yeye/Desktop/PhD/AORTA/DATA/ct/aorta_fine/dt0.001' # path to checkpoints
timemarching:
T: 0.9
dt: 0.001
fem:
velocity_space: p1 # p1, p2
pressure_space: p1
estimation:
measurements:
- mesh: '/home/yeye/Desktop/PhD/AORTA/MESH/aorta_fine2/aorta_fine2_marked.h5' # measurement mesh
fe_degree: 1 # 0 or 1
file_root: '/home/yeye/Desktop/PhD/AORTA/DATA/ct/aorta_fine/dt0.001/measurements/u{i}.h5' # velocity measurements to be written by the program, {{i}} will be replaced by the corresponding index of the checkpoint
xdmf_file: /home/yeye/Desktop/PhD/AORTA/DATA/ct/aorta_fine/dt0.001/measurements/meas.xdmf # path for optional XDMF output
noise_stddev: 0 # absolute standard deviation of Gaussian noise
indices: 0 # indices of checkpoints to be processed. 0 == all
#velocity_direction: [0, 0, 1]

31
kalman/other/run_roukf.py Executable file
View File

@ -0,0 +1,31 @@
from roukf.roukf import *
from navierstokes.fractionalstep import *
from navierstokes import solver
from common import utils
from dolfin import *
import sys,os
import logging
logging.getLogger().setLevel(logging.INFO)
parameters["form_compiler"]["optimize"] = True
parameters["form_compiler"]["cpp_optimize"] = True
parameters["form_compiler"]["cpp_optimize_flags"] = "-O3 -xHost -ip" if \
utils.on_cluster() else "-O3 -ffast-math -march=native"
#inpfile = '/home/yeye/Desktop/PhD/AORTA/CT_David/input/aorta_roukf.yaml'
if len(sys.argv) > 1:
if os.path.exists(sys.argv[1]):
inpfile = sys.argv[1]
print('Found input file ' + inpfile)
else:
raise Exception('Command line arg given but input file does not exist:'
' {}'.format(sys.argv[1]))
else:
print('Using default input file ' + inpfile)
#sol = solver(inpfile)
sol = solver.init(inpfile)
roukf = ROUKF(inpfile, sol)
roukf.solve()

42
kalman/other/theta_plot.py Executable file
View File

@ -0,0 +1,42 @@
import matplotlib.pyplot as plt
import numpy as np
import os
from matplotlib import rc
#rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
rc('text', usetex=True)
if 'Zion' in os.popen('hostname').read():
user = 'yeye'
np.set_printoptions(threshold=5)
if 'fwn-bborg-5-166' in os.popen('hostname').read():
user = 'p283370'
Tf = 0.9
masterpath = '/home/'+user+'/Desktop/kalman/results/'
######################################################################
theta1 = np.loadtxt( masterpath + 'theta.txt')
t = np.linspace(0,Tf,theta1.size)
theta_real = t*0 - 60
#theta1 = 2**(theta1)
#theta2 = 2**(ltheta2)
#theta3 = 2**(ltheta3)
plt.figure(figsize=(10, 6), dpi=100)
plt.plot(t,theta1,'-',linewidth=2,label= r'$\theta_1 = $' + str(round(theta1[-1],2)) )
#plt.plot(t,theta1_s,'o-',linewidth=2,label= r'$\theta_1 stokes = $' + str(round(theta1_s[-1],2)) )
#plt.plot(t,theta2,'o-',linewidth=2,label= r'$\theta_2 = $' + str(round(theta2[-1],2)) )
#plt.plot(t,theta3,'o-',linewidth=2,label= r'$\theta_3 = $' + str(round(theta3[-1],2)) )
plt.plot(t,theta_real,'-k',linewidth=2,label= r'$real = $' + str( theta_real[-1] ) )
plt.xlabel(r'$time \ \ \ (s)$',fontsize=20)
plt.ylabel(r'$ \theta $',fontsize=20)
plt.legend(fontsize=14)
#plt.title(r'$\sigma = 0.101 $',fontsize =20 )
plt.show()

View File

@ -0,0 +1,121 @@
import matplotlib.pyplot as plt
import numpy as np
from itertools import cycle
import argparse
import pickle
def is_ipython():
''' Check if script is run in IPython.
Returns:
bool: True if IPython, else False '''
try:
get_ipython()
ipy = True
except NameError:
ipy = False
return ipy
def load_data(file):
''' Load numpy data from file.
Returns
dict: data dictionary
'''
dat = np.load(file)
return dat
def plot_parameters(dat, deparameterize=False, ref=None):
''' Plot the parameters in separate subplots with uncertainties.
Args:
dat (dict): data dictionary
deparameterize (bool): flag indicating if parameters should be
deparameterized via 2**theta
ref: reference value to be plotted with parameters
'''
if is_ipython():
plt.ion()
dim = dat['theta'].shape[-1]
fig1, axes = plt.subplots(1, dim)
if dim == 1:
axes = [axes]
axes[0].set_ylabel(r'$\theta$')
t = dat['times']
theta = dat['theta']
P = dat['P_theta']
col = cycle(['C0', 'C1', 'C0', 'C1'])
ls = cycle(['-', '-', '--', '--', ':', ':', '-.', '-.'])
col_ = next(col)
ls_ = next(ls)
for i, ax in enumerate(axes):
if dim == 1:
theta = theta.reshape((-1, 1))
P = P.reshape((-1, 1, 1))
if deparameterize:
ax.plot(t, 2**theta[:, i], '-', c=col_, ls=ls_)
else:
ax.plot(t, theta[:, i], '-', c=col_, ls=ls_)
ax.fill_between(t, theta[:, i] - np.sqrt(P[:, i, i]),
theta[:, i] + np.sqrt(P[:, i, i]), alpha=0.3,
color=col_)
ax.set_xlabel(r'time')
if ref:
if isinstance(ref, (int, float)):
ref = np.array(ref)
for ax, ri in zip(axes, ref):
if ri:
# if deparameterize:
ax.plot((t[0], t[-1]), (ri, )*2, '-.k', lw=2,
label=r'ground truth')
# else:
# ax.plot((t[0], t[-1]), (np.log2(ri), )*2, '-.k', lw=2,
# label=r'ground truth')
# print('theta_peak: \t {}'.format(theta[round(len(theta)/2), :]))
print('Final value theta: \t {}'.format(theta[-1, :]))
print('Deparameterized: 2^theta_end: \t {}'.format(2**theta[-1, :]))
if not is_ipython():
plt.show()
def get_parser():
parser = argparse.ArgumentParser(
description='''
Plot the time evolution of the ROUKF estimated parameters.
To execute in IPython::
%run plot_roukf_parameters.py [-d] [-r N [N \
...]] file
''',
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('file', type=str, help='path to ROUKF stats file')
parser.add_argument('-d', '--deparameterize', action='store_true',
help='deparameterize the parameters by 2**theta')
parser.add_argument('-r', '--ref', metavar='N', nargs='+', default=None,
type=float, help='Reference values for parameters')
return parser
if __name__ == '__main__':
args = get_parser().parse_args()
dat = load_data(args.file)
plot_parameters(dat, deparameterize=args.deparameterize, ref=args.ref)

75
kalman/run.py Normal file
View File

@ -0,0 +1,75 @@
from roukf.core import ROUKF
import argparse
import importlib
from dolfin import *
import dolfin
import logging
logging.getLogger().setLevel(logging.INFO)
parameters['form_compiler']['optimize'] = True
parameters['form_compiler']['cpp_optimize'] = True
parameters['form_compiler']['cpp_optimize_flags'] = ('-O3 -ffast-math '
'-march=native')
def print_timing():
if dolfin.__version__ >= '2018':
list_timings(TimingClear.clear, [TimingType.wall])
else:
list_timings(TimingClear_clear, [TimingType_wall])
def main(fwd_solver_module, inputfile):
''' Run ROUKF parameter estimation.
Imports the given forward solver module and initializes the forward solver
with the specified input file.
Creates a ROUKF solver from the same input file and the instantiated
forward solver object and solves the optimization problem specified in the
input file.
Args:
fwd_solver_module (str): forward solver module to be imported and
passed to the ROUKF solver
inputfile (str): YAML input file with configuration of both
forward and ROUKF solver
'''
fwd_solver = importlib.import_module(fwd_solver_module)
fwd_solver = fwd_solver.init(inputfile)
fwd_solver.logger.setLevel(logging.WARNING)
kf = ROUKF(inputfile, fwd_solver)
kf.logger.setLevel(logging.INFO)
kf.solve()
print_timing()
def get_parser():
parser = argparse.ArgumentParser(
description='''\
Run ROUKF parameter estimation.
1. Imports the given forward solver module and initializes the forward solver
with the specified input file. The solver module is required to have a
method `init()` which handles the complete setup and returns self.
2. Creates a ROUKF solver from the same input file and the instantiated
forward solver object and solves the optimization problem specified in the
input file.''',
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('fwd_solver', type=str,
help='Name of the forward solver module (see full'
' documentation), such that it can be imported.\n'
'For example:\n navierstokes.solver or '
'hyperelasticity.solver')
parser.add_argument('inputfile', type=str, help='path to YAML input file')
return parser
if __name__ == '__main__':
args = get_parser().parse_args()
main(args.fwd_solver, args.inputfile)

42
kalman/run_forward.py Normal file
View File

@ -0,0 +1,42 @@
''' Run a forward simulation.
Detects FractionalStep and Hyperelasticity from input files.
'''
from dolfin import parameters
import ruamel.yaml as yaml
import argparse
import logging
logging.getLogger().setLevel(logging.INFO)
parameters['form_compiler']['optimize'] = True
parameters['form_compiler']['cpp_optimize'] = True
parameters['form_compiler']['cpp_optimize_flags'] = ('-O3 -ffast-math '
'-march=native')
def get_forward_solver(inputfile):
''' Get forward solver from input file '''
with open(inputfile, 'r') as f:
options = yaml.load(f)
if 'fluid' in options:
from navierstokes import solver
elif 'material' in options:
parameters['form_compiler']['quadrature_degree'] = 6
from hyperelasticity import solver
return solver
def get_parser():
parser = argparse.ArgumentParser(
description='Run forward simulation',
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('inputfile', type=str, help='path to YAML input file')
return parser
if __name__ == '__main__':
inputfile = get_parser().parse_args().inputfile
solver = get_forward_solver(inputfile)
sol = solver.init(inputfile)
sol.solve()

View File

@ -23,6 +23,7 @@
\usepackage{listings,xcolor,caption, mathtools, wrapfig}
\usepackage{amsfonts}
\usepackage{amssymb,graphicx,enumerate}
\usepackage{subcaption}
\usepackage{hyperref}
\usepackage[normalem]{ulem} % for strike out command \sout
@ -682,15 +683,35 @@ Experiments using real 4D flow data
\begin{frame}
\frametitle{Results}
\footnotesize
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.5\textwidth]{images/phantom_cib.png}
\caption{At peak systole: a) measurements b) corrector field c) corrected measurements: $\vec u_{meas} + \vec w$}
\end{center}
\begin{figure}
\begin{subfigure}{.31\textwidth}
\centering
\includegraphics[trim=100 80 100 150, clip, width=1.0\textwidth]{images/u_15.png}
\caption*{(a) $\vec{u}_{meas}$}
\end{subfigure}
\begin{subfigure}{.01\textwidth}
\hfill
\end{subfigure}
\begin{subfigure}{.31\textwidth}
\centering
\includegraphics[trim=100 80 100 150, clip, width=1.0\textwidth]{images/w_15.png}
\caption*{(b) $\vec{w}$}
\end{subfigure}
\begin{subfigure}{.01\textwidth}
\hfill
\end{subfigure}
\begin{subfigure}{.31\textwidth}
\centering
\includegraphics[trim=100 80 100 150, clip, width=1.0\textwidth]{images/uc_15.png}
\caption*{(c) $\vec{u}_{meas}+\vec{w}$}
\end{subfigure}
\caption{Measurements, corrector fields and corrected velocities for all the cases.}
\label{fig:phantom_resolution}
\end{figure}
\end{frame}