Compare commits
4 Commits
d507deba84
...
encoder_wi
Author | SHA1 | Date | |
---|---|---|---|
|
97732b2f72 | ||
|
9e144e1c17 | ||
|
9f5bbc487d | ||
|
c99ed439a6 |
@@ -170,7 +170,7 @@ namespace tmpl {
|
||||
// reset buffers
|
||||
bool _reset_BX;
|
||||
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
||||
sigbuf<M> reset_bufarray(.in=_reset_BX, .out=_reset_BXX);
|
||||
sigbuf<M> reset_bufarray(.in=_reset_BX, .out=_reset_BXX,.supply = supply);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -190,7 +190,7 @@ namespace tmpl {
|
||||
|
||||
|
||||
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
||||
sigbuf<N> reset_bufarray(.in=_reset_BX, .out=_reset_BXX);
|
||||
sigbuf<N> reset_bufarray(.in=_reset_BX, .out=_reset_BXX, .supply=supply);
|
||||
|
||||
//validity
|
||||
bool _in_v, _in_vX[N];
|
||||
@@ -205,8 +205,8 @@ namespace tmpl {
|
||||
sigbuf<N> en_buf_t(.in=_en, .out=_en_X_t, .supply=supply);
|
||||
sigbuf<N> en_buf_f(.in=_en, .out=_en_X_f, .supply=supply);
|
||||
INV_X1 out_a_inv(.a=out.a,.y=_out_a_B);
|
||||
sigbuf<N> out_a_B_buf_f(.in=_out_a_B,.out=_out_a_BX_t);
|
||||
sigbuf<N> out_a_B_buf_t(.in=_out_a_B,.out=_out_a_BX_f);
|
||||
sigbuf<N> out_a_B_buf_f(.in=_out_a_B,.out=_out_a_BX_t, .supply=supply);
|
||||
sigbuf<N> out_a_B_buf_t(.in=_out_a_B,.out=_out_a_BX_f, .supply=supply);
|
||||
// check if you can also do single var to array connect a=b[N]
|
||||
// and remove them from the loop
|
||||
(i:N:
|
||||
@@ -244,8 +244,8 @@ namespace tmpl {
|
||||
//validity
|
||||
bool _in_v, _c_f_buf[N], _c_t_buf[N], _c_v;
|
||||
|
||||
sigbuf<N> c_buf_t(.in=cond.d.d[0].t, .out=_c_t_buf);
|
||||
sigbuf<N> c_buf_f(.in=cond.d.d[0].f, .out=_c_f_buf);
|
||||
sigbuf<N> c_buf_t(.in=cond.d.d[0].t, .out=_c_t_buf, .supply=supply);
|
||||
sigbuf<N> c_buf_f(.in=cond.d.d[0].f, .out=_c_f_buf, .supply=supply);
|
||||
|
||||
OR2_X1 c_f_c_t_or(.a=cond.d.d[0].t, .b=cond.d.d[0].f, .y=_c_v,.vdd=supply.vdd,.vss=supply.vss);
|
||||
vtree<N> vc(.in=in.d,.out=_in_v,.supply=supply);
|
||||
@@ -262,8 +262,8 @@ namespace tmpl {
|
||||
sigbuf<N> out1_en_buf_t(.in=_en, .out=_en1_X_t, .supply=supply);
|
||||
sigbuf<N> out1_en_buf_f(.in=_en, .out=_en1_X_f, .supply=supply);
|
||||
INV_X1 out1_a_inv(.a=out1.a,.y=_out1_a_B);
|
||||
sigbuf<N> out1_a_B_buf_f(.in=_out1_a_B,.out=_out1_a_BX_t);
|
||||
sigbuf<N> out1_a_B_buf_t(.in=_out1_a_B,.out=_out1_a_BX_f);
|
||||
sigbuf<N> out1_a_B_buf_f(.in=_out1_a_B,.out=_out1_a_BX_t, .supply=supply);
|
||||
sigbuf<N> out1_a_B_buf_t(.in=_out1_a_B,.out=_out1_a_BX_f, .supply=supply);
|
||||
(i:N:
|
||||
out1_f_buf_func[i].y=out1.d.d[i].f;
|
||||
out1_t_buf_func[i].y=out1.d.d[i].t;
|
||||
@@ -507,6 +507,122 @@ namespace tmpl {
|
||||
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
||||
}
|
||||
|
||||
// A tree composed by arbiters. The first layer takes N signals
|
||||
export template<pint N>
|
||||
defproc arbiter_tree(a1of1 in[N]; a1of1 out; power supply)
|
||||
{
|
||||
|
||||
bool tout;
|
||||
|
||||
{ N > 0 : "Invalid N, should be greater than 0" };
|
||||
|
||||
/* We calculate here how many arbiters we need to create for the full tree */
|
||||
pint inputs_in_layer, end, elements_in_layer;
|
||||
pint odd_element_idx = 0;
|
||||
pint odd_element_flag = 0;
|
||||
inputs_in_layer = 0;
|
||||
end = N-1;
|
||||
pint element_counter = 0;
|
||||
// Here we start a for loop to count the elements in the tree
|
||||
// The loop iterates for every successive layer
|
||||
// i is the variable used to iterate the inputs,
|
||||
// j counts the elements in the layer
|
||||
*[ inputs_in_layer != end ->
|
||||
elements_in_layer = 0; // At every layer the counter of the elements is resetted
|
||||
*[ inputs_in_layer < end ->
|
||||
[ inputs_in_layer + 1 >= end ->
|
||||
//In this case, the number of input is even: the layer finishes
|
||||
inputs_in_layer = end;
|
||||
odd_element_flag = 0;
|
||||
[] inputs_in_layer + 2 >= end ->
|
||||
//In this case, we arrived at the last input, this means the inputs are odd
|
||||
//We need to save the odd input index and move it to the next layer,
|
||||
//up to when the resulting number is even
|
||||
odd_element_idx = end;
|
||||
odd_element_flag = 1;
|
||||
inputs_in_layer = end;
|
||||
[] else ->
|
||||
//If we are not close to the end, analyzes the next two inputs
|
||||
inputs_in_layer = inputs_in_layer +2;
|
||||
]
|
||||
elements_in_layer = elements_in_layer + 1; //At every step the elements count is updated
|
||||
|
||||
]
|
||||
//Move the inputs_in_layer to the next layer
|
||||
//Increase the end to account for the next layer elements
|
||||
//If there was an odd element, count it also in the end
|
||||
inputs_in_layer = end + 1;
|
||||
end = end + elements_in_layer + odd_element_flag;
|
||||
element_counter = element_counter + elements_in_layer;
|
||||
]
|
||||
|
||||
{ element_counter = 4 : "Michele you did wrong" };
|
||||
|
||||
// Creating the elements of the tree
|
||||
arbiter_handshake arb_array[element_counter];
|
||||
(i:element_counter:arb_array[i].supply = supply;)
|
||||
// These are the wires that connect one element of the tree to the others
|
||||
a1of1 channels[element_counter*2];
|
||||
|
||||
//Connecting the first channels to the inputs
|
||||
(i:N:channels[i] = in[i];)
|
||||
channels[element_counter*2-1] = out;
|
||||
//Now we redo the for loop but here to assign the channels to the elements
|
||||
odd_element_idx = 0;
|
||||
odd_element_flag = 0;
|
||||
inputs_in_layer = 0;
|
||||
end = N-1;
|
||||
{ end=4 : "Michele you did wrong" };
|
||||
// Here we start a for loop to count the elements in the tree
|
||||
// The loop iterates for every successive layer
|
||||
// i is the variable used to iterate the inputs,
|
||||
// j counts the elements in the layer
|
||||
*[ inputs_in_layer != end ->
|
||||
elements_in_layer = 0; // At every layer the counter of the elements is resetted
|
||||
*[ inputs_in_layer < end ->
|
||||
[ inputs_in_layer + 1 >= end ->
|
||||
//In this case, the number of input is even: the layer finishes
|
||||
[ odd_element_flag >= 1 ->
|
||||
arb_array[elements_in_layer].in1 = channels[inputs_in_layer];
|
||||
arb_array[elements_in_layer].in2 = channels[odd_element_idx];
|
||||
[] else ->
|
||||
arb_array[elements_in_layer].in1 = channels[inputs_in_layer];
|
||||
arb_array[elements_in_layer].in2 = channels[inputs_in_layer+1];
|
||||
]
|
||||
inputs_in_layer = end;
|
||||
odd_element_flag = 0;
|
||||
[] inputs_in_layer + 2 >= end ->
|
||||
//In this case, we arrived at the last input, this means the inputs are odd
|
||||
//We need to save the odd input index and move it to the next layer,
|
||||
//up to when the resulting number is even
|
||||
odd_element_idx = end;
|
||||
odd_element_flag = 1;
|
||||
{ end<8 : "Michele you did wrong" };
|
||||
{ odd_element_idx=4 : "Michele you did wrong" };
|
||||
arb_array[elements_in_layer].in1 = channels[inputs_in_layer];
|
||||
arb_array[elements_in_layer].in2 = channels[inputs_in_layer+1];
|
||||
inputs_in_layer = end;
|
||||
[] else ->
|
||||
//If we are not close to the end, analyzes the next two inputs
|
||||
arb_array[elements_in_layer].in1 = channels[inputs_in_layer];
|
||||
arb_array[elements_in_layer].in2 = channels[inputs_in_layer+1];
|
||||
inputs_in_layer = inputs_in_layer +2;
|
||||
|
||||
]
|
||||
elements_in_layer = elements_in_layer + 1; //At every step the elements count is updated
|
||||
|
||||
]
|
||||
//Move the inputs_in_layer to the next layer
|
||||
//Increase the end to account for the next layer elements
|
||||
//If there was an odd element, count it also in the end
|
||||
inputs_in_layer = end + 1;
|
||||
end = end + elements_in_layer + odd_element_flag;
|
||||
element_counter = element_counter + elements_in_layer;
|
||||
]
|
||||
|
||||
|
||||
|
||||
}
|
||||
export template<pint N>
|
||||
defproc merge (avMx1of2<N> in1; avMx1of2<N> in2; avMx1of2<N> out ; bool? reset_B; power supply) {
|
||||
|
||||
@@ -614,7 +730,7 @@ namespace tmpl {
|
||||
// reset buffers
|
||||
bool _reset_BX;
|
||||
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
||||
sigbuf<N> reset_bufarray(.in=_reset_BX, .out=_reset_BXX; power supply);
|
||||
sigbuf<N> reset_bufarray(.in=_reset_BX, .out=_reset_BXX, .supply = supply);
|
||||
}
|
||||
|
||||
// Programmable delay line.
|
||||
|
Reference in New Issue
Block a user