2018-08-11 21:30:00 +02:00
# ==================================================================== #
2023-07-08 17:30:05 +02:00
# TITLE: #
2022-10-05 09:12:22 +02:00
# AMR: An R Package for Working with Antimicrobial Resistance Data #
2018-08-11 21:30:00 +02:00
# #
2023-07-08 17:30:05 +02:00
# SOURCE CODE: #
2020-07-08 14:48:06 +02:00
# https://github.com/msberends/AMR #
2018-08-11 21:30:00 +02:00
# #
2023-07-08 17:30:05 +02:00
# PLEASE CITE THIS SOFTWARE AS: #
2024-07-16 14:51:57 +02:00
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
2023-05-27 10:39:22 +02:00
# https://doi.org/10.18637/jss.v104.i03 #
2022-10-05 09:12:22 +02:00
# #
2022-12-27 15:16:15 +01:00
# Developed at the University of Groningen and the University Medical #
# Center Groningen in The Netherlands, in collaboration with many #
# colleagues from around the world, see our website. #
2018-08-11 21:30:00 +02:00
# #
2019-01-02 23:24:07 +01:00
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
2020-01-05 17:22:09 +01:00
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
2020-10-08 11:16:03 +02:00
# #
# Visit our website for the full manual and a complete tutorial about #
2021-02-02 23:57:35 +01:00
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
2018-08-11 21:30:00 +02:00
# ==================================================================== #
2021-01-18 16:57:56 +01:00
#' AMR Plots with `ggplot2`
2018-08-11 21:30:00 +02:00
#'
2021-02-02 23:57:35 +01:00
#' Use these functions to create bar plots for AMR data analysis. All functions rely on [ggplot2][ggplot2::ggplot()] functions.
2023-01-21 23:47:20 +01:00
#' @param data a [data.frame] with column(s) of class [`sir`] (see [as.sir()])
2019-11-28 22:32:17 +01:00
#' @param position position adjustment of bars, either `"fill"`, `"stack"` or `"dodge"`
#' @param x variable to show on x axis, either `"antibiotic"` (default) or `"interpretation"` or a grouping variable
#' @param fill variable to categorise using the plots legend, either `"antibiotic"` (default) or `"interpretation"` or a grouping variable
2021-05-12 18:15:03 +02:00
#' @param breaks a [numeric] vector of positions
#' @param limits a [numeric] vector of length two providing limits of the scale, use `NA` to refer to the existing minimum or maximum
2019-11-28 22:32:17 +01:00
#' @param facet variable to split plots by, either `"interpretation"` (default) or `"antibiotic"` or a grouping variable
2019-11-10 12:16:56 +01:00
#' @inheritParams proportion
2019-11-28 22:32:17 +01:00
#' @param nrow (when using `facet`) number of rows
2021-02-26 12:11:29 +01:00
#' @param colours a named vactor with colour to be used for filling. The default colours are colour-blind friendly.
2023-02-22 14:38:57 +01:00
#' @param aesthetics aesthetics to apply the colours to - the default is "fill" but can also be (a combination of) "alpha", "colour", "fill", "linetype", "shape" or "size"
2023-01-21 23:47:20 +01:00
#' @param datalabels show datalabels using [labels_sir_count()]
2018-09-16 22:11:17 +02:00
#' @param datalabels.size size of the datalabels
#' @param datalabels.colour colour of the datalabels
2019-05-31 20:25:57 +02:00
#' @param title text to show as title of the plot
#' @param subtitle text to show as subtitle of the plot
#' @param caption text to show as caption of the plot
#' @param x.title text to show as x axis description
#' @param y.title text to show as y axis description
2023-01-21 23:47:20 +01:00
#' @param ... other arguments passed on to [geom_sir()] or, in case of [scale_sir_colours()], named values to set colours. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red. See *Examples*.
2020-12-22 00:51:17 +01:00
#' @details At default, the names of antibiotics will be shown on the plots using [ab_name()]. This can be set with the `translate_ab` argument. See [count_df()].
2018-08-11 21:30:00 +02:00
#'
2023-01-21 23:47:20 +01:00
#' [geom_sir()] will take any variable from the data that has an [`sir`] class (created with [as.sir()]) using [sir_df()] and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
2024-12-14 19:41:15 +01:00
#'
#' Additional functions include:
2018-08-11 21:30:00 +02:00
#'
2024-12-14 19:41:15 +01:00
#' * [facet_sir()] creates 2d plots (at default based on S/I/R) using [ggplot2::facet_wrap()].
#' * [scale_y_percent()] transforms the y axis to a 0 to 100% range using [ggplot2::scale_y_continuous()].
#' * [scale_sir_colours()] sets colours to the bars (green for S, yellow for I, and red for R). with multilingual support. The default colours are colour-blind friendly, while maintaining the convention that e.g. 'susceptible' should be green and 'resistant' should be red.
#' * [theme_sir()] is a [ggplot2 theme][[ggplot2::theme()] with minimal distraction.
#' * [labels_sir_count()] print datalabels on the bars with percentage and amount of isolates using [ggplot2::geom_text()].
2018-09-16 22:11:17 +02:00
#'
2023-01-21 23:47:20 +01:00
#' [ggplot_sir()] is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (`%>%`). See *Examples*.
#' @rdname ggplot_sir
2018-08-11 21:30:00 +02:00
#' @export
#' @examples
2021-05-24 09:00:11 +02:00
#' \donttest{
2022-08-27 20:49:37 +02:00
#' if (require("ggplot2") && require("dplyr")) {
2020-05-16 20:42:45 +02:00
#' # get antimicrobial results for drugs against a UTI:
#' ggplot(example_isolates %>% select(AMX, NIT, FOS, TMP, CIP)) +
2023-01-21 23:47:20 +01:00
#' geom_sir()
2022-08-27 20:49:37 +02:00
#' }
#' if (require("ggplot2") && require("dplyr")) {
2020-05-16 20:42:45 +02:00
#' # prettify the plot using some additional functions:
#' df <- example_isolates %>% select(AMX, NIT, FOS, TMP, CIP)
#' ggplot(df) +
2023-01-21 23:47:20 +01:00
#' geom_sir() +
2020-05-16 20:42:45 +02:00
#' scale_y_percent() +
2023-01-21 23:47:20 +01:00
#' scale_sir_colours() +
#' labels_sir_count() +
#' theme_sir()
2022-08-27 20:49:37 +02:00
#' }
#' if (require("ggplot2") && require("dplyr")) {
2020-05-16 20:42:45 +02:00
#' # or better yet, simplify this using the wrapper function - a single command:
#' example_isolates %>%
#' select(AMX, NIT, FOS, TMP, CIP) %>%
2023-01-21 23:47:20 +01:00
#' ggplot_sir()
2022-08-27 20:49:37 +02:00
#' }
#' if (require("ggplot2") && require("dplyr")) {
2020-05-16 20:42:45 +02:00
#' # get only proportions and no counts:
#' example_isolates %>%
#' select(AMX, NIT, FOS, TMP, CIP) %>%
2023-01-21 23:47:20 +01:00
#' ggplot_sir(datalabels = FALSE)
2022-08-27 20:49:37 +02:00
#' }
#' if (require("ggplot2") && require("dplyr")) {
2020-12-22 00:51:17 +01:00
#' # add other ggplot2 arguments as you like:
2020-05-16 20:42:45 +02:00
#' example_isolates %>%
#' select(AMX, NIT, FOS, TMP, CIP) %>%
2023-01-21 23:47:20 +01:00
#' ggplot_sir(
2022-08-28 10:31:50 +02:00
#' width = 0.5,
#' colour = "black",
#' size = 1,
#' linetype = 2,
#' alpha = 0.25
#' )
2022-08-27 20:49:37 +02:00
#' }
#' if (require("ggplot2") && require("dplyr")) {
2021-03-04 23:28:32 +01:00
#' # you can alter the colours with colour names:
2020-05-16 20:42:45 +02:00
#' example_isolates %>%
#' select(AMX) %>%
2023-01-21 23:47:20 +01:00
#' ggplot_sir(colours = c(SI = "yellow"))
2022-08-27 20:49:37 +02:00
#' }
#' if (require("ggplot2") && require("dplyr")) {
2021-03-04 23:28:32 +01:00
#' # but you can also use the built-in colour-blind friendly colours for
#' # your plots, where "S" is green, "I" is yellow and "R" is red:
2022-08-28 10:31:50 +02:00
#' data.frame(
#' x = c("Value1", "Value2", "Value3"),
#' y = c(1, 2, 3),
#' z = c("Value4", "Value5", "Value6")
#' ) %>%
2021-03-04 23:28:32 +01:00
#' ggplot() +
#' geom_col(aes(x = x, y = y, fill = z)) +
2023-01-21 23:47:20 +01:00
#' scale_sir_colours(Value4 = "S", Value5 = "I", Value6 = "R")
2022-08-27 20:49:37 +02:00
#' }
#' if (require("ggplot2") && require("dplyr")) {
2021-05-24 11:01:32 +02:00
#' # resistance of ciprofloxacine per age group
#' example_isolates %>%
#' mutate(first_isolate = first_isolate()) %>%
2022-08-28 10:31:50 +02:00
#' filter(
#' first_isolate == TRUE,
#' mo == as.mo("Escherichia coli")
#' ) %>%
2021-05-24 11:01:32 +02:00
#' # age_groups() is also a function in this AMR package:
#' group_by(age_group = age_groups(age)) %>%
2021-08-16 21:54:34 +02:00
#' select(age_group, CIP) %>%
2023-01-21 23:47:20 +01:00
#' ggplot_sir(x = "age_group")
2022-08-27 20:49:37 +02:00
#' }
#' if (require("ggplot2") && require("dplyr")) {
2021-05-24 11:01:32 +02:00
#' # a shorter version which also adjusts data label colours:
#' example_isolates %>%
#' select(AMX, NIT, FOS, TMP, CIP) %>%
2023-01-21 23:47:20 +01:00
#' ggplot_sir(colours = FALSE)
2022-08-27 20:49:37 +02:00
#' }
#' if (require("ggplot2") && require("dplyr")) {
2021-05-24 11:01:32 +02:00
#' # it also supports groups (don't forget to use the group var on `x` or `facet`):
#' example_isolates %>%
2022-08-28 10:31:50 +02:00
#' filter(mo_is_gram_negative(), ward != "Outpatient") %>%
2021-08-16 21:54:34 +02:00
#' # select only UTI-specific drugs
2022-08-27 20:49:37 +02:00
#' select(ward, AMX, NIT, FOS, TMP, CIP) %>%
#' group_by(ward) %>%
2023-01-21 23:47:20 +01:00
#' ggplot_sir(
2022-08-28 10:31:50 +02:00
#' x = "ward",
#' facet = "antibiotic",
#' nrow = 1,
#' title = "AMR of Anti-UTI Drugs Per Ward",
#' x.title = "Ward",
#' datalabels = FALSE
#' )
2021-05-24 11:01:32 +02:00
#' }
2018-08-13 16:42:37 +02:00
#' }
2023-01-21 23:47:20 +01:00
ggplot_sir <- function ( data ,
2018-08-22 00:02:26 +02:00
position = NULL ,
2019-06-13 14:28:46 +02:00
x = " antibiotic" ,
fill = " interpretation" ,
2018-08-23 21:27:15 +02:00
# params = list(),
2018-08-13 16:42:37 +02:00
facet = NULL ,
2018-10-22 12:32:59 +02:00
breaks = seq ( 0 , 1 , 0.1 ) ,
2018-12-16 22:45:12 +01:00
limits = NULL ,
2019-05-10 16:44:59 +02:00
translate_ab = " name" ,
2019-05-13 10:10:16 +02:00
combine_SI = TRUE ,
2020-09-18 16:05:53 +02:00
minimum = 30 ,
2021-12-12 09:42:03 +01:00
language = get_AMR_locale ( ) ,
2018-08-29 16:35:32 +02:00
nrow = NULL ,
2022-08-28 10:31:50 +02:00
colours = c (
S = " #3CAEA3" ,
SI = " #3CAEA3" ,
I = " #F6D55C" ,
IR = " #ED553B" ,
R = " #ED553B"
) ,
2019-05-31 20:25:57 +02:00
datalabels = TRUE ,
datalabels.size = 2.5 ,
2020-10-21 13:07:23 +02:00
datalabels.colour = " grey15" ,
2019-05-31 20:25:57 +02:00
title = NULL ,
subtitle = NULL ,
caption = NULL ,
2019-08-09 23:22:10 +02:00
x.title = " Antimicrobial" ,
y.title = " Proportion" ,
2018-08-13 16:42:37 +02:00
... ) {
2020-06-22 11:18:40 +02:00
stop_ifnot_installed ( " ggplot2" )
2024-10-15 17:12:55 +02:00
meet_criteria ( data , allow_class = " data.frame" )
data <- ascertain_sir_classes ( data , " data" )
2020-10-19 17:09:19 +02:00
meet_criteria ( position , allow_class = " character" , has_length = 1 , is_in = c ( " fill" , " stack" , " dodge" ) , allow_NULL = TRUE )
meet_criteria ( x , allow_class = " character" , has_length = 1 )
meet_criteria ( fill , allow_class = " character" , has_length = 1 )
meet_criteria ( facet , allow_class = " character" , has_length = 1 , allow_NULL = TRUE )
meet_criteria ( breaks , allow_class = c ( " numeric" , " integer" ) )
meet_criteria ( limits , allow_class = c ( " numeric" , " integer" ) , has_length = 2 , allow_NULL = TRUE , allow_NA = TRUE )
meet_criteria ( translate_ab , allow_class = c ( " character" , " logical" ) , has_length = 1 , allow_NA = TRUE )
meet_criteria ( combine_SI , allow_class = " logical" , has_length = 1 )
2023-02-10 16:18:00 +01:00
meet_criteria ( minimum , allow_class = c ( " numeric" , " integer" ) , has_length = 1 , is_positive_or_zero = TRUE , is_finite = TRUE )
2022-10-05 09:12:22 +02:00
language <- validate_language ( language )
2021-01-24 14:48:56 +01:00
meet_criteria ( nrow , allow_class = c ( " numeric" , " integer" ) , has_length = 1 , allow_NULL = TRUE , is_positive = TRUE , is_finite = TRUE )
2020-10-21 13:07:23 +02:00
meet_criteria ( colours , allow_class = c ( " character" , " logical" ) )
2020-10-19 17:09:19 +02:00
meet_criteria ( datalabels , allow_class = " logical" , has_length = 1 )
2021-01-24 14:48:56 +01:00
meet_criteria ( datalabels.size , allow_class = c ( " numeric" , " integer" ) , has_length = 1 , is_positive = TRUE , is_finite = TRUE )
2020-10-19 17:09:19 +02:00
meet_criteria ( datalabels.colour , allow_class = " character" , has_length = 1 )
meet_criteria ( title , allow_class = " character" , has_length = 1 , allow_NULL = TRUE )
meet_criteria ( subtitle , allow_class = " character" , has_length = 1 , allow_NULL = TRUE )
meet_criteria ( caption , allow_class = " character" , has_length = 1 , allow_NULL = TRUE )
meet_criteria ( x.title , allow_class = " character" , has_length = 1 , allow_NULL = TRUE )
meet_criteria ( y.title , allow_class = " character" , has_length = 1 , allow_NULL = TRUE )
2018-09-13 14:48:34 +02:00
# we work with aes_string later on
x_deparse <- deparse ( substitute ( x ) )
if ( x_deparse != " x" ) {
x <- x_deparse
}
if ( x %like% ' ".*"' ) {
x <- substr ( x , 2 , nchar ( x ) - 1 )
}
facet_deparse <- deparse ( substitute ( facet ) )
if ( facet_deparse != " facet" ) {
facet <- facet_deparse
}
if ( facet %like% ' ".*"' ) {
facet <- substr ( facet , 2 , nchar ( facet ) - 1 )
}
if ( facet %in% c ( " NULL" , " " ) ) {
facet <- NULL
}
2022-08-28 10:31:50 +02:00
2019-05-31 20:25:57 +02:00
if ( is.null ( position ) ) {
position <- " fill"
}
2022-08-28 10:31:50 +02:00
2018-08-11 21:30:00 +02:00
p <- ggplot2 :: ggplot ( data = data ) +
2023-01-21 23:47:20 +01:00
geom_sir (
2022-08-28 10:31:50 +02:00
position = position , x = x , fill = fill , translate_ab = translate_ab ,
minimum = minimum , language = language ,
2022-10-20 16:08:01 +02:00
combine_SI = combine_SI , ...
2022-08-28 10:31:50 +02:00
) +
2023-01-21 23:47:20 +01:00
theme_sir ( )
2022-08-28 10:31:50 +02:00
2019-06-13 14:28:46 +02:00
if ( fill == " interpretation" ) {
2023-01-21 23:47:20 +01:00
p <- p + scale_sir_colours ( colours = colours )
2018-09-16 22:11:17 +02:00
}
2022-08-28 10:31:50 +02:00
2019-06-27 11:57:45 +02:00
if ( identical ( position , " fill" ) ) {
2019-11-10 12:16:56 +01:00
# proportions, so use y scale with percentage
2018-12-16 22:45:12 +01:00
p <- p + scale_y_percent ( breaks = breaks , limits = limits )
2018-08-22 00:02:26 +02:00
}
2022-08-28 10:31:50 +02:00
2019-06-27 11:57:45 +02:00
if ( datalabels == TRUE ) {
2023-01-21 23:47:20 +01:00
p <- p + labels_sir_count (
2022-08-28 10:31:50 +02:00
position = position ,
x = x ,
translate_ab = translate_ab ,
minimum = minimum ,
language = language ,
combine_SI = combine_SI ,
datalabels.size = datalabels.size ,
datalabels.colour = datalabels.colour
)
2018-09-16 22:11:17 +02:00
}
2022-08-28 10:31:50 +02:00
2018-08-11 21:30:00 +02:00
if ( ! is.null ( facet ) ) {
2023-01-21 23:47:20 +01:00
p <- p + facet_sir ( facet = facet , nrow = nrow )
2018-08-11 21:30:00 +02:00
}
2022-08-28 10:31:50 +02:00
p <- p + ggplot2 :: labs (
title = title ,
subtitle = subtitle ,
caption = caption ,
x = x.title ,
y = y.title
)
2018-08-11 21:30:00 +02:00
p
}
2023-01-21 23:47:20 +01:00
#' @rdname ggplot_sir
2018-08-11 21:30:00 +02:00
#' @export
2023-01-21 23:47:20 +01:00
geom_sir <- function ( position = NULL ,
2019-06-13 14:28:46 +02:00
x = c ( " antibiotic" , " interpretation" ) ,
fill = " interpretation" ,
2019-05-10 16:44:59 +02:00
translate_ab = " name" ,
2020-09-18 16:05:53 +02:00
minimum = 30 ,
2021-12-12 09:42:03 +01:00
language = get_AMR_locale ( ) ,
2019-05-13 10:10:16 +02:00
combine_SI = TRUE ,
2022-08-28 10:31:50 +02:00
... ) {
2020-10-21 11:50:43 +02:00
x <- x [1 ]
2020-06-22 11:18:40 +02:00
stop_ifnot_installed ( " ggplot2" )
2020-10-19 17:09:19 +02:00
stop_if ( is.data.frame ( position ) , " `position` is invalid. Did you accidentally use '%>%' instead of '+'?" )
meet_criteria ( position , allow_class = " character" , has_length = 1 , is_in = c ( " fill" , " stack" , " dodge" ) , allow_NULL = TRUE )
meet_criteria ( x , allow_class = " character" , has_length = 1 )
meet_criteria ( fill , allow_class = " character" , has_length = 1 )
meet_criteria ( translate_ab , allow_class = c ( " character" , " logical" ) , has_length = 1 , allow_NA = TRUE )
2023-02-10 16:18:00 +01:00
meet_criteria ( minimum , allow_class = c ( " numeric" , " integer" ) , has_length = 1 , is_positive_or_zero = TRUE , is_finite = TRUE )
2022-10-05 09:12:22 +02:00
language <- validate_language ( language )
2020-10-19 17:09:19 +02:00
meet_criteria ( combine_SI , allow_class = " logical" , has_length = 1 )
2022-08-28 10:31:50 +02:00
2019-06-13 14:28:46 +02:00
y <- " value"
2022-10-05 09:12:22 +02:00
if ( missing ( position ) || is.null ( position ) ) {
2019-06-27 11:57:45 +02:00
position <- " fill"
2018-08-22 00:02:26 +02:00
}
2022-08-28 10:31:50 +02:00
2019-05-31 20:25:57 +02:00
if ( identical ( position , " fill" ) ) {
position <- ggplot2 :: position_fill ( vjust = 0.5 , reverse = TRUE )
}
2022-08-28 10:31:50 +02:00
2018-09-13 14:48:34 +02:00
# we work with aes_string later on
x_deparse <- deparse ( substitute ( x ) )
if ( x_deparse != " x" ) {
x <- x_deparse
}
if ( x %like% ' ".*"' ) {
x <- substr ( x , 2 , nchar ( x ) - 1 )
}
2022-08-28 10:31:50 +02:00
2019-10-11 17:21:02 +02:00
if ( tolower ( x ) %in% tolower ( c ( " ab" , " abx" , " antibiotics" ) ) ) {
2019-06-13 14:28:46 +02:00
x <- " antibiotic"
2023-01-21 23:47:20 +01:00
} else if ( tolower ( x ) %in% tolower ( c ( " SIR" , " sir" , " interpretations" , " result" ) ) ) {
2019-06-13 14:28:46 +02:00
x <- " interpretation"
2018-08-11 21:30:00 +02:00
}
2022-08-28 10:31:50 +02:00
2021-02-25 12:31:12 +01:00
ggplot2 :: geom_col (
data = function ( x ) {
2023-01-21 23:47:20 +01:00
sir_df (
2022-08-28 10:31:50 +02:00
data = x ,
translate_ab = translate_ab ,
language = language ,
minimum = minimum ,
2022-10-20 16:08:01 +02:00
combine_SI = combine_SI
2022-08-28 10:31:50 +02:00
)
2021-02-25 12:31:12 +01:00
} ,
mapping = ggplot2 :: aes_string ( x = x , y = y , fill = fill ) ,
position = position ,
...
)
2018-08-11 21:30:00 +02:00
}