mirror of
https://github.com/msberends/AMR.git
synced 2025-07-09 19:41:49 +02:00
Compare commits
23 Commits
v2.0.0
...
9591688811
Author | SHA1 | Date | |
---|---|---|---|
9591688811 | |||
e1966503ee | |||
766db4e21f | |||
c6135d2082 | |||
0bcf55d3b6 | |||
3018fb87a9 | |||
5f9769a4f7 | |||
8179092c57 | |||
91fa73dedf | |||
bf08d136a0 | |||
9de19fdc49 | |||
9148a2dcf4 | |||
2758615cd0 | |||
02322ac2ee | |||
cabffb22fd | |||
ad3061c754 | |||
1a02d302d4 | |||
ed70f95380 | |||
147f9112e9 | |||
549790c2a6 | |||
c28cfa3a77 | |||
dd7cc86485 | |||
68aa98f294 |
@ -30,6 +30,7 @@
|
||||
^vignettes/datasets\.Rmd$
|
||||
^vignettes/EUCAST\.Rmd$
|
||||
^vignettes/MDR\.Rmd$
|
||||
^vignettes/other_pkg.*\.Rmd$
|
||||
^vignettes/PCA\.Rmd$
|
||||
^vignettes/resistance_predict\.Rmd$
|
||||
^vignettes/SPSS\.Rmd$
|
||||
|
2
.github/prehooks/pre-commit
vendored
2
.github/prehooks/pre-commit
vendored
@ -11,7 +11,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
5
.github/workflows/check-old.yaml
vendored
5
.github/workflows/check-old.yaml
vendored
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -48,7 +48,8 @@ jobs:
|
||||
config:
|
||||
# Test all old versions of R >= 3.0, we support them all!
|
||||
# For these old versions, dependencies and vignettes will not be checked.
|
||||
# For recent R versions, see check-recent.yaml (r-lib and tidyverse support the latest 5 major R versions).
|
||||
# For recent R versions, see check-recent.yaml (r-lib and tidyverse support the latest 5 major R releases).
|
||||
- {os: windows-latest, r: '3.5', allowfail: true}
|
||||
- {os: ubuntu-latest, r: '3.4', allowfail: false}
|
||||
- {os: ubuntu-latest, r: '3.3', allowfail: false}
|
||||
- {os: ubuntu-latest, r: '3.2', allowfail: false}
|
||||
|
16
.github/workflows/check-recent.yaml
vendored
16
.github/workflows/check-recent.yaml
vendored
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -52,21 +52,21 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
config:
|
||||
# current development version:
|
||||
# current development version, check all major OSes:
|
||||
- {os: macOS-latest, r: 'devel', allowfail: false}
|
||||
- {os: windows-latest, r: 'devel', allowfail: false}
|
||||
- {os: ubuntu-latest, r: 'devel', allowfail: false}
|
||||
|
||||
# current 'release' version:
|
||||
- {os: macOS-latest, r: '4.2', allowfail: false}
|
||||
- {os: windows-latest, r: '4.2', allowfail: false}
|
||||
- {os: ubuntu-latest, r: '4.2', allowfail: false}
|
||||
# current 'release' version, check all major OSes:
|
||||
- {os: macOS-latest, r: '4.3', allowfail: false}
|
||||
- {os: windows-latest, r: '4.3', allowfail: false}
|
||||
- {os: ubuntu-latest, r: '4.3', allowfail: false}
|
||||
|
||||
# older versions (see also check-old.yaml for even older versions):
|
||||
- {os: ubuntu-latest, r: '4.2', allowfail: false}
|
||||
- {os: ubuntu-latest, r: '4.1', allowfail: false}
|
||||
- {os: ubuntu-latest, r: '4.0', allowfail: false}
|
||||
- {os: ubuntu-latest, r: '3.6', allowfail: false}
|
||||
- {os: ubuntu-latest, r: '3.5', allowfail: false} # when a new R releases, this one has to move to check-old.yaml
|
||||
- {os: ubuntu-latest, r: '3.6', allowfail: false} # when a new R releases, this one has to move to check-old.yaml
|
||||
|
||||
env:
|
||||
GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
2
.github/workflows/codecovr.yaml
vendored
2
.github/workflows/codecovr.yaml
vendored
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
2
.github/workflows/lintr.yaml
vendored
2
.github/workflows/lintr.yaml
vendored
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
8
.github/workflows/website.yaml
vendored
8
.github/workflows/website.yaml
vendored
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -65,7 +65,11 @@ jobs:
|
||||
- name: Set up R dependencies
|
||||
uses: r-lib/actions/setup-r-dependencies@v2
|
||||
with:
|
||||
extra-packages: any::pkgdown
|
||||
# add extra packages for website articles:
|
||||
extra-packages: |
|
||||
any::pkgdown
|
||||
any::tidymodels
|
||||
any::data.table
|
||||
|
||||
# Send updates to repo using GH Actions bot
|
||||
- name: Create website in separate branch
|
||||
|
@ -1,6 +1,6 @@
|
||||
Package: AMR
|
||||
Version: 2.0.0
|
||||
Date: 2023-03-12
|
||||
Version: 2.0.0.9023
|
||||
Date: 2023-05-27
|
||||
Title: Antimicrobial Resistance Data Analysis
|
||||
Description: Functions to simplify and standardise antimicrobial resistance (AMR)
|
||||
data analysis and to work with microbial and antimicrobial properties by
|
||||
|
@ -330,6 +330,7 @@ export(mo_gbif)
|
||||
export(mo_genus)
|
||||
export(mo_gramstain)
|
||||
export(mo_info)
|
||||
export(mo_is_anaerobic)
|
||||
export(mo_is_gram_negative)
|
||||
export(mo_is_gram_positive)
|
||||
export(mo_is_intrinsic_resistant)
|
||||
@ -339,6 +340,7 @@ export(mo_lpsn)
|
||||
export(mo_matching_score)
|
||||
export(mo_name)
|
||||
export(mo_order)
|
||||
export(mo_oxygen_tolerance)
|
||||
export(mo_pathogenicity)
|
||||
export(mo_phylum)
|
||||
export(mo_property)
|
||||
|
18
NEWS.md
18
NEWS.md
@ -1,3 +1,21 @@
|
||||
# AMR 2.0.0.9023
|
||||
|
||||
## Changed
|
||||
* Added oxygen tolerance from BacDive to over 25,000 bacteria in the `microorganisms` data set
|
||||
* Added `mo_oxygen_tolerance()` to retrieve the values
|
||||
* Added `mo_is_anaerobic()` to determine which genera/species are obligate anaerobic bacteria
|
||||
* Added LPSN and GBIF identifiers, and oxygen tolerance to `mo_info()`
|
||||
* Added SAS Transport files (file extension `.xpt`) to [our download page](https://msberends.github.io/AMR/articles/datasets.html) to use in SAS software
|
||||
* Added microbial codes for Gram-negative/positive anaerobic bacteria
|
||||
* `mo_rank()` now returns `NA` for 'unknown' microorganisms (`B_ANAER`, `B_ANAER-NEG`, `B_ANAER-POS`, `B_GRAMN`, `B_GRAMP`, `F_FUNGUS`, `F_YEAST`, and `UNKNOWN`)
|
||||
* Fixed formatting for `sir_interpretation_history()`
|
||||
* Fixed some WHONET codes for microorganisms and consequently a couple of entries in `clinical_breakpoints`
|
||||
* Fixed a bug for `as.mo()` that led to coercion of `NA` values when using custom microorganism codes
|
||||
* Fixed usage of `icu_exclude` in `first_isolates()`
|
||||
* Improved `as.mo()` algorithm for searching on only species names
|
||||
* Updated the code table in `microorganisms.codes`
|
||||
|
||||
|
||||
# AMR 2.0.0
|
||||
|
||||
This is a new major release of the AMR package, with great new additions but also some breaking changes for current users. These are all listed below.
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -81,6 +81,11 @@ TAXONOMY_VERSION <- list(
|
||||
citation = "Parte, AC *et al.* (2020). **List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ.** International Journal of Systematic and Evolutionary Microbiology, 70, 5607-5612; \\doi{10.1099/ijsem.0.004332}.",
|
||||
url = "https://lpsn.dsmz.de"
|
||||
),
|
||||
BacDive = list(
|
||||
accessed_date = as.Date("2023-05-12"),
|
||||
citation = "Reimer, LC *et al.* (2022). ***BacDive* in 2022: the knowledge base for standardized bacterial and archaeal data.** Nucleic Acids Res., 50(D1):D741-D74; \\doi{10.1093/nar/gkab961}.",
|
||||
url = "https://bacdive.dsmz.de"
|
||||
),
|
||||
SNOMED = list(
|
||||
accessed_date = as.Date("2021-07-01"),
|
||||
citation = "Public Health Information Network Vocabulary Access and Distribution System (PHIN VADS). US Edition of SNOMED CT from 1 September 2020. Value Set Name 'Microoganism', OID 2.16.840.1.114222.4.11.1009 (v12).",
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -505,7 +505,7 @@ word_wrap <- function(...,
|
||||
|
||||
# clean introduced whitespace between fullstops
|
||||
msg <- gsub("[.] +[.]", "..", msg)
|
||||
# remove extra space that was introduced (e.g. "Smith et al., 2022")
|
||||
# remove extra space that was introduced (e.g. "Smith et al. , 2022")
|
||||
msg <- gsub(". ,", ".,", msg, fixed = TRUE)
|
||||
msg <- gsub("[ ,", "[,", msg, fixed = TRUE)
|
||||
msg <- gsub("/ /", "//", msg, fixed = TRUE)
|
||||
@ -629,7 +629,12 @@ dataset_UTF8_to_ASCII <- function(df) {
|
||||
}
|
||||
|
||||
documentation_date <- function(d) {
|
||||
paste0(trimws(format(d, "%e")), " ", month.name[as.integer(format(d, "%m"))], ", ", format(d, "%Y"))
|
||||
day <- as.integer(format(d, "%e"))
|
||||
suffix <- rep("th", length(day))
|
||||
suffix[day %in% c(1, 21, 31)] <- "st"
|
||||
suffix[day %in% c(2, 22)] <- "nd"
|
||||
suffix[day %in% c(3, 23)] <- "rd"
|
||||
paste0(month.name[as.integer(format(d, "%m"))], " ", day, suffix, ", ", format(d, "%Y"))
|
||||
}
|
||||
|
||||
format_included_data_number <- function(data) {
|
||||
@ -644,10 +649,13 @@ format_included_data_number <- function(data) {
|
||||
rounder <- -3 # round on thousands
|
||||
} else if (n > 1000) {
|
||||
rounder <- -2 # round on hundreds
|
||||
} else if (n < 50) {
|
||||
# do not round
|
||||
rounder <- 0
|
||||
} else {
|
||||
rounder <- -1 # round on tens
|
||||
}
|
||||
paste0("~", format(round(n, rounder), decimal.mark = ".", big.mark = " "))
|
||||
paste0(ifelse(rounder == 0, "", "~"), format(round(n, rounder), decimal.mark = ".", big.mark = " "))
|
||||
}
|
||||
|
||||
# for eucast_rules() and mdro(), creates markdown output with URLs and names
|
||||
@ -670,10 +678,15 @@ create_eucast_ab_documentation <- function() {
|
||||
atcs <- ab_atc(ab, only_first = TRUE)
|
||||
# only keep ABx with an ATC code:
|
||||
ab <- ab[!is.na(atcs)]
|
||||
atcs <- atcs[!is.na(atcs)]
|
||||
|
||||
# sort all vectors on name:
|
||||
ab_names <- ab_name(ab, language = NULL, tolower = TRUE)
|
||||
ab <- ab[order(ab_names)]
|
||||
atcs <- atcs[order(ab_names)]
|
||||
ab_names <- ab_names[order(ab_names)]
|
||||
atc_txt <- paste0("[", atcs[!is.na(atcs)], "](", ab_url(ab), ")")
|
||||
# create the text:
|
||||
atc_txt <- paste0("[", atcs, "](", ab_url(ab), ")")
|
||||
out <- paste0(ab_names, " (`", ab, "`, ", atc_txt, ")", collapse = ", ")
|
||||
substr(out, 1, 1) <- toupper(substr(out, 1, 1))
|
||||
out
|
||||
@ -996,7 +1009,7 @@ get_current_column <- function() {
|
||||
|
||||
# cur_column() doesn't always work (only allowed for certain conditions set by dplyr), but it's probably still possible:
|
||||
frms <- lapply(sys.frames(), function(env) {
|
||||
if (!is.null(env$i)) {
|
||||
if (tryCatch(!is.null(env$i), error = function(e) FALSE)) {
|
||||
if (!is.null(env$tibble_vars)) {
|
||||
# for mutate_if()
|
||||
env$tibble_vars[env$i]
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
2
R/ab.R
2
R/ab.R
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -69,7 +69,7 @@
|
||||
#' ab_atc_group2("AMX")
|
||||
#' ab_url("AMX")
|
||||
#'
|
||||
#' # smart lowercase tranformation
|
||||
#' # smart lowercase transformation
|
||||
#' ab_name(x = c("AMC", "PLB"))
|
||||
#' ab_name(x = c("AMC", "PLB"), tolower = TRUE)
|
||||
#'
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
2
R/age.R
2
R/age.R
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -224,7 +224,7 @@
|
||||
#' # in an Rmd file, you would just need to return `ureido` in a chunk,
|
||||
#' # but to be explicit here:
|
||||
#' if (requireNamespace("knitr")) {
|
||||
#' knitr::knit_print(ureido)
|
||||
#' cat(knitr::knit_print(ureido))
|
||||
#' }
|
||||
#'
|
||||
#'
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
2
R/av.R
2
R/av.R
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -61,7 +61,7 @@
|
||||
#' av_group("ACI")
|
||||
#' av_url("ACI")
|
||||
#'
|
||||
#' # smart lowercase tranformation
|
||||
#' # lowercase transformation
|
||||
#' av_name(x = c("ACI", "VALA"))
|
||||
#' av_name(x = c("ACI", "VALA"), tolower = TRUE)
|
||||
#'
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -71,7 +71,8 @@
|
||||
#' @examples
|
||||
#' \donttest{
|
||||
#' # a combination of species is not formal taxonomy, so
|
||||
#' # this will result in only "Enterobacter asburiae":
|
||||
#' # this will result in "Enterobacter cloacae cloacae",
|
||||
#' # since it resembles the input best:
|
||||
#' mo_name("Enterobacter asburiae/cloacae")
|
||||
#'
|
||||
#' # now add a custom entry - it will be considered by as.mo() and
|
||||
@ -109,7 +110,7 @@
|
||||
#' mo_name("BACTEROIDES / PARABACTEROIDES")
|
||||
#' mo_rank("BACTEROIDES / PARABACTEROIDES")
|
||||
#'
|
||||
#' # taxonomy still works, although a slashline genus was given as input:
|
||||
#' # taxonomy still works, even though a slashline genus was given as input:
|
||||
#' mo_family("Bacteroides/Parabacteroides")
|
||||
#'
|
||||
#'
|
||||
@ -247,19 +248,14 @@ add_custom_microorganisms <- function(x) {
|
||||
"CUSTOM",
|
||||
seq.int(from = current + 1, to = current + nrow(x), by = 1),
|
||||
"_",
|
||||
toupper(unname(abbreviate(
|
||||
gsub(
|
||||
" +", " _ ",
|
||||
gsub(
|
||||
"[^A-Za-z0-9-]", " ",
|
||||
trimws2(paste(x$genus, x$species, x$subspecies))
|
||||
)
|
||||
),
|
||||
minlength = 10
|
||||
)))
|
||||
)
|
||||
trimws(
|
||||
paste(abbreviate_mo(x$genus, 5),
|
||||
abbreviate_mo(x$species, 4, hyphen_as_space = TRUE),
|
||||
abbreviate_mo(x$subspecies, 4, hyphen_as_space = TRUE),
|
||||
sep = "_"),
|
||||
whitespace = "_"))
|
||||
stop_if(anyDuplicated(c(as.character(AMR_env$MO_lookup$mo), x$mo)), "MO codes must be unique and not match existing MO codes of the AMR package")
|
||||
|
||||
|
||||
# add to package ----
|
||||
AMR_env$custom_mo_codes <- c(AMR_env$custom_mo_codes, x$mo)
|
||||
class(AMR_env$MO_lookup$mo) <- "character"
|
||||
@ -306,3 +302,26 @@ clear_custom_microorganisms <- function() {
|
||||
AMR_env$mo_uncertainties <- AMR_env$mo_uncertainties[0, , drop = FALSE]
|
||||
message_("Cleared ", nr2char(n - n2), " custom record", ifelse(n - n2 > 1, "s", ""), " from the internal `microorganisms` data set.")
|
||||
}
|
||||
|
||||
abbreviate_mo <- function(x, minlength = 5, prefix = "", hyphen_as_space = FALSE, ...) {
|
||||
if (hyphen_as_space == TRUE) {
|
||||
x <- gsub("-", " ", x, fixed = TRUE)
|
||||
}
|
||||
# keep a starting Latin ae
|
||||
suppressWarnings(
|
||||
gsub("(\u00C6|\u00E6)+",
|
||||
"AE",
|
||||
toupper(
|
||||
paste0(prefix,
|
||||
abbreviate(
|
||||
gsub("^ae",
|
||||
"\u00E6\u00E6",
|
||||
x,
|
||||
ignore.case = TRUE),
|
||||
minlength = minlength,
|
||||
use.classes = TRUE,
|
||||
method = "both.sides",
|
||||
...
|
||||
))))
|
||||
)
|
||||
}
|
||||
|
20
R/data.R
20
R/data.R
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -93,6 +93,7 @@
|
||||
#' - `rank`\cr Text of the taxonomic rank of the microorganism, such as `"species"` or `"genus"`
|
||||
#' - `ref`\cr Author(s) and year of related scientific publication. This contains only the *first surname* and year of the *latest* authors, e.g. "Wallis *et al.* 2006 *emend.* Smith and Jones 2018" becomes "Smith *et al.*, 2018". This field is directly retrieved from the source specified in the column `source`. Moreover, accents were removed to comply with CRAN that only allows ASCII characters, e.g. "V`r "\u00e1\u0148ov\u00e1"`" becomes "Vanova".
|
||||
#' - `lpsn`\cr Identifier ('Record number') of the List of Prokaryotic names with Standing in Nomenclature (LPSN). This will be the first/highest LPSN identifier to keep one identifier per row. For example, *Acetobacter ascendens* has LPSN Record number 7864 and 11011. Only the first is available in the `microorganisms` data set.
|
||||
#' - `oxygen_tolerance` \cr Oxygen tolerance, either `r vector_or(microorganisms$oxygen_tolerance)`. These data were retrieved from BacDive (see *Source*). Items that contain "likely" are missing from BacDive and were extrapolated from other species within the same genus to guess the oxygen tolerance. Currently `r round(length(microorganisms$oxygen_tolerance[which(!is.na(microorganisms$oxygen_tolerance))]) / nrow(microorganisms[which(microorganisms$kingdom == "Bacteria"), ]) * 100, 1)`% of all `r format_included_data_number(nrow(microorganisms[which(microorganisms$kingdom == "Bacteria"), ]))` bacteria in the data set contain an oxygen tolerance.
|
||||
#' - `lpsn_parent`\cr LPSN identifier of the parent taxon
|
||||
#' - `lpsn_renamed_to`\cr LPSN identifier of the currently valid taxon
|
||||
#' - `gbif`\cr Identifier ('taxonID') of the Global Biodiversity Information Facility (GBIF)
|
||||
@ -120,12 +121,12 @@
|
||||
#' ### Manual additions
|
||||
#' For convenience, some entries were added manually:
|
||||
#'
|
||||
#' - `r format_included_data_number(which(microorganisms$genus == "Salmonella" & microorganisms$species == "enterica" & microorganisms$source == "manually added"))` entries for the city-like serovars of *Salmonellae*
|
||||
#' - 11 entries of *Streptococcus* (beta-haemolytic: groups A, B, C, D, F, G, H, K and unspecified; other: viridans, milleri)
|
||||
#' - `r format_included_data_number(microorganisms[which(microorganisms$source == "manually added" & microorganisms$genus == "Salmonella"), , drop = FALSE])` entries of *Salmonella*, such as the city-like serovars and groups A to H
|
||||
#' - `r format_included_data_number(microorganisms[which(microorganisms$source == "manually added" & microorganisms$genus == "Streptococcus"), , drop = FALSE])` entries of *Streptococcus*, such as the beta-haemolytic groups A to K, viridans, and milleri
|
||||
#' - 2 entries of *Staphylococcus* (coagulase-negative (CoNS) and coagulase-positive (CoPS))
|
||||
#' - 1 entry of *Blastocystis* (*B. hominis*), although it officially does not exist (Noel *et al.* 2005, PMID 15634993)
|
||||
#' - 1 entry of *Moraxella* (*M. catarrhalis*), which was formally named *Branhamella catarrhalis* (Catlin, 1970) though this change was never accepted within the field of clinical microbiology
|
||||
#' - 6 other 'undefined' entries (unknown, unknown Gram negatives, unknown Gram positives, unknown yeast, unknown fungus, and unknown anaerobic bacteria)
|
||||
#' - 8 other 'undefined' entries (unknown, unknown Gram-negatives, unknown Gram-positives, unknown yeast, unknown fungus, and unknown anaerobic Gram-pos/Gram-neg bacteria)
|
||||
#'
|
||||
#' The syntax used to transform the original data to a cleansed \R format, can be found here: <https://github.com/msberends/AMR/blob/main/data-raw/reproduction_of_microorganisms.R>.
|
||||
#'
|
||||
@ -140,6 +141,8 @@
|
||||
#'
|
||||
#' * `r TAXONOMY_VERSION$GBIF$citation` Accessed from <`r TAXONOMY_VERSION$GBIF$url`> on `r documentation_date(TAXONOMY_VERSION$GBIF$accessed_date)`.
|
||||
#'
|
||||
#' * `r TAXONOMY_VERSION$BacDive$citation` Accessed from <`r TAXONOMY_VERSION$BacDive$url`> on `r documentation_date(TAXONOMY_VERSION$BacDive$accessed_date)`.
|
||||
#'
|
||||
#' * `r TAXONOMY_VERSION$SNOMED$citation` URL: <`r TAXONOMY_VERSION$SNOMED$url`>
|
||||
#'
|
||||
#' * Grimont *et al.* (2007). Antigenic Formulae of the Salmonella Serovars, 9th Edition. WHO Collaborating Centre for Reference and Research on *Salmonella* (WHOCC-SALM).
|
||||
@ -161,6 +164,15 @@
|
||||
#' @seealso [as.mo()] [microorganisms]
|
||||
#' @examples
|
||||
#' microorganisms.codes
|
||||
#'
|
||||
#' # 'ECO' or 'eco' is the WHONET code for E. coli:
|
||||
#' microorganisms.codes[microorganisms.codes$code == "ECO", ]
|
||||
#'
|
||||
#' # and therefore, 'eco' will be understood as E. coli in this package:
|
||||
#' mo_info("eco")
|
||||
#'
|
||||
#' # works for all AMR functions:
|
||||
#' mo_is_intrinsic_resistant("eco", ab = "vancomycin")
|
||||
"microorganisms.codes"
|
||||
|
||||
#' Data Set with `r format(nrow(example_isolates), big.mark = " ")` Example Isolates
|
||||
|
2
R/disk.R
2
R/disk.R
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -191,13 +191,14 @@ first_isolate <- function(x = NULL,
|
||||
}
|
||||
meet_criteria(col_specimen, allow_class = "character", has_length = 1, allow_NULL = TRUE, is_in = colnames(x))
|
||||
if (is.logical(col_icu)) {
|
||||
meet_criteria(col_icu, allow_class = "logical", has_length = c(1, nrow(x)), allow_NULL = TRUE)
|
||||
if (length(col_icu) == 1) {
|
||||
col_icu <- rep(col_icu, nrow(x))
|
||||
}
|
||||
} else {
|
||||
meet_criteria(col_icu, allow_class = "logical", has_length = c(1, nrow(x)), allow_NA = TRUE, allow_NULL = TRUE)
|
||||
x$newvar_is_icu <- col_icu
|
||||
} else if (!is.null(col_icu)) {
|
||||
# add "logical" to the allowed classes here, since it may give an error in certain user input, and should then also say that logicals can be used too
|
||||
meet_criteria(col_icu, allow_class = c("character", "logical"), has_length = 1, allow_NULL = TRUE, is_in = colnames(x))
|
||||
col_icu <- x[, col_icu, drop = TRUE]
|
||||
x$newvar_is_icu <- x[, col_icu, drop = TRUE]
|
||||
} else {
|
||||
x$newvar_is_icu <- NA
|
||||
}
|
||||
# method
|
||||
method <- coerce_method(method)
|
||||
@ -251,14 +252,13 @@ first_isolate <- function(x = NULL,
|
||||
"Determining first isolates ",
|
||||
ifelse(method %in% c("episode-based", "phenotype-based"),
|
||||
ifelse(is.infinite(episode_days),
|
||||
"without a specified episode length",
|
||||
paste("using an episode length of", episode_days, "days")
|
||||
paste(font_bold("without"), " a specified episode length"),
|
||||
paste("using an episode length of", font_bold(paste(episode_days, "days")))
|
||||
),
|
||||
""
|
||||
)
|
||||
),
|
||||
as_note = FALSE,
|
||||
add_fn = font_black
|
||||
add_fn = font_red
|
||||
)
|
||||
}
|
||||
|
||||
@ -358,8 +358,7 @@ first_isolate <- function(x = NULL,
|
||||
# remove testcodes
|
||||
if (!is.null(testcodes_exclude) && isTRUE(info) && message_not_thrown_before("first_isolate", "excludingtestcodes")) {
|
||||
message_("Excluding test codes: ", vector_and(testcodes_exclude, quotes = TRUE),
|
||||
add_fn = font_black,
|
||||
as_note = FALSE
|
||||
add_fn = font_red
|
||||
)
|
||||
}
|
||||
|
||||
@ -372,8 +371,7 @@ first_isolate <- function(x = NULL,
|
||||
check_columns_existance(col_specimen, x)
|
||||
if (isTRUE(info) && message_not_thrown_before("first_isolate", "excludingspecimen")) {
|
||||
message_("Excluding other than specimen group '", specimen_group, "'",
|
||||
add_fn = font_black,
|
||||
as_note = FALSE
|
||||
add_fn = font_red
|
||||
)
|
||||
}
|
||||
}
|
||||
@ -455,15 +453,13 @@ first_isolate <- function(x = NULL,
|
||||
message_("Basing inclusion on key antimicrobials, ",
|
||||
ifelse(ignore_I == FALSE, "not ", ""),
|
||||
"ignoring I",
|
||||
add_fn = font_black,
|
||||
as_note = FALSE
|
||||
add_fn = font_red
|
||||
)
|
||||
}
|
||||
if (type == "points") {
|
||||
message_("Basing inclusion on all antimicrobial results, using a points threshold of ",
|
||||
points_threshold,
|
||||
add_fn = font_black,
|
||||
as_note = FALSE
|
||||
add_fn = font_red
|
||||
)
|
||||
}
|
||||
}
|
||||
@ -505,34 +501,28 @@ first_isolate <- function(x = NULL,
|
||||
x$newvar_genus_species != "" &
|
||||
(x$other_pat_or_mo | x$more_than_episode_ago)
|
||||
}
|
||||
|
||||
|
||||
decimal.mark <- getOption("OutDec")
|
||||
big.mark <- ifelse(decimal.mark != ",", ",", " ")
|
||||
|
||||
# first one as TRUE
|
||||
x[row.start, "newvar_first_isolate"] <- TRUE
|
||||
# no tests that should be included, or ICU
|
||||
if (!is.null(col_testcode)) {
|
||||
x[which(x[, col_testcode] %in% tolower(testcodes_exclude)), "newvar_first_isolate"] <- FALSE
|
||||
}
|
||||
|
||||
if (!is.null(col_icu)) {
|
||||
if (any(!is.na(x$newvar_is_icu)) && any(x$newvar_is_icu == TRUE, na.rm = TRUE)) {
|
||||
if (icu_exclude == TRUE) {
|
||||
if (isTRUE(info)) {
|
||||
message_("Excluding ", format(sum(col_icu, na.rm = TRUE), big.mark = " "), " isolates from ICU.",
|
||||
add_fn = font_black,
|
||||
as_note = FALSE
|
||||
)
|
||||
message_("Excluding ", format(sum(x$newvar_is_icu, na.rm = TRUE), decimal.mark = decimal.mark, big.mark = big.mark), " isolates from ICU.",
|
||||
add_fn = font_red)
|
||||
}
|
||||
x[which(col_icu), "newvar_first_isolate"] <- FALSE
|
||||
x[which(x$newvar_is_icu), "newvar_first_isolate"] <- FALSE
|
||||
} else if (isTRUE(info)) {
|
||||
message_("Including isolates from ICU.",
|
||||
add_fn = font_black,
|
||||
as_note = FALSE
|
||||
)
|
||||
message_("Including isolates from ICU.")
|
||||
}
|
||||
}
|
||||
|
||||
decimal.mark <- getOption("OutDec")
|
||||
big.mark <- ifelse(decimal.mark != ",", ",", " ")
|
||||
|
||||
if (isTRUE(info)) {
|
||||
# print group name if used in dplyr::group_by()
|
||||
cur_group <- import_fn("cur_group", "dplyr", error_on_fail = FALSE)
|
||||
@ -560,11 +550,12 @@ first_isolate <- function(x = NULL,
|
||||
# handle empty microorganisms
|
||||
if (any(x$newvar_mo == "UNKNOWN", na.rm = TRUE) && isTRUE(info)) {
|
||||
message_(
|
||||
ifelse(include_unknown == TRUE, "Included ", "Excluded "),
|
||||
ifelse(include_unknown == TRUE, "Including ", "Excluding "),
|
||||
format(sum(x$newvar_mo == "UNKNOWN", na.rm = TRUE),
|
||||
decimal.mark = decimal.mark, big.mark = big.mark
|
||||
),
|
||||
" isolates with a microbial ID 'UNKNOWN' (in column '", font_bold(col_mo), "')"
|
||||
" isolates with a microbial ID 'UNKNOWN' (in column '", font_bold(col_mo), "')",
|
||||
add_fn = font_red
|
||||
)
|
||||
}
|
||||
x[which(x$newvar_mo == "UNKNOWN"), "newvar_first_isolate"] <- include_unknown
|
||||
@ -572,10 +563,11 @@ first_isolate <- function(x = NULL,
|
||||
# exclude all NAs
|
||||
if (anyNA(x$newvar_mo) && isTRUE(info)) {
|
||||
message_(
|
||||
"Excluded ", format(sum(is.na(x$newvar_mo), na.rm = TRUE),
|
||||
"Excluding ", format(sum(is.na(x$newvar_mo), na.rm = TRUE),
|
||||
decimal.mark = decimal.mark, big.mark = big.mark
|
||||
),
|
||||
" isolates with a microbial ID 'NA' (in column '", font_bold(col_mo), "')"
|
||||
" isolates with a microbial ID `NA` (in column '", font_bold(col_mo), "')",
|
||||
add_fn = font_red
|
||||
)
|
||||
}
|
||||
x[which(is.na(x$newvar_mo)), "newvar_first_isolate"] <- FALSE
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -57,7 +57,7 @@ italicise_taxonomy <- function(string, type = c("markdown", "ansi")) {
|
||||
before <- "*"
|
||||
after <- "*"
|
||||
} else if (type == "ansi") {
|
||||
if (!has_colour()) {
|
||||
if (!has_colour() && !identical(Sys.getenv("IN_PKGDOWN"), "true")) {
|
||||
return(string)
|
||||
}
|
||||
before <- "\033[3m"
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
5
R/like.R
5
R/like.R
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -49,6 +49,9 @@
|
||||
#' @seealso [grepl()]
|
||||
|
||||
#' @examples
|
||||
#' # data.table has a more limited version of %like%, so unload it:
|
||||
#' try(detach("package:data.table", unload = TRUE), silent = TRUE)
|
||||
#'
|
||||
#' a <- "This is a test"
|
||||
#' b <- "TEST"
|
||||
#' a %like% b
|
||||
|
2
R/mdro.R
2
R/mdro.R
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
2
R/mic.R
2
R/mic.R
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
92
R/mo.R
92
R/mo.R
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -95,13 +95,14 @@
|
||||
#' 1. Berends MS *et al.* (2022). **AMR: An R Package for Working with Antimicrobial Resistance Data**. *Journal of Statistical Software*, 104(3), 1-31; \doi{10.18637/jss.v104.i03}
|
||||
#' 2. Becker K *et al.* (2014). **Coagulase-Negative Staphylococci.** *Clin Microbiol Rev.* 27(4): 870-926; \doi{10.1128/CMR.00109-13}
|
||||
#' 3. Becker K *et al.* (2019). **Implications of identifying the recently defined members of the *S. aureus* complex, *S. argenteus* and *S. schweitzeri*: A position paper of members of the ESCMID Study Group for staphylococci and Staphylococcal Diseases (ESGS).** *Clin Microbiol Infect*; \doi{10.1016/j.cmi.2019.02.028}
|
||||
#' 4. Becker K *et al.* (2020). **Emergence of coagulase-negative staphylococci** *Expert Rev Anti Infect Ther.* 18(4):349-366; \doi{10.1080/14787210.2020.1730813}
|
||||
#' 5. Lancefield RC (1933). **A serological differentiation of human and other groups of hemolytic streptococci**. *J Exp Med.* 57(4): 571-95; \doi{10.1084/jem.57.4.571}
|
||||
#' 6. Berends MS *et al.* (2022). **Trends in Occurrence and Phenotypic Resistance of Coagulase-Negative Staphylococci (CoNS) Found in Human Blood in the Northern Netherlands between 2013 and 2019** *Microorganisms* 10(9), 1801; \doi{10.3390/microorganisms10091801}
|
||||
#' 4. Becker K *et al.* (2020). **Emergence of coagulase-negative staphylococci.** *Expert Rev Anti Infect Ther.* 18(4):349-366; \doi{10.1080/14787210.2020.1730813}
|
||||
#' 5. Lancefield RC (1933). **A serological differentiation of human and other groups of hemolytic streptococci.** *J Exp Med.* 57(4): 571-95; \doi{10.1084/jem.57.4.571}
|
||||
#' 6. Berends MS *et al.* (2022). **Trends in Occurrence and Phenotypic Resistance of Coagulase-Negative Staphylococci (CoNS) Found in Human Blood in the Northern Netherlands between 2013 and 2019/** *Micro.rganisms* 10(9), 1801; \doi{10.3390/microorganisms10091801}
|
||||
#' 7. `r TAXONOMY_VERSION$LPSN$citation` Accessed from <`r TAXONOMY_VERSION$LPSN$url`> on `r documentation_date(TAXONOMY_VERSION$LPSN$accessed_date)`.
|
||||
#' 8. `r TAXONOMY_VERSION$GBIF$citation` Accessed from <`r TAXONOMY_VERSION$GBIF$url`> on `r documentation_date(TAXONOMY_VERSION$GBIF$accessed_date)`.
|
||||
#' 9. `r TAXONOMY_VERSION$SNOMED$citation` URL: <`r TAXONOMY_VERSION$SNOMED$url`>
|
||||
#' 10. Bartlett A *et al.* (2022). **A comprehensive list of bacterial pathogens infecting humans** *Microbiology* 168:001269; \doi{10.1099/mic.0.001269}
|
||||
#' 9. `r TAXONOMY_VERSION$BacDive$citation` Accessed from <`r TAXONOMY_VERSION$BacDive$url`> on `r documentation_date(TAXONOMY_VERSION$BacDive$accessed_date)`.
|
||||
#' 10. `r TAXONOMY_VERSION$SNOMED$citation` URL: <`r TAXONOMY_VERSION$SNOMED$url`>
|
||||
#' 11. Bartlett A *et al.* (2022). **A comprehensive list of bacterial pathogens infecting humans** *Microbiology* 168:001269; \doi{10.1099/mic.0.001269}
|
||||
#' @export
|
||||
#' @return A [character] [vector] with additional class [`mo`]
|
||||
#' @seealso [microorganisms] for the [data.frame] that is being used to determine ID's.
|
||||
@ -214,10 +215,10 @@ as.mo <- function(x,
|
||||
# From known codes ----
|
||||
out[is.na(out) & toupper(x) %in% AMR::microorganisms.codes$code] <- AMR::microorganisms.codes$mo[match(toupper(x)[is.na(out) & toupper(x) %in% AMR::microorganisms.codes$code], AMR::microorganisms.codes$code)]
|
||||
# From SNOMED ----
|
||||
if (any(is.na(out) & !is.na(x)) && any(is.na(out) & x %in% unlist(AMR_env$MO_lookup$snomed), na.rm = TRUE)) {
|
||||
# found this extremely fast gem here: https://stackoverflow.com/a/11002456/4575331
|
||||
out[is.na(out) & x %in% unlist(AMR_env$MO_lookup$snomed)] <- AMR_env$MO_lookup$mo[rep(seq_along(AMR_env$MO_lookup$snomed), vapply(FUN.VALUE = double(1), AMR_env$MO_lookup$snomed, length))[match(x[is.na(out) & x %in% unlist(AMR_env$MO_lookup$snomed)], unlist(AMR_env$MO_lookup$snomed))]]
|
||||
}
|
||||
# based on this extremely fast gem: https://stackoverflow.com/a/11002456/4575331
|
||||
snomeds <- unlist(AMR_env$MO_lookup$snomed)
|
||||
snomeds <- snomeds[!is.na(snomeds)]
|
||||
out[is.na(out) & x %in% snomeds] <- AMR_env$MO_lookup$mo[rep(seq_along(AMR_env$MO_lookup$snomed), vapply(FUN.VALUE = double(1), AMR_env$MO_lookup$snomed, length))[match(x[is.na(out) & x %in% snomeds], snomeds)]]
|
||||
# From other familiar output ----
|
||||
# such as Salmonella groups, colloquial names, etc.
|
||||
out[is.na(out)] <- convert_colloquial_input(x[is.na(out)])
|
||||
@ -282,9 +283,19 @@ as.mo <- function(x,
|
||||
# do a pre-match on first character (and if it contains a space, first chars of first two terms)
|
||||
if (length(x_parts) %in% c(2, 3)) {
|
||||
# for genus + species + subspecies
|
||||
filtr <- which(AMR_env$MO_lookup$full_first == substr(x_parts[1], 1, 1) & (AMR_env$MO_lookup$species_first == substr(x_parts[2], 1, 1) | AMR_env$MO_lookup$subspecies_first == substr(x_parts[2], 1, 1)))
|
||||
if (nchar(gsub("[^a-z]", "", x_parts[1], perl = TRUE)) <= 3) {
|
||||
filtr <- which(AMR_env$MO_lookup$full_first == substr(x_parts[1], 1, 1) &
|
||||
(AMR_env$MO_lookup$species_first == substr(x_parts[2], 1, 1) |
|
||||
AMR_env$MO_lookup$subspecies_first == substr(x_parts[2], 1, 1) |
|
||||
AMR_env$MO_lookup$subspecies_first == substr(x_parts[3], 1, 1)))
|
||||
} else {
|
||||
filtr <- which(AMR_env$MO_lookup$full_first == substr(x_parts[1], 1, 1) |
|
||||
AMR_env$MO_lookup$species_first == substr(x_parts[2], 1, 1) |
|
||||
AMR_env$MO_lookup$subspecies_first == substr(x_parts[2], 1, 1) |
|
||||
AMR_env$MO_lookup$subspecies_first == substr(x_parts[3], 1, 1))
|
||||
}
|
||||
} else if (length(x_parts) > 3) {
|
||||
first_chars <- paste0("(^| )", "[", paste(substr(x_parts, 1, 1), collapse = ""), "]")
|
||||
first_chars <- paste0("(^| )[", paste(substr(x_parts, 1, 1), collapse = ""), "]")
|
||||
filtr <- which(AMR_env$MO_lookup$full_first %like_case% first_chars)
|
||||
} else if (nchar(x_out) == 4) {
|
||||
# no space and 4 characters - probably a code such as STAU or ESCO
|
||||
@ -297,7 +308,10 @@ as.mo <- function(x,
|
||||
msg <- c(msg, paste0("Input \"", x_search, "\" was assumed to be a microorganism code - tried to match on ", vector_and(c(gsub("[a-z]*", "(...)", first_part, fixed = TRUE), second_part), sort = FALSE)))
|
||||
filtr <- which(AMR_env$MO_lookup$fullname_lower %like_case% paste0("(^| )", first_part, ".* ", second_part))
|
||||
} else {
|
||||
filtr <- which(AMR_env$MO_lookup$full_first == substr(x_out, 1, 1))
|
||||
# for genus or species or subspecies
|
||||
filtr <- which(AMR_env$MO_lookup$full_first == substr(x_parts, 1, 1) |
|
||||
AMR_env$MO_lookup$species_first == substr(x_parts, 1, 1) |
|
||||
AMR_env$MO_lookup$subspecies_first == substr(x_parts, 1, 1))
|
||||
}
|
||||
if (length(filtr) == 0) {
|
||||
mo_to_search <- AMR_env$MO_lookup$fullname
|
||||
@ -547,7 +561,7 @@ mo_cleaning_regex <- function() {
|
||||
"|",
|
||||
"([({]|\\[).+([})]|\\])",
|
||||
"|",
|
||||
"(^| )(e?spp|e?ssp|e?ss|e?sp|e?subsp|sube?species|biovar|biotype|serovar|serogr.?up|e?species)[.]*( |$|(complex|group)$))"
|
||||
"(^| )(e?spp|e?ssp|e?ss|e?sp|e?subsp|sube?species|biovar|biotype|serovar|var|serogr.?up|e?species)[.]*( |$|(complex|group)$))"
|
||||
)
|
||||
}
|
||||
|
||||
@ -799,9 +813,13 @@ rep.mo <- function(x, ...) {
|
||||
#' @export
|
||||
#' @noRd
|
||||
print.mo_uncertainties <- function(x, n = 10, ...) {
|
||||
more_than_50 <- FALSE
|
||||
if (NROW(x) == 0) {
|
||||
cat(word_wrap("No uncertainties to show. Only uncertainties of the last call of `as.mo()` or any `mo_*()` function are stored.\n\n", add_fn = font_blue))
|
||||
return(invisible(NULL))
|
||||
} else if (NROW(x) > 50) {
|
||||
more_than_50 <- TRUE
|
||||
x <- x[1:50, , drop = FALSE]
|
||||
}
|
||||
|
||||
cat(word_wrap("Matching scores are based on the resemblance between the input and the full taxonomic name, and the pathogenicity in humans. See `?mo_matching_score`.\n\n", add_fn = font_blue))
|
||||
@ -888,8 +906,6 @@ print.mo_uncertainties <- function(x, n = 10, ...) {
|
||||
),
|
||||
collapse = "\n"
|
||||
),
|
||||
# Add "Based on {input}" text if it differs from the original input
|
||||
ifelse(x[i, ]$original_input != x[i, ]$input, paste0(strrep(" ", nchar(x[i, ]$original_input) + 6), "Based on input \"", x[i, ]$input, "\""), ""),
|
||||
# Add note if result was coerced to accepted taxonomic name
|
||||
ifelse(x[i, ]$keep_synonyms == FALSE & x[i, ]$mo %in% AMR_env$MO_lookup$mo[which(AMR_env$MO_lookup$status == "synonym")],
|
||||
paste0(
|
||||
@ -911,6 +927,9 @@ print.mo_uncertainties <- function(x, n = 10, ...) {
|
||||
if (isTRUE(any_maxed_out)) {
|
||||
cat(font_blue(word_wrap("\nOnly the first ", n, " other matches of each record are shown. Run `print(mo_uncertainties(), n = ...)` to view more entries, or save `mo_uncertainties()` to an object.")))
|
||||
}
|
||||
if (isTRUE(more_than_50)) {
|
||||
cat(font_blue(word_wrap("\nOnly the first 50 uncertainties are shown. Run `View(mo_uncertainties())` to view all entries, or save `mo_uncertainties()` to an object.")))
|
||||
}
|
||||
}
|
||||
|
||||
#' @method print mo_renamed
|
||||
@ -947,25 +966,25 @@ convert_colloquial_input <- function(x) {
|
||||
out <- rep(NA_character_, length(x))
|
||||
|
||||
# Streptococci, like GBS = Group B Streptococci (B_STRPT_GRPB)
|
||||
out[x %like_case% "^g[abcdfghkl]s$"] <- gsub("g([abcdfghkl])s",
|
||||
out[x %like_case% "^g[abcdefghijkl]s$"] <- gsub("g([abcdefghijkl])s",
|
||||
"B_STRPT_GRP\\U\\1",
|
||||
x[x %like_case% "^g[abcdfghkl]s$"],
|
||||
x[x %like_case% "^g[abcdefghijkl]s$"],
|
||||
perl = TRUE
|
||||
)
|
||||
# Streptococci in different languages, like "estreptococos grupo B"
|
||||
out[x %like_case% "strepto[ck]o[ck].* [abcdfghkl]$"] <- gsub(".*e?strepto[ck]o[ck].* ([abcdfghkl])$",
|
||||
out[x %like_case% "strepto[ck]o[ck].* [abcdefghijkl]$"] <- gsub(".*e?strepto[ck]o[ck].* ([abcdefghijkl])$",
|
||||
"B_STRPT_GRP\\U\\1",
|
||||
x[x %like_case% "strepto[ck]o[ck].* [abcdfghkl]$"],
|
||||
x[x %like_case% "strepto[ck]o[ck].* [abcdefghijkl]$"],
|
||||
perl = TRUE
|
||||
)
|
||||
out[x %like_case% "strep[a-z]* group [abcdfghkl]$"] <- gsub(".* ([abcdfghkl])$",
|
||||
out[x %like_case% "strep[a-z]* group [abcdefghijkl]$"] <- gsub(".* ([abcdefghijkl])$",
|
||||
"B_STRPT_GRP\\U\\1",
|
||||
x[x %like_case% "strep[a-z]* group [abcdfghkl]$"],
|
||||
x[x %like_case% "strep[a-z]* group [abcdefghijkl]$"],
|
||||
perl = TRUE
|
||||
)
|
||||
out[x %like_case% "group [abcdfghkl] strepto[ck]o[ck]"] <- gsub(".*group ([abcdfghkl]) strepto[ck]o[ck].*",
|
||||
out[x %like_case% "group [abcdefghijkl] strepto[ck]o[ck]"] <- gsub(".*group ([abcdefghijkl]) strepto[ck]o[ck].*",
|
||||
"B_STRPT_GRP\\U\\1",
|
||||
x[x %like_case% "group [abcdfghkl] strepto[ck]o[ck]"],
|
||||
x[x %like_case% "group [abcdefghijkl] strepto[ck]o[ck]"],
|
||||
perl = TRUE
|
||||
)
|
||||
out[x %like_case% "ha?emoly.*strep"] <- "B_STRPT_HAEM"
|
||||
@ -975,14 +994,14 @@ convert_colloquial_input <- function(x) {
|
||||
out[x %like_case% "(viridans.* (strepto|^s).*|^vgs[^a-z]*$)"] <- "B_STRPT_VIRI"
|
||||
|
||||
# Salmonella in different languages, like "Salmonella grupo B"
|
||||
out[x %like_case% "salmonella.* [abcd]$"] <- gsub(".*salmonella.* ([abcd])$",
|
||||
out[x %like_case% "salmonella.* [abcdefgh]$"] <- gsub(".*salmonella.* ([abcdefgh])$",
|
||||
"B_SLMNL_GRP\\U\\1",
|
||||
x[x %like_case% "salmonella.* [abcd]$"],
|
||||
x[x %like_case% "salmonella.* [abcdefgh]$"],
|
||||
perl = TRUE
|
||||
)
|
||||
out[x %like_case% "group [abcd] salmonella"] <- gsub(".*group ([abcd]) salmonella*",
|
||||
out[x %like_case% "group [abcdefgh] salmonella"] <- gsub(".*group ([abcdefgh]) salmonella*",
|
||||
"B_SLMNL_GRP\\U\\1",
|
||||
x[x %like_case% "group [abcd] salmonella"],
|
||||
x[x %like_case% "group [abcdefgh] salmonella"],
|
||||
perl = TRUE
|
||||
)
|
||||
|
||||
@ -995,8 +1014,10 @@ convert_colloquial_input <- function(x) {
|
||||
out[x %like_case% "( |^)gram[-]( |$)"] <- "B_GRAMN"
|
||||
out[x %like_case% "gram[ -]?pos.*"] <- "B_GRAMP"
|
||||
out[x %like_case% "( |^)gram[+]( |$)"] <- "B_GRAMP"
|
||||
out[x %like_case% "anaerob[a-z]+ .*gram[ -]?neg.*"] <- "B_ANAER-NEG"
|
||||
out[x %like_case% "anaerob[a-z]+ .*gram[ -]?pos.*"] <- "B_ANAER-POS"
|
||||
out[is.na(out) & x %like_case% "anaerob[a-z]+ (micro)?.*organism"] <- "B_ANAER"
|
||||
|
||||
|
||||
# yeasts and fungi
|
||||
out[x %like_case% "^yeast?"] <- "F_YEAST"
|
||||
out[x %like_case% "^fung(us|i)"] <- "F_FUNGUS"
|
||||
@ -1006,7 +1027,7 @@ convert_colloquial_input <- function(x) {
|
||||
out[x %like_case% "gono[ck]o[ck]"] <- "B_NESSR_GNRR"
|
||||
out[x %like_case% "pneumo[ck]o[ck]"] <- "B_STRPT_PNMN"
|
||||
|
||||
# unexisting names (xxx and con are WHONET codes)
|
||||
# unexisting names (con is the WHONET code for contamination)
|
||||
out[x %in% c("con", "other", "none", "unknown") | x %like_case% "virus"] <- "UNKNOWN"
|
||||
|
||||
# WHONET has a lot of E. coli and Vibrio cholerae names
|
||||
@ -1017,18 +1038,23 @@ convert_colloquial_input <- function(x) {
|
||||
}
|
||||
|
||||
italicise <- function(x) {
|
||||
if (!has_colour()) {
|
||||
return(x)
|
||||
}
|
||||
out <- font_italic(x, collapse = NULL)
|
||||
# city-like serovars of Salmonella (start with a capital)
|
||||
out[x %like_case% "Salmonella [A-Z]"] <- paste(
|
||||
font_italic("Salmonella"),
|
||||
gsub("Salmonella ", "", x[x %like_case% "Salmonella [A-Z]"])
|
||||
)
|
||||
# streptococcal groups
|
||||
out[x %like_case% "Streptococcus [A-Z]"] <- paste(
|
||||
font_italic("Streptococcus"),
|
||||
gsub("Streptococcus ", "", x[x %like_case% "Streptococcus [A-Z]"])
|
||||
)
|
||||
if (has_colour()) {
|
||||
out <- gsub("(Group|group|Complex|complex)(\033\\[23m)?", "\033[23m\\1", out, perl = TRUE)
|
||||
}
|
||||
# be sure not to make these italic
|
||||
out <- gsub("([ -]*)(Group|group|Complex|complex)(\033\\[23m)?", "\033[23m\\1\\2", out, perl = TRUE)
|
||||
out <- gsub("(\033\\[3m)?(Beta[-]haemolytic|Coagulase[-](postive|negative)) ", "\\2 \033[3m", out, perl = TRUE)
|
||||
out
|
||||
}
|
||||
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -53,6 +53,8 @@
|
||||
#' Determination of yeasts ([mo_is_yeast()]) will be based on the taxonomic kingdom and class. *Budding yeasts* are fungi of the phylum Ascomycota, class Saccharomycetes (also called Hemiascomycetes). *True yeasts* are aggregated into the underlying order Saccharomycetales. Thus, for all microorganisms that are member of the taxonomic class Saccharomycetes, the function will return `TRUE`. It returns `FALSE` otherwise (or `NA` when the input is `NA` or the MO code is `UNKNOWN`).
|
||||
#'
|
||||
#' Determination of intrinsic resistance ([mo_is_intrinsic_resistant()]) will be based on the [intrinsic_resistant] data set, which is based on `r format_eucast_version_nr(3.3)`. The [mo_is_intrinsic_resistant()] function can be vectorised over both argument `x` (input for microorganisms) and `ab` (input for antibiotics).
|
||||
#'
|
||||
#' Determination of bacterial oxygen tolerance ([mo_oxygen_tolerance()]) will be based on BacDive, see *Source*. The function [mo_is_anaerobic()] only returns `TRUE` if the oxygen tolerance is `"anaerobe"`, indicting an obligate anaerobic species or genus. It always returns `FALSE` for species outside the taxonomic kingdom of Bacteria.
|
||||
#'
|
||||
#' The function [mo_url()] will return the direct URL to the online database entry, which also shows the scientific reference of the concerned species.
|
||||
#'
|
||||
@ -480,7 +482,7 @@ mo_gramstain <- function(x, language = get_AMR_locale(), keep_synonyms = getOpti
|
||||
# but class Negativicutes (of phylum Bacillota) are Gram-negative!
|
||||
mo_class(x.mo, language = NULL, keep_synonyms = keep_synonyms) != "Negativicutes")
|
||||
# and of course our own ID for Gram-positives
|
||||
| x.mo == "B_GRAMP"] <- "Gram-positive"
|
||||
| x.mo %in% c("B_GRAMP", "B_ANAER-POS")] <- "Gram-positive"
|
||||
|
||||
load_mo_uncertainties(metadata)
|
||||
translate_into_language(x, language = language, only_unknown = FALSE)
|
||||
@ -589,6 +591,40 @@ mo_is_intrinsic_resistant <- function(x, ab, language = get_AMR_locale(), keep_s
|
||||
paste(x, ab) %in% AMR_env$intrinsic_resistant
|
||||
}
|
||||
|
||||
#' @rdname mo_property
|
||||
#' @export
|
||||
mo_oxygen_tolerance <- function(x, language = get_AMR_locale(), keep_synonyms = getOption("AMR_keep_synonyms", FALSE), ...) {
|
||||
if (missing(x)) {
|
||||
# this tries to find the data and an 'mo' column
|
||||
x <- find_mo_col(fn = "mo_oxygen_tolerance")
|
||||
}
|
||||
meet_criteria(x, allow_NA = TRUE)
|
||||
language <- validate_language(language)
|
||||
meet_criteria(keep_synonyms, allow_class = "logical", has_length = 1)
|
||||
|
||||
mo_validate(x = x, property = "oxygen_tolerance", language = language, keep_synonyms = keep_synonyms, ...)
|
||||
}
|
||||
|
||||
#' @rdname mo_property
|
||||
#' @export
|
||||
mo_is_anaerobic <- function(x, language = get_AMR_locale(), keep_synonyms = getOption("AMR_keep_synonyms", FALSE), ...) {
|
||||
if (missing(x)) {
|
||||
# this tries to find the data and an 'mo' column
|
||||
x <- find_mo_col(fn = "mo_is_anaerobic")
|
||||
}
|
||||
meet_criteria(x, allow_NA = TRUE)
|
||||
language <- validate_language(language)
|
||||
meet_criteria(keep_synonyms, allow_class = "logical", has_length = 1)
|
||||
|
||||
x.mo <- as.mo(x, language = language, keep_synonyms = keep_synonyms, ...)
|
||||
metadata <- get_mo_uncertainties()
|
||||
oxygen <- mo_oxygen_tolerance(x.mo, language = NULL, keep_synonyms = keep_synonyms)
|
||||
load_mo_uncertainties(metadata)
|
||||
out <- oxygen == "anaerobe" & !is.na(oxygen)
|
||||
out[x.mo %in% c(NA_character_, "UNKNOWN")] <- NA
|
||||
out
|
||||
}
|
||||
|
||||
#' @rdname mo_property
|
||||
#' @export
|
||||
mo_snomed <- function(x, language = get_AMR_locale(), keep_synonyms = getOption("AMR_keep_synonyms", FALSE), ...) {
|
||||
@ -791,9 +827,12 @@ mo_info <- function(x, language = get_AMR_locale(), keep_synonyms = getOption("A
|
||||
status = mo_status(y, language = language, keep_synonyms = keep_synonyms),
|
||||
synonyms = mo_synonyms(y, keep_synonyms = keep_synonyms),
|
||||
gramstain = mo_gramstain(y, language = language, keep_synonyms = keep_synonyms),
|
||||
oxygen_tolerance = mo_oxygen_tolerance(y, language = language, keep_synonyms = keep_synonyms),
|
||||
url = unname(mo_url(y, open = FALSE, keep_synonyms = keep_synonyms)),
|
||||
ref = mo_ref(y, keep_synonyms = keep_synonyms),
|
||||
snomed = unlist(mo_snomed(y, keep_synonyms = keep_synonyms))
|
||||
snomed = unlist(mo_snomed(y, keep_synonyms = keep_synonyms)),
|
||||
lpsn = mo_lpsn(y, language = language, keep_synonyms = keep_synonyms),
|
||||
gbif = mo_gbif(y, language = language, keep_synonyms = keep_synonyms)
|
||||
)
|
||||
)
|
||||
})
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
2
R/pca.R
2
R/pca.R
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
2
R/plot.R
2
R/plot.R
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
4
R/sir.R
4
R/sir.R
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -759,7 +759,7 @@ as_sir_method <- function(method_short,
|
||||
if (is.null(mo)) {
|
||||
stop_("No information was supplied about the microorganisms (missing argument `mo` and no column of class 'mo' found). See ?as.sir.\n\n",
|
||||
"To transform certain columns with e.g. mutate(), use `data %>% mutate(across(..., as.sir, mo = x))`, where x is your column with microorganisms.\n",
|
||||
"To tranform all ", method_long, " in a data set, use `data %>% as.sir()` or `data %>% mutate_if(is.", method_short, ", as.sir)`.",
|
||||
"To transform all ", method_long, " in a data set, use `data %>% as.sir()` or `data %>% mutate_if(is.", method_short, ", as.sir)`.",
|
||||
call = FALSE
|
||||
)
|
||||
}
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
BIN
R/sysdata.rda
BIN
R/sysdata.rda
Binary file not shown.
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
11
R/zzz.R
11
R/zzz.R
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -59,16 +59,15 @@ AMR_env$sir_interpretation_history <- data.frame(
|
||||
datetime = Sys.time()[0],
|
||||
index = integer(0),
|
||||
ab_input = character(0),
|
||||
ab_considered = character(0),
|
||||
ab_guideline = set_clean_class(character(0), c("ab", "character")),
|
||||
mo_input = character(0),
|
||||
mo_considered = character(0),
|
||||
mo_guideline = set_clean_class(character(0), c("mo", "character")),
|
||||
guideline = character(0),
|
||||
ref_table = character(0),
|
||||
method = character(0),
|
||||
breakpoint_S = double(0),
|
||||
breakpoint_R = double(0),
|
||||
input = double(0),
|
||||
interpretation = character(0),
|
||||
outcome = NA_sir_[0],
|
||||
breakpoint_S_R = character(0),
|
||||
stringsAsFactors = FALSE
|
||||
)
|
||||
AMR_env$custom_ab_codes <- character(0)
|
||||
|
31
_pkgdown.yml
31
_pkgdown.yml
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -70,9 +70,9 @@ home:
|
||||
navbar:
|
||||
title: "AMR (for R)"
|
||||
left:
|
||||
- text: "Home"
|
||||
icon: "fa-home"
|
||||
href: "index.html"
|
||||
# - text: "Home"
|
||||
# icon: "fa-home"
|
||||
# href: "index.html"
|
||||
- text: "How to"
|
||||
icon: "fa-question-circle"
|
||||
menu:
|
||||
@ -100,9 +100,9 @@ navbar:
|
||||
- text: "Work with WHONET Data"
|
||||
icon: "fa-globe-americas"
|
||||
href: "articles/WHONET.html"
|
||||
- text: "Import Data From SPSS/SAS/Stata"
|
||||
icon: "fa-file-upload"
|
||||
href: "articles/SPSS.html"
|
||||
# - text: "Import Data From SPSS/SAS/Stata"
|
||||
# icon: "fa-file-upload"
|
||||
# href: "articles/SPSS.html"
|
||||
- text: "Apply Eucast Rules"
|
||||
icon: "fa-exchange-alt"
|
||||
href: "articles/EUCAST.html"
|
||||
@ -115,16 +115,31 @@ navbar:
|
||||
- text: "Get Properties of an Antiviral Drug"
|
||||
icon: "fa-capsules"
|
||||
href: "reference/av_property.html" # reference instead of an article
|
||||
- text: "With other pkgs"
|
||||
icon: "fa-layer-group"
|
||||
menu:
|
||||
- text: "AMR & dplyr/tidyverse"
|
||||
icon: "fa-layer-group"
|
||||
href: "articles/other_pkg.html"
|
||||
- text: "AMR & data.table"
|
||||
icon: "fa-layer-group"
|
||||
href: "articles/other_pkg.html"
|
||||
- text: "AMR & tidymodels"
|
||||
icon: "fa-layer-group"
|
||||
href: "articles/other_pkg.html"
|
||||
- text: "AMR & base R"
|
||||
icon: "fa-layer-group"
|
||||
href: "articles/other_pkg.html"
|
||||
- text: "Manual"
|
||||
icon: "fa-book-open"
|
||||
href: "reference/index.html"
|
||||
- text: "Authors"
|
||||
icon: "fa-users"
|
||||
href: "authors.html"
|
||||
right:
|
||||
- text: "Changelog"
|
||||
icon: "far fa-newspaper"
|
||||
href: "news/index.html"
|
||||
right:
|
||||
- text: "Source Code"
|
||||
icon: "fab fa-github"
|
||||
href: "https://github.com/msberends/AMR"
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
@ -31,6 +31,7 @@
|
||||
# source("data-raw/_pre_commit_hook.R")
|
||||
|
||||
library(dplyr, warn.conflicts = FALSE)
|
||||
try(detach("package:data.table", unload = TRUE), silent = TRUE) # to prevent like() to precede over AMR::like
|
||||
devtools::load_all(quiet = TRUE)
|
||||
|
||||
suppressMessages(set_AMR_locale("English"))
|
||||
@ -164,12 +165,12 @@ MO_PREVALENT_GENERA <- c(
|
||||
"Halococcus", "Hendersonula", "Heterophyes", "Histomonas", "Histoplasma", "Hymenolepis", "Hypomyces",
|
||||
"Hysterothylacium", "Leishmania", "Malassezia", "Malbranchea", "Metagonimus", "Meyerozyma", "Microsporidium",
|
||||
"Microsporum", "Mortierella", "Mucor", "Mycocentrospora", "Necator", "Nectria", "Ochroconis", "Oesophagostomum",
|
||||
"Oidiodendron", "Opisthorchis", "Pediculus", "Phlebotomus", "Phoma", "Pichia", "Piedraia", "Pithomyces",
|
||||
"Oidiodendron", "Opisthorchis", "Pediculus", "Penicillium", "Phlebotomus", "Phoma", "Pichia", "Piedraia", "Pithomyces",
|
||||
"Pityrosporum", "Pneumocystis", "Pseudallescheria", "Pseudoterranova", "Pulex", "Rhizomucor", "Rhizopus",
|
||||
"Rhodotorula", "Saccharomyces", "Sarcoptes", "Scolecobasidium", "Scopulariopsis", "Scytalidium", "Spirometra",
|
||||
"Sporobolomyces", "Stachybotrys", "Strongyloides", "Syngamus", "Taenia", "Toxocara", "Trichinella", "Trichobilharzia",
|
||||
"Trichoderma", "Trichomonas", "Trichophyton", "Trichosporon", "Trichostrongylus", "Trichuris", "Tritirachium",
|
||||
"Trombicula", "Trypanosoma", "Tunga", "Wuchereria"
|
||||
"Sporobolomyces", "Stachybotrys", "Strongyloides", "Syngamus", "Taenia", "Talaromyces", "Toxocara", "Trichinella",
|
||||
"Trichobilharzia", "Trichoderma", "Trichomonas", "Trichophyton", "Trichosporon", "Trichostrongylus", "Trichuris",
|
||||
"Tritirachium", "Trombicula", "Trypanosoma", "Tunga", "Wuchereria"
|
||||
)
|
||||
|
||||
# antibiotic groups
|
||||
@ -365,7 +366,7 @@ if (changed_md5(clin_break)) {
|
||||
write_md5(clin_break)
|
||||
try(saveRDS(clin_break, "data-raw/clinical_breakpoints.rds", version = 2, compress = "xz"), silent = TRUE)
|
||||
try(write.table(clin_break, "data-raw/clinical_breakpoints.txt", sep = "\t", na = "", row.names = FALSE), silent = TRUE)
|
||||
try(haven::write_sas(clin_break, "data-raw/clinical_breakpoints.sas"), silent = TRUE)
|
||||
try(haven::write_xpt(clin_break, "data-raw/clinical_breakpoints.xpt"), silent = TRUE)
|
||||
try(haven::write_sav(clin_break, "data-raw/clinical_breakpoints.sav"), silent = TRUE)
|
||||
try(haven::write_dta(clin_break, "data-raw/clinical_breakpoints.dta"), silent = TRUE)
|
||||
try(openxlsx::write.xlsx(clin_break, "data-raw/clinical_breakpoints.xlsx"), silent = TRUE)
|
||||
@ -381,7 +382,7 @@ if (changed_md5(microorganisms)) {
|
||||
mo <- microorganisms
|
||||
mo$snomed <- max_50_snomed
|
||||
mo <- dplyr::mutate_if(mo, ~ !is.numeric(.), as.character)
|
||||
try(haven::write_sas(mo, "data-raw/microorganisms.sas"), silent = TRUE)
|
||||
try(haven::write_xpt(mo, "data-raw/microorganisms.xpt"), silent = TRUE)
|
||||
try(haven::write_sav(mo, "data-raw/microorganisms.sav"), silent = TRUE)
|
||||
try(haven::write_dta(mo, "data-raw/microorganisms.dta"), silent = TRUE)
|
||||
mo_all_snomed <- microorganisms %>% mutate_if(is.list, function(x) sapply(x, paste, collapse = ","))
|
||||
@ -396,7 +397,7 @@ if (changed_md5(ab)) {
|
||||
usethis::ui_info(paste0("Saving {usethis::ui_value('antibiotics')} to {usethis::ui_value('data-raw/')}"))
|
||||
write_md5(ab)
|
||||
try(saveRDS(antibiotics, "data-raw/antibiotics.rds", version = 2, compress = "xz"), silent = TRUE)
|
||||
try(haven::write_sas(ab, "data-raw/antibiotics.sas"), silent = TRUE)
|
||||
try(haven::write_xpt(ab, "data-raw/antibiotics.xpt"), silent = TRUE)
|
||||
try(haven::write_sav(ab, "data-raw/antibiotics.sav"), silent = TRUE)
|
||||
try(haven::write_dta(ab, "data-raw/antibiotics.dta"), silent = TRUE)
|
||||
ab_lists <- antibiotics %>% mutate_if(is.list, function(x) sapply(x, paste, collapse = ","))
|
||||
@ -411,7 +412,7 @@ if (changed_md5(av)) {
|
||||
usethis::ui_info(paste0("Saving {usethis::ui_value('antivirals')} to {usethis::ui_value('data-raw/')}"))
|
||||
write_md5(av)
|
||||
try(saveRDS(antivirals, "data-raw/antivirals.rds", version = 2, compress = "xz"), silent = TRUE)
|
||||
try(haven::write_sas(av, "data-raw/antivirals.sas"), silent = TRUE)
|
||||
try(haven::write_xpt(av, "data-raw/antivirals.xpt"), silent = TRUE)
|
||||
try(haven::write_sav(av, "data-raw/antivirals.sav"), silent = TRUE)
|
||||
try(haven::write_dta(av, "data-raw/antivirals.dta"), silent = TRUE)
|
||||
av_lists <- antivirals %>% mutate_if(is.list, function(x) sapply(x, paste, collapse = ","))
|
||||
@ -432,7 +433,7 @@ if (changed_md5(intrinsicR)) {
|
||||
write_md5(intrinsicR)
|
||||
try(saveRDS(intrinsicR, "data-raw/intrinsic_resistant.rds", version = 2, compress = "xz"), silent = TRUE)
|
||||
try(write.table(intrinsicR, "data-raw/intrinsic_resistant.txt", sep = "\t", na = "", row.names = FALSE), silent = TRUE)
|
||||
try(haven::write_sas(intrinsicR, "data-raw/intrinsic_resistant.sas"), silent = TRUE)
|
||||
try(haven::write_xpt(intrinsicR, "data-raw/intrinsic_resistant.xpt"), silent = TRUE)
|
||||
try(haven::write_sav(intrinsicR, "data-raw/intrinsic_resistant.sav"), silent = TRUE)
|
||||
try(haven::write_dta(intrinsicR, "data-raw/intrinsic_resistant.dta"), silent = TRUE)
|
||||
try(openxlsx::write.xlsx(intrinsicR, "data-raw/intrinsic_resistant.xlsx"), silent = TRUE)
|
||||
@ -445,7 +446,7 @@ if (changed_md5(dosage)) {
|
||||
write_md5(dosage)
|
||||
try(saveRDS(dosage, "data-raw/dosage.rds", version = 2, compress = "xz"), silent = TRUE)
|
||||
try(write.table(dosage, "data-raw/dosage.txt", sep = "\t", na = "", row.names = FALSE), silent = TRUE)
|
||||
try(haven::write_sas(dosage, "data-raw/dosage.sas"), silent = TRUE)
|
||||
try(haven::write_xpt(dosage, "data-raw/dosage.xpt"), silent = TRUE)
|
||||
try(haven::write_sav(dosage, "data-raw/dosage.sav"), silent = TRUE)
|
||||
try(haven::write_dta(dosage, "data-raw/dosage.dta"), silent = TRUE)
|
||||
try(openxlsx::write.xlsx(dosage, "data-raw/dosage.xlsx"), silent = TRUE)
|
||||
|
BIN
data-raw/antibiotics.xpt
Normal file
BIN
data-raw/antibiotics.xpt
Normal file
Binary file not shown.
BIN
data-raw/antivirals.xpt
Normal file
BIN
data-raw/antivirals.xpt
Normal file
Binary file not shown.
19616
data-raw/bacdive.csv
Normal file
19616
data-raw/bacdive.csv
Normal file
File diff suppressed because it is too large
Load Diff
@ -1 +1 @@
|
||||
68467f5179638ac5622281df53a5ea75
|
||||
0a9ea3545d68b95108a28096d975388f
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
File diff suppressed because it is too large
Load Diff
Binary file not shown.
BIN
data-raw/clinical_breakpoints.xpt
Normal file
BIN
data-raw/clinical_breakpoints.xpt
Normal file
Binary file not shown.
BIN
data-raw/dosage.xpt
Normal file
BIN
data-raw/dosage.xpt
Normal file
Binary file not shown.
BIN
data-raw/intrinsic_resistant.xpt
Normal file
BIN
data-raw/intrinsic_resistant.xpt
Normal file
Binary file not shown.
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
Binary file not shown.
Binary file not shown.
@ -1 +1 @@
|
||||
7846247d4113c4e8f550cfd2cb87467f
|
||||
63cc9e5166dc50c7b474bb809557c392
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
104295
data-raw/microorganisms.txt
104295
data-raw/microorganisms.txt
File diff suppressed because one or more lines are too long
Binary file not shown.
BIN
data-raw/microorganisms.xpt
Normal file
BIN
data-raw/microorganisms.xpt
Normal file
Binary file not shown.
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
@ -9,7 +9,7 @@
|
||||
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
|
||||
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
|
||||
# Data. Journal of Statistical Software, 104(3), 1-31. #
|
||||
# doi:10.18637/jss.v104.i03 #
|
||||
# https://doi.org/10.18637/jss.v104.i03 #
|
||||
# #
|
||||
# Developed at the University of Groningen and the University Medical #
|
||||
# Center Groningen in The Netherlands, in collaboration with many #
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user