1
0
mirror of https://github.com/msberends/AMR.git synced 2025-09-24 16:39:47 +02:00

37 Commits

Author SHA1 Message Date
adee419f1c v3.0.1 2025-09-20 17:14:07 +01:00
33fb1849eb (v3.0.0.9036) Prepare for v3.0.1 2025-09-19 12:23:59 +01:00
13f2a864da (v3.0.0.9035) fix mo_pathogenicity unit test following MycoBank bugfix 2025-09-18 14:22:52 +01:00
10ba36821e (v3.0.0.9034) fix MycoBank synonyms 2025-09-18 13:58:34 +01:00
5796e8f3a4 (v3.0.0.9033) rename workflow 2025-09-15 09:10:54 +02:00
b11866af57 (v3.0.0.9032) add GitHub Action for dev version of packages 2025-09-13 14:02:59 +02:00
e8c99f2775 (v3.0.0.9031) fix for ggplot2 2025-09-12 16:52:59 +02:00
5b99888151 (v3.0.0.9030) fix NEWS 2025-09-11 14:41:28 +02:00
c7b2acbeb6 (v3.0.0.9029) fix for vignette and envir data 2025-09-10 16:19:30 +02:00
1922fb5ff2 (v3.0.0.9028) fix as.ab() warning 2025-09-10 15:06:51 +02:00
4d7c4ca52c (v3.0.0.9027) skimr update and as.ab warning - fixes #234, fixes #232 2025-09-10 13:32:52 +02:00
d5a568318b (v3.0.0.9026) fix tidymodels doc 2025-09-04 15:03:28 +02:00
c1c49fa463 (v3.0.0.9025) fix todo tracker 2025-09-04 14:40:24 +02:00
d2ced1db61 (v3.0.0.9024) fix todo tracker 2025-09-04 14:28:01 +02:00
3d40b20c10 (v3.0.0.9023) update todo tracker 2025-09-04 14:04:22 +02:00
3ba1b8a10a (v3.0.0.9022) postpone new features - we like a clearly focussed bugfix release first 2025-09-03 15:39:44 +02:00
0744c6feee (v3.0.0.9021) checkouts 2025-09-03 12:12:05 +02:00
eca638529c new umcg logo and old CHECKOUT update 2025-09-03 11:49:10 +02:00
60bd631e1a (v3.0.0.9019) Fixes #229, #230, #227, #225 2025-09-01 16:56:55 +02:00
9b07a8573a (v3.0.0.9018) keep all reasons in mdro(), fixed #227 2025-08-07 16:23:47 +02:00
fc72cf9324 (v3.0.0.9017) semantic versioning only on branch main 2025-07-28 12:24:52 +02:00
2f866985c9 (v3.0.0.9016) fix for plotting 2025-07-23 22:05:20 +02:00
6cb724a208 (v3.0.0.9015) plotting fix 2025-07-19 14:06:36 +02:00
49274f010b (v3.0.0.9014) fix plot colours 2025-07-18 15:57:48 +02:00
8da0f525b5 set lang for R<3.5 2025-07-17 22:58:34 +02:00
Nick Thomson
68442f3042 (v3.0.0.9012) Python wrapper fix 2025-07-17 19:43:07 +02:00
39ea5f6597 (v3.0.0.9011) allow names for age_groups() 2025-07-17 19:32:46 +02:00
65ec098acf (v3.0.0.9010) in as.sir(), add note when higher taxonomic levels are used 2025-07-17 19:06:12 +02:00
Nick Thomson
e9e3de4469 (v3.0.0.9009) fix as.sir when uti = FALSE 2025-07-17 17:15:52 +02:00
d94bdd2c6a (v3.0.0.9008) fix ggplot_sir(), support lighter green for SDD 2025-07-17 17:05:41 +02:00
8dab0a3730 (v3.0.0.9007) allow any tidyselect language in as.sir() 2025-07-17 14:29:35 +02:00
Matthijs Berends
0138e33ce9 Update 1-bug-report.yml 2025-06-22 20:47:31 +02:00
Matthijs Berends
1013ef6086 Update _pkgdown.yml 2025-06-13 17:05:51 +02:00
8fd8ee508f (v3.0.0.9004) random mic fix 2025-06-13 16:12:28 +02:00
72db2b2562 (v3.0.0.9003) eucast_rules fix, new tidymodels integration 2025-06-13 14:03:21 +02:00
3742e9e994 (v3.0.0.9002) website version nr 2025-06-06 09:37:25 +02:00
753f0e1ef9 (v3.0.0.9001) the first fixes 2025-06-04 13:10:20 +02:00
105 changed files with 10144 additions and 12316 deletions

View File

@@ -40,3 +40,4 @@
^CRAN-SUBMISSION$
^PythonPackage$
^README\.Rmd$
\.no_include$

View File

@@ -42,7 +42,7 @@ body:
multiple: false
options:
- ''
- Latest CRAN version (2.1.1)
- One of the latest GitHub versions (2.1.1.9xxx)
- Latest CRAN version (3.0.0)
- One of the latest GitHub versions (3.0.0.9xxx)
validations:
required: true

View File

@@ -48,7 +48,6 @@ echo "Running prehook..."
if command -v Rscript > /dev/null; then
if [ "$(Rscript -e 'cat(all(c('"'pkgload'"', '"'devtools'"', '"'dplyr'"') %in% rownames(installed.packages())))')" = "TRUE" ]; then
Rscript -e "source('data-raw/_pre_commit_checks.R')"
currentpkg=$(Rscript -e "cat(pkgload::pkg_name())")
echo "- Adding changed files in ./data-raw and ./man to this commit"
git add data-raw/*
git add data/*
@@ -57,60 +56,62 @@ if command -v Rscript > /dev/null; then
git add NAMESPACE
else
echo "- R package 'pkgload', 'devtools', or 'dplyr' not installed!"
currentpkg="your"
fi
else
echo "- R is not available on your system!"
currentpkg="your"
fi
echo ""
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
echo "Updating semantic versioning and date..."
# Get tags from remote and remove tags not on remote
git fetch origin --prune --prune-tags --quiet
currenttagfull=$(git describe --tags --abbrev=0)
currenttag=$(git describe --tags --abbrev=0 | sed 's/v//')
# Assume main branch to be 'main' or 'master'
defaultbranch=$(git branch | cut -c 3- | grep -E '^master$|^main$')
if [ "$currenttag" = "" ]; then
currenttag="0.0.1"
currentcommit=$(git rev-list --count ${defaultbranch})
echo "- No git tags found, creating one in format 'v(x).(y).(z)' - currently ${currentcommit} previous commits in '${defaultbranch}'"
current_branch=$(git rev-parse --abbrev-ref HEAD)
if [ "$current_branch" != "main" ]; then
echo "- Current branch is '$current_branch'; skipping version/date update (only runs on 'main')"
else
currentcommit=$(git rev-list --count ${currenttagfull}..${defaultbranch})
echo "- Latest tag is '${currenttagfull}', with ${currentcommit} previous commits in '${defaultbranch}'"
fi
# Combine tag and commit number
currentversion="$currenttag.$((currentcommit + 9001))"
echo "- ${currentpkg} pkg version set to ${currentversion}"
# Update version number and date in DESCRIPTION
sed -i -- "s/^Version: .*/Version: ${currentversion}/" DESCRIPTION
sed -i -- "s/^Date: .*/Date: $(date '+%Y-%m-%d')/" DESCRIPTION
echo "- Updated version number and date in ./DESCRIPTION"
rm -f DESCRIPTION--
git add DESCRIPTION
# Update version number in NEWS.md
if [ -e "NEWS.md" ]; then
if [ "$currentpkg" = "your" ]; then
currentpkg=""
# Version update logic begins here
# Get tags from remote and remove tags not on remote
git fetch origin --prune --prune-tags --quiet
currenttagfull=$(git describe --tags --abbrev=0)
currenttag=$(git describe --tags --abbrev=0 | sed 's/v//')
# Assume main branch to be 'main' or 'master'
defaultbranch=$(git branch | cut -c 3- | grep -E '^master$|^main$')
if [ "$currenttag" = "" ]; then
currenttag="0.0.1"
currentcommit=$(git rev-list --count ${defaultbranch})
echo "- No git tags found, creating one in format 'v(x).(y).(z)' - currently ${currentcommit} previous commits in '${defaultbranch}'"
else
currentcommit=$(git rev-list --count ${currenttagfull}..${defaultbranch})
echo "- Latest tag is '${currenttagfull}', with ${currentcommit} previous commits in '${defaultbranch}'"
fi
sed -i -- "1s/.*/# ${currentpkg} ${currentversion}/" NEWS.md
echo "- Updated version number in ./NEWS.md"
rm -f NEWS.md--
git add NEWS.md
else
echo "- No NEWS.md found!"
# Combine tag and commit number
currentversion="$currenttag.$((currentcommit + 9001))"
echo "- AMR pkg version set to ${currentversion}"
# Update version number and date in DESCRIPTION
sed -i -- "s/^Version: .*/Version: ${currentversion}/" DESCRIPTION
sed -i -- "s/^Date: .*/Date: $(date '+%Y-%m-%d')/" DESCRIPTION
echo "- Updated version number and date in ./DESCRIPTION"
rm -f DESCRIPTION--
git add DESCRIPTION
# Update version number in NEWS.md
if [ -e "NEWS.md" ]; then
sed -i -- "1s/.*/# AMR ${currentversion}/" NEWS.md
echo "- Updated version number in ./NEWS.md"
rm -f NEWS.md--
git add NEWS.md
else
echo "- No NEWS.md found!"
fi
echo ""
# Save the version number for use in the commit-msg hook
echo "${currentversion}" > .git/commit_version.tmp
fi
echo ""
# Save the version number for use in the commit-msg hook
echo "${currentversion}" > .git/commit_version.tmp
git add data-raw/*
git add data/*

View File

@@ -18,7 +18,7 @@
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation.
# the Free Software Foundation. #
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
@@ -28,18 +28,37 @@
# ==================================================================== #
on:
pull_request:
# run in each PR in this repo
branches: '**'
push:
branches: '**'
pull_request:
branches: '**'
schedule:
# also run a schedule everyday at 1 AM.
# this is to check that all dependencies are still available (see R/zzz.R)
- cron: '0 1 * * *'
name: lintr
name: check-recent-dev-pkgs
jobs:
lintr:
runs-on: ubuntu-latest
R-code-check:
runs-on: ${{ matrix.config.os }}
continue-on-error: ${{ matrix.config.allowfail }}
name: ${{ matrix.config.os }} (dev-pkgs)
strategy:
fail-fast: false
matrix:
config:
# current 'release' version on Ubuntu
- {os: ubuntu-latest, r: 'release', allowfail: false}
env:
GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}
R_KEEP_PKG_SOURCE: yes
steps:
- uses: actions/checkout@v4
@@ -47,39 +66,21 @@ jobs:
- uses: r-lib/actions/setup-r@v2
with:
r-version: release
# use RStudio Package Manager to quickly install packages
use-public-rspm: true
r-version: ${{ matrix.config.r }}
use-public-rspm: false
extra-repositories: >
https://tidyverse.r-universe.dev
https://r-lib.r-universe.dev
https://tidymodels.r-universe.dev
https://yihui.r-universe.dev
- uses: r-lib/actions/setup-r-dependencies@v2
with:
extra-packages: |
any::lintr
any::cyclocomp
any::roxygen2
any::devtools
any::usethis
- name: Remove unneeded folders
run: |
# do not check these folders
rm -rf data-raw
rm -rf tests
rm -rf vignettes
- name: Lint
run: |
# get ALL linters, not just default ones
linters <- getNamespaceExports(asNamespace("lintr"))
linters <- sort(linters[grepl("_linter$", linters)])
# lose deprecated
linters <- linters[!grepl("^(closed_curly|open_curly|paren_brace|semicolon_terminator|consecutive_stopifnot|no_tab|single_quotes|unnecessary_nested_if|unneeded_concatenation)_linter$", linters)]
linters <- linters[linters != "linter"]
# and the ones we find unnnecessary
linters <- linters[!grepl("^(commented_code|extraction_operator|implicit_integer|indentation|line_length|namespace|nonportable_path|object_length|object_name|object_usage|is)_linter$", linters)]
# put the functions in a list
linters_list <- lapply(linters, function(l) eval(parse(text = paste0("lintr::", l, "()")), envir = asNamespace("lintr")))
names(linters_list) <- linters
# run them all!
lintr::lint_package(linters = linters_list, exclusions = list("R/aa_helper_pm_functions.R"))
shell: Rscript {0}
extra-packages: any::rcmdcheck
needs: check
upgrade: 'TRUE'
- uses: r-lib/actions/check-r-package@v2
with:
upload-snapshots: true
build_args: 'c("--no-manual","--compact-vignettes=gs+qpdf")'

View File

@@ -50,17 +50,24 @@ jobs:
# For these old versions, dependencies and vignettes will not be checked.
# For recent R versions, see check-recent.yaml (r-lib and tidyverse support the latest 5 major R releases).
- {os: ubuntu-latest, r: '3.6', allowfail: false}
# - {os: windows-latest, r: '3.5', allowfail: true} # always fails, horrible with UTF-8
- {os: ubuntu-latest, r: '3.4', allowfail: false}
- {os: ubuntu-latest, r: '3.3', allowfail: false}
- {os: ubuntu-latest, r: '3.2', allowfail: false}
- {os: ubuntu-latest, r: '3.1', allowfail: false}
# - {os: windows-latest, r: '3.5', allowfail: false} # always fails, horrible with UTF-8
# - {os: ubuntu-latest, r: '3.4', allowfail: false} # 3.1-3.4 now always fails with Error in grep(warn_re, lines, invert = TRUE, value = TRUE) attempt to set index 46/46 in SET_STRING_ELT
# - {os: ubuntu-latest, r: '3.3', allowfail: false}
# - {os: ubuntu-latest, r: '3.2', allowfail: false}
# - {os: ubuntu-latest, r: '3.1', allowfail: false}
- {os: ubuntu-latest, r: '3.0', allowfail: false}
env:
R_REMOTES_NO_ERRORS_FROM_WARNINGS: true
LANG: en_US.UTF-8
LC_ALL: en_US.UTF-8
steps:
- name: Set up locales
run: |
sudo locale-gen en_US.UTF-8
sudo update-locale LANG=en_US.UTF-8
- uses: actions/checkout@v4
- uses: r-lib/actions/setup-r@v2
@@ -69,9 +76,14 @@ jobs:
- uses: r-lib/actions/setup-pandoc@v2
- name: Install tinytest from CRAN
- name: Install suggested pkgs (and tinytest) from CRAN
run: |
install.packages("tinytest", repos = "https://cran.r-project.org")
desc_lines <- readLines('DESCRIPTION')
suggests <- readLines('DESCRIPTION')[grepl("^(Suggests:| )", readLines('DESCRIPTION'))]
suggests <- suggests[(which(grepl("^Suggests", suggests)) + 1):length(suggests)]
suggests <- gsub("[ ,]", "", suggests)
pkgs <- unique(c(suggests, "tinytest"))
for (p in pkgs) try(install.packages(p, repos = "https://cran.r-project.org"), silent = TRUE)
shell: Rscript {0}
- name: Show session info

View File

@@ -39,7 +39,7 @@ jobs:
runs-on: ubuntu-latest
env:
PYPI_PAT: ${{ secrets.PYPI_PAT }}
GH_REPO_SCOPE: ${{ secrets.GH_REPO_SCOPE }}
steps:
- name: Checkout code
@@ -78,6 +78,7 @@ jobs:
cd PythonPackage/AMR
python -m twine upload --repository-url https://test.pypi.org/legacy/ dist/*
# TODO - Support Miniconda and Anaconda too
# - name: Set up Miniconda
# continue-on-error: true
# uses: conda-incubator/setup-miniconda@v2
@@ -117,7 +118,7 @@ jobs:
rm -rf PythonPackage
git init
git remote add origin https://$PYPI_PAT@github.com/msberends/AMR
git remote add origin https://$GH_REPO_SCOPE@github.com/msberends/AMR
git checkout --orphan python-wrapper
git config user.name "github-actions[bot]"
git config user.email "github-actions[bot]@users.noreply.github.com"
@@ -125,4 +126,4 @@ jobs:
git rm -rf . || true
git add .
git commit -m "Python wrapper update"
git push https://$PYPI_PAT@github.com/msberends/AMR.git python-wrapper --force
git push https://$GH_REPO_SCOPE@github.com/msberends/AMR.git python-wrapper --force

View File

@@ -39,7 +39,7 @@ jobs:
runs-on: ubuntu-latest
env:
PYPI_PAT: ${{ secrets.PYPI_PAT }}
GH_REPO_SCOPE: ${{ secrets.GH_REPO_SCOPE }}
steps:
- name: Checkout code
@@ -63,4 +63,4 @@ jobs:
git config user.email "github-actions[bot]@users.noreply.github.com"
git add latest_training_data.txt
git commit -m "GPT training data update"
git push https://$PYPI_PAT@github.com/msberends/amr-for-r-assistant.git main --force
git push https://$GH_REPO_SCOPE@github.com/msberends/amr-for-r-assistant.git main --force

80
.github/workflows/todo-tracker.yml vendored Normal file
View File

@@ -0,0 +1,80 @@
# ==================================================================== #
# TITLE: #
# AMR: An R Package for Working with Antimicrobial Resistance Data #
# #
# SOURCE CODE: #
# https://github.com/msberends/AMR #
# #
# PLEASE CITE THIS SOFTWARE AS: #
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
# https://doi.org/10.18637/jss.v104.i03 #
# #
# Developed at the University of Groningen and the University Medical #
# Center Groningen in The Netherlands, in collaboration with many #
# colleagues from around the world, see our website. #
# #
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
# #
# Visit our website for the full manual and a complete tutorial about #
# how to conduct AMR data analysis: https://amr-for-r.org #
# ==================================================================== #
on:
push:
# only on main
branches: "main"
name: Update TODO Tracker
jobs:
update-todo:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Generate TODO list from R/
run: |
echo "## \`TODO\` Report" > todo.md
echo "" >> todo.md
echo "_This overview is automatically updated on each push to \`main\`. It provides an automated overview of all mentions of the text \`TODO\`._" >> todo.md
echo "" >> todo.md
todos=$(grep -rn --include=\*.{R,Rmd,yaml,yml,md,css,js} --exclude={todo-tracker.yml,todo.md} "TODO" . || true)
if [ -z "$todos" ]; then
echo "✅ No TODOs found." >> todo.md
else
echo "$todos" | awk -F: -v repo="https://github.com/msberends/AMR/blob/main/" '
{
file = $1
gsub("^\\./", "", file) # remove leading ./ if present
line = $2
text = substr($0, index($0,$3))
if (file != last_file) {
if (last_file != "") print "```"
print ""
print "### [`" file "`](" repo file ")"
print "```r"
last_file = file
}
printf "L%s: %s\n", line, text
}
' >> todo.md
echo "\`\`\`" >> todo.md
fi
- name: Update GitHub issue
uses: peter-evans/create-or-update-comment@v4
with:
token: ${{ secrets.GH_REPO_SCOPE }}
issue-number: 231
comment-id: 3253439219
body-file: todo.md
edit-mode: replace

View File

@@ -42,16 +42,15 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: checkout
uses: actions/checkout@v4
with:
# this is to keep timestamps, the default fetch-depth: 1 gets the timestamps of the moment of cloning
# we need this for the download page on our website - dates must be of the files, not of the latest git push
fetch-depth: 0
- name: Preserve timestamps
run: |
sudo apt install git-restore-mtime
git restore-mtime
- name: restore timestamps
uses: chetan/git-restore-mtime-action@v2
- uses: r-lib/actions/setup-pandoc@v2

1
.gitignore vendored
View File

@@ -1,5 +1,6 @@
Meta
doc
docs
.Renviron
.Rproj.user
.Rhistory

View File

@@ -1,3 +1,3 @@
Version: 3.0.0
Date: 2025-06-01 16:52:53 UTC
SHA: 79038fed2169a25a7fc067c80bb25d9d78be21d9
Version: 3.0.1
Date: 2025-09-20 10:56:46 UTC
SHA: 33fb1849eb5aa6d33828e643c8f5047dd93447e3

View File

@@ -1,6 +1,6 @@
Package: AMR
Version: 3.0.0
Date: 2025-06-01
Version: 3.0.1
Date: 2025-09-20
Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by
@@ -51,6 +51,8 @@ Suggests:
pillar,
progress,
readxl,
recipes,
rlang,
rmarkdown,
rstudioapi,
rvest,
@@ -68,5 +70,5 @@ BugReports: https://github.com/msberends/AMR/issues
License: GPL-2 | file LICENSE
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.3.2
RoxygenNote: 7.3.3
Roxygen: list(markdown = TRUE, old_usage = TRUE)

View File

@@ -373,6 +373,8 @@ if(getRversion() >= "3.0.0") S3method(ggplot2::fortify, disk)
if(getRversion() >= "3.0.0") S3method(ggplot2::fortify, mic)
if(getRversion() >= "3.0.0") S3method(ggplot2::fortify, resistance_predict)
if(getRversion() >= "3.0.0") S3method(ggplot2::fortify, sir)
if(getRversion() >= "3.0.0") S3method(ggplot2::scale_type, mic)
if(getRversion() >= "3.0.0") S3method(ggplot2::scale_type, sir)
if(getRversion() >= "3.0.0") S3method(knitr::knit_print, antibiogram)
if(getRversion() >= "3.0.0") S3method(knitr::knit_print, formatted_bug_drug_combinations)
if(getRversion() >= "3.0.0") S3method(pillar::pillar_shaft, ab)
@@ -388,6 +390,7 @@ if(getRversion() >= "3.0.0") S3method(pillar::type_sum, av)
if(getRversion() >= "3.0.0") S3method(pillar::type_sum, mic)
if(getRversion() >= "3.0.0") S3method(pillar::type_sum, mo)
if(getRversion() >= "3.0.0") S3method(pillar::type_sum, sir)
if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, ab)
if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, disk)
if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, mic)
if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, mo)

33
NEWS.md
View File

@@ -1,3 +1,34 @@
# AMR 3.0.1
This is a bugfix release following the release of v3.0.0 in June 2025.
### Changed
* Fixed bugs introduced by `ggplot2` v4.0.0 (#236)
* MIC scale functions (such as `scale_y_mic()`) will now be applied automatically when plotting values of class `mic`
* SIR scale functions (such as `scale_x_sir()`) will now be applied automatically when plotting values of class `sir`
* Fixed a bug in `antibiogram()` for when no antimicrobials are set
* Fixed a bug in `antibiogram()` to allow column names containing the `+` character (#222)
* Fixed a bug in `as.ab()` for antimicrobial codes with a number in it if they are preceded by a space
* Fixed a bug in `eucast_rules()` for using specific custom rules
* Fixed a bug in `as.sir()` to allow any tidyselect language (#220)
* Fixed a bug in `as.sir()` to pick right breakpoint when `uti = FALSE` (#216)
* Fixed a bug in `ggplot_sir()` when using `combine_SI = FALSE` (#213)
* Fixed a bug in `mdro()` to make sure all genes specified in arguments are acknowledged
* Fixed a bug the `antimicrobials` data set to remove statins (#229)
* Fixed a bug the `microorganisms` data set for MycoBank IDs and synonyms (#233)
* Fixed ATC J01CR05 to map to piperacillin/tazobactam rather than piperacillin/sulbactam (#230)
* Fixed skimmers (`skimr` package) of class `ab`, `sir`, and `disk` (#234)
* Fixed all plotting to contain a separate colour for SDD (susceptible dose-dependent) (#223)
* Fixed some specific Dutch translations for antimicrobials
* Added a warning to `as.ab()` if input resembles antiviral codes or names (#232)
* Added all reasons in verbose output of `mdro()` (#227)
* Added `names` to `age_groups()` so that custom names can be given (#215)
* Added note to `as.sir()` to make it explicit when higher-level taxonomic breakpoints are used (#218)
* Added antibiotic codes from the Comprehensive Antibiotic Resistance Database (CARD) to the `antimicrobials` data set (#225)
* Updated Fosfomycin to be of antibiotic class Phosphonics (#225)
* Updated `random_mic()` and `random_disk()` to set skewedness of the distribution and allow multiple microorganisms
# AMR 3.0.0
This package now supports not only tools for AMR data analysis in clinical settings, but also for veterinary and environmental microbiology. This was made possible through a collaboration with the [University of Prince Edward Island's Atlantic Veterinary College](https://www.upei.ca/avc), Canada. To celebrate this great improvement of the package, we also updated the package logo to reflect this change.
@@ -122,7 +153,7 @@ This package now supports not only tools for AMR data analysis in clinical setti
## Older Versions
This changelog only contains changes from AMR v3.0 (March 2025) and later.
This changelog only contains changes from AMR v3.0 (June 2025) and later.
* For prior v2 versions, please see [our v2 archive](https://github.com/msberends/AMR/blob/v2.1.1/NEWS.md).
* For prior v1 versions, please see [our v1 archive](https://github.com/msberends/AMR/blob/v1.8.2/NEWS.md).

View File

@@ -233,6 +233,7 @@ globalVariables(c(
"uti_index",
"value",
"varname",
"where",
"x",
"xvar",
"y",

View File

@@ -63,31 +63,6 @@ pm_left_join <- function(x, y, by = NULL, suffix = c(".x", ".y")) {
merged
}
# support where() like tidyverse (this function will also be used when running `antibiogram()`):
where <- function(fn) {
# based on https://github.com/nathaneastwood/poorman/blob/52eb6947e0b4430cd588976ed8820013eddf955f/R/where.R#L17-L32
if (!is.function(fn)) {
stop_("`", deparse(substitute(fn)), "()` is not a valid predicate function.")
}
df <- pm_select_env$.data
cols <- pm_select_env$get_colnames()
if (is.null(df)) {
df <- get_current_data("where", call = FALSE)
cols <- colnames(df)
}
preds <- unlist(lapply(
df,
function(x, fn) {
do.call("fn", list(x))
},
fn
))
if (!is.logical(preds)) stop_("`where()` must be used with functions that return `TRUE` or `FALSE`.")
data_cols <- cols
cols <- data_cols[preds]
which(data_cols %in% cols)
}
# copied and slightly rewritten from {poorman} under permissive license (2021-10-15)
# https://github.com/nathaneastwood/poorman, MIT licensed, Nathan Eastwood, 2020
case_when_AMR <- function(...) {
@@ -510,11 +485,7 @@ word_wrap <- function(...,
}
# format backticks
if (pkg_is_available("cli") &&
tryCatch(isTRUE(getExportedValue("ansi_has_hyperlink_support", ns = asNamespace("cli"))()), error = function(e) FALSE) &&
tryCatch(getExportedValue("isAvailable", ns = asNamespace("rstudioapi"))(), error = function(e) {
return(FALSE)
}) &&
if (pkg_is_available("cli") && in_rstudio() &&
tryCatch(getExportedValue("versionInfo", ns = asNamespace("rstudioapi"))()$version > "2023.6.0.0", error = function(e) {
return(FALSE)
})) {
@@ -544,7 +515,7 @@ word_wrap <- function(...,
)
msg <- paste0(parts, collapse = "`")
}
msg <- gsub("`(.+?)`", font_grey_bg("\\1"), msg)
msg <- gsub("`(.+?)`", font_grey_bg("`\\1`"), msg)
# clean introduced whitespace in between fullstops
msg <- gsub("[.] +[.]", "..", msg)
@@ -814,7 +785,7 @@ meet_criteria <- function(object, # can be literally `list(...)` for `allow_argu
# if object is missing, or another error:
tryCatch(invisible(object),
error = function(e) AMR_env$meet_criteria_error_txt <- e$message
error = function(e) AMR_env$meet_criteria_error_txt <- conditionMessage(e)
)
if (!is.null(AMR_env$meet_criteria_error_txt)) {
error_txt <- AMR_env$meet_criteria_error_txt
@@ -1213,6 +1184,13 @@ reset_all_thrown_messages <- function() {
)
}
in_rstudio <- function() {
identical(Sys.getenv("RSTUDIO"), "1")
}
in_positron <- function() {
identical(Sys.getenv("POSITRON"), "1")
}
has_colour <- function() {
if (is.null(AMR_env$supports_colour)) {
if (Sys.getenv("EMACS") != "" || Sys.getenv("INSIDE_EMACS") != "") {
@@ -1244,8 +1222,10 @@ try_colour <- function(..., before, after, collapse = " ") {
}
}
is_dark <- function() {
if (is.null(AMR_env$is_dark_theme)) {
AMR_env$is_dark_theme <- !has_colour() || tryCatch(isTRUE(getExportedValue("getThemeInfo", ns = asNamespace("rstudioapi"))()$dark), error = function(e) FALSE)
AMR_env$current_theme <- tryCatch(getExportedValue("getThemeInfo", ns = asNamespace("rstudioapi"))()$editor, error = function(e) NULL)
if (!identical(AMR_env$current_theme, AMR_env$former_theme) || is.null(AMR_env$is_dark_theme)) {
AMR_env$former_theme <- AMR_env$current_theme
AMR_env$is_dark_theme <- !has_colour() || tryCatch(isTRUE(getExportedValue("getThemeInfo", ns = asNamespace("rstudioapi"))()$dark), error = function(e) TRUE)
}
isTRUE(AMR_env$is_dark_theme)
}
@@ -1317,6 +1297,10 @@ font_green_bg <- function(..., collapse = " ") {
# this is #3caea3 (picked to be colourblind-safe with other SIR colours)
try_colour(font_black(..., collapse = collapse, adapt = FALSE), before = "\033[48;5;79m", after = "\033[49m", collapse = collapse)
}
font_green_lighter_bg <- function(..., collapse = " ") {
# this is #8FD6C4 (picked to be colourblind-safe with other SIR colours)
try_colour(font_black(..., collapse = collapse, adapt = FALSE), before = "\033[48;5;158m", after = "\033[49m", collapse = collapse)
}
font_purple_bg <- function(..., collapse = " ") {
try_colour(font_black(..., collapse = collapse, adapt = FALSE), before = "\033[48;5;89m", after = "\033[49m", collapse = collapse)
}
@@ -1634,6 +1618,36 @@ get_n_cores <- function(max_cores = Inf) {
n_cores
}
# Support `where()` if tidyselect not installed ----
if (!is.null(import_fn("where", "tidyselect", error_on_fail = FALSE))) {
# tidyselect::where() exists, load the namespace to make `where()`s work across the package in default arguments
loadNamespace("tidyselect")
} else {
where <- function(fn) {
# based on https://github.com/nathaneastwood/poorman/blob/52eb6947e0b4430cd588976ed8820013eddf955f/R/where.R#L17-L32
if (!is.function(fn)) {
stop_("`", deparse(substitute(fn)), "()` is not a valid predicate function.")
}
df <- pm_select_env$.data
cols <- pm_select_env$get_colnames()
if (is.null(df)) {
df <- get_current_data("where", call = FALSE)
cols <- colnames(df)
}
preds <- unlist(lapply(
df,
function(x, fn) {
do.call("fn", list(x))
},
fn
))
if (!is.logical(preds)) stop_("`where()` must be used with functions that return `TRUE` or `FALSE`.")
data_cols <- cols
cols <- data_cols[preds]
which(data_cols %in% cols)
}
}
# Faster data.table implementations ----
match <- function(x, table, ...) {
@@ -1653,52 +1667,6 @@ match <- function(x, table, ...) {
}
}
# nolint start
# Register S3 methods ----
# copied from vctrs::s3_register by their permission:
# https://github.com/r-lib/vctrs/blob/05968ce8e669f73213e3e894b5f4424af4f46316/R/register-s3.R
s3_register <- function(generic, class, method = NULL) {
stopifnot(is.character(generic), length(generic) == 1)
stopifnot(is.character(class), length(class) == 1)
pieces <- strsplit(generic, "::")[[1]]
stopifnot(length(pieces) == 2)
package <- pieces[[1]]
generic <- pieces[[2]]
caller <- parent.frame()
get_method_env <- function() {
top <- topenv(caller)
if (isNamespace(top)) {
asNamespace(environmentName(top))
} else {
caller
}
}
get_method <- function(method, env) {
if (is.null(method)) {
get(paste0(generic, ".", class), envir = get_method_env())
} else {
method
}
}
method_fn <- get_method(method)
stopifnot(is.function(method_fn))
setHook(packageEvent(package, "onLoad"), function(...) {
ns <- asNamespace(package)
method_fn <- get_method(method)
registerS3method(generic, class, method_fn, envir = ns)
})
if (!isNamespaceLoaded(package)) {
return(invisible())
}
envir <- asNamespace(package)
if (exists(generic, envir)) {
registerS3method(generic, class, method_fn, envir = envir)
}
invisible()
}
# Support old R versions ----
# these functions were not available in previous versions of R
# see here for the full list: https://github.com/r-lib/backports

View File

@@ -952,7 +952,19 @@ pm_select_env$get_nrow <- function() nrow(pm_select_env$.data)
pm_select_env$get_ncol <- function() ncol(pm_select_env$.data)
pm_select <- function(.data, ...) {
col_pos <- pm_select_positions(.data, ..., .group_pos = TRUE)
# col_pos <- pm_select_positions(.data, ..., .group_pos = TRUE),
col_pos <- tryCatch(pm_select_positions(.data, ..., .group_pos = TRUE), error = function(e) NULL)
if (is.null(col_pos)) {
# try with tidyverse
select_dplyr <- import_fn("select", "dplyr", error_on_fail = FALSE)
if (!is.null(select_dplyr)) {
col_pos <- which(colnames(.data) %in% colnames(select_dplyr(.data, ...)))
} else {
# this will throw an error as it did, but dplyr is not available, so no other option
col_pos <- pm_select_positions(.data, ..., .group_pos = TRUE)
}
}
map_names <- names(col_pos)
map_names_length <- nchar(map_names)
if (any(map_names_length == 0L)) {

28
R/ab.R
View File

@@ -184,7 +184,8 @@ as.ab <- function(x, flag_multiple_results = TRUE, language = get_AMR_locale(),
x_new[known_codes_cid] <- AMR_env$AB_lookup$ab[match(x[known_codes_cid], AMR_env$AB_lookup$cid)]
previously_coerced <- x %in% AMR_env$ab_previously_coerced$x
x_new[previously_coerced & is.na(x_new)] <- AMR_env$ab_previously_coerced$ab[match(x[is.na(x_new) & x %in% AMR_env$ab_previously_coerced$x], AMR_env$ab_previously_coerced$x)]
if (any(previously_coerced) && isTRUE(info) && message_not_thrown_before("as.ab", entire_session = TRUE)) {
previously_coerced_mention <- x %in% AMR_env$ab_previously_coerced$x & !x %in% AMR_env$AB_lookup$ab & !x %in% AMR_env$AB_lookup$generalised_name
if (any(previously_coerced_mention) && isTRUE(info) && message_not_thrown_before("as.ab", entire_session = TRUE)) {
message_(
"Returning previously coerced ",
ifelse(length(unique(which(x[which(previously_coerced)] %in% x_bak_clean))) > 1, "value for an antimicrobial", "values for various antimicrobials"),
@@ -201,6 +202,9 @@ as.ab <- function(x, flag_multiple_results = TRUE, language = get_AMR_locale(),
if (sum(already_known) < length(x)) {
progress <- progress_ticker(n = sum(!already_known), n_min = 25, print = info) # start if n >= 25
on.exit(close(progress))
if (any(x_new[!already_known & !is.na(x_new)] %in% unlist(AMR_env$AV_lookup$generalised_all, use.names = FALSE), na.rm = TRUE)) {
warning_("in `as.ab()`: some input seems to resemble antiviral drugs - use `as.av()` or e.g. `av_name()` for these, not `as.ab()` or e.g. `ab_name()`.")
}
}
for (i in which(!already_known)) {
@@ -447,7 +451,7 @@ as.ab <- function(x, flag_multiple_results = TRUE, language = get_AMR_locale(),
x_unknown <- x_unknown[!x_unknown %in% c("", NA)]
if (length(x_unknown) > 0 && fast_mode == FALSE) {
warning_(
"in `as.ab()`: these values could not be coerced to a valid antimicrobial ID: ",
"in `as.ab()`: ", ifelse(length(unique(x_unknown)) == 1, "this value", "these values"), " could not be coerced to a valid antimicrobial ID: ",
vector_and(x_unknown), "."
)
}
@@ -510,7 +514,7 @@ pillar_shaft.ab <- function(x, ...) {
out[is.na(x)] <- font_na(NA)
# add the names to the drugs as mouse-over!
if (tryCatch(isTRUE(getExportedValue("ansi_has_hyperlink_support", ns = asNamespace("cli"))()), error = function(e) FALSE)) {
if (in_rstudio()) {
out[!is.na(x)] <- font_url(
url = paste0(x[!is.na(x)], ": ", ab_name(x[!is.na(x)])),
txt = out[!is.na(x)]
@@ -626,6 +630,20 @@ rep.ab <- function(x, ...) {
out
}
# this prevents the requirement for putting the dependency in Imports:
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, ab)
get_skimmers.ab <- function(column) {
ab <- as.ab(column, info = FALSE)
ab <- ab[!is.na(ab)]
skimr::sfl(
skim_type = "ab",
n_unique = ~ length(unique(ab)),
top_ab = ~ names(sort(-table(ab)))[1L],
top_ab_name = ~ names(sort(-table(ab_name(ab, info = FALSE))))[1L],
top_group = ~ names(sort(-table(ab_group(ab, info = FALSE))))[1L]
)
}
generalise_antibiotic_name <- function(x) {
x <- toupper(x)
# remove suffices
@@ -655,7 +673,9 @@ generalise_antibiotic_name <- function(x) {
x <- trimws(gsub(" +", " ", x, perl = TRUE))
# remove last couple of words if they numbers or units
x <- gsub("( ([0-9]{3,}|U?M?C?G|L))+$", "", x, perl = TRUE)
# move HIGH to end
# remove whitespace prior to numbers if preceded by A-Z
x <- gsub("([A-Z]+) +([0-9]+)", "\\1\\2", x, perl = TRUE)
# move HIGH to the end
x <- trimws(gsub("(.*) HIGH(.*)", "\\1\\2 HIGH", x, perl = TRUE))
x
}

View File

@@ -445,7 +445,7 @@ ab_validate <- function(x, property, ...) {
# try to catch an error when inputting an invalid argument
# so the 'call.' can be set to FALSE
tryCatch(x[1L] %in% AMR_env$AB_lookup[1, property, drop = TRUE],
error = function(e) stop(e$message, call. = FALSE)
error = function(e) stop(conditionMessage(e), call. = FALSE)
)
if (!all(x %in% AMR_env$AB_lookup[, property, drop = TRUE])) {

14
R/age.R
View File

@@ -128,9 +128,10 @@ age <- function(x, reference = Sys.Date(), exact = FALSE, na.rm = FALSE, ...) {
#' Split Ages into Age Groups
#'
#' Split ages into age groups defined by the `split` argument. This allows for easier demographic (antimicrobial resistance) analysis.
#' Split ages into age groups defined by the `split` argument. This allows for easier demographic (antimicrobial resistance) analysis. The function returns an ordered [factor].
#' @param x Age, e.g. calculated with [age()].
#' @param split_at Values to split `x` at - the default is age groups 0-11, 12-24, 25-54, 55-74 and 75+. See *Details*.
#' @param names Optional names to be given to the various age groups.
#' @param na.rm A [logical] to indicate whether missing values should be removed.
#' @details To split ages, the input for the `split_at` argument can be:
#'
@@ -152,6 +153,7 @@ age <- function(x, reference = Sys.Date(), exact = FALSE, na.rm = FALSE, ...) {
#'
#' # split into 0-19, 20-49 and 50+
#' age_groups(ages, c(20, 50))
#' age_groups(ages, c(20, 50), names = c("Under 20 years", "20 to 50 years", "Over 50 years"))
#'
#' # split into groups of ten years
#' age_groups(ages, 1:10 * 10)
@@ -181,9 +183,10 @@ age <- function(x, reference = Sys.Date(), exact = FALSE, na.rm = FALSE, ...) {
#' )
#' }
#' }
age_groups <- function(x, split_at = c(12, 25, 55, 75), na.rm = FALSE) {
age_groups <- function(x, split_at = c(0, 12, 25, 55, 75), names = NULL, na.rm = FALSE) {
meet_criteria(x, allow_class = c("numeric", "integer"), is_positive_or_zero = TRUE, is_finite = TRUE)
meet_criteria(split_at, allow_class = c("numeric", "integer", "character"), is_positive_or_zero = TRUE, is_finite = TRUE)
meet_criteria(names, allow_class = "character", allow_NULL = TRUE)
meet_criteria(na.rm, allow_class = "logical", has_length = 1)
if (any(x < 0, na.rm = TRUE)) {
@@ -208,7 +211,7 @@ age_groups <- function(x, split_at = c(12, 25, 55, 75), na.rm = FALSE) {
split_at <- c(0, split_at)
}
split_at <- split_at[!is.na(split_at)]
stop_if(length(split_at) == 1, "invalid value for `split_at`") # only 0 is available
stop_if(length(split_at) == 1, "invalid value for `split_at`.") # only 0 is available
# turn input values to 'split_at' indices
y <- x
@@ -224,6 +227,11 @@ age_groups <- function(x, split_at = c(12, 25, 55, 75), na.rm = FALSE) {
agegroups <- factor(lbls[y], levels = lbls, ordered = TRUE)
if (!is.null(names)) {
stop_ifnot(length(names) == length(levels(agegroups)), "`names` must have the same length as the number of age groups (", length(levels(agegroups)), ").")
levels(agegroups) <- names
}
if (isTRUE(na.rm)) {
agegroups <- agegroups[!is.na(agegroups)]
}

View File

@@ -527,7 +527,7 @@ amr_selector <- function(filter,
)
call <- substitute(filter)
agents <- tryCatch(AMR_env$AB_lookup[which(eval(call, envir = AMR_env$AB_lookup)), "ab", drop = TRUE],
error = function(e) stop_(e$message, call = -5)
error = function(e) stop_(conditionMessage(e), call = -5)
)
agents <- ab_in_data[ab_in_data %in% agents]
message_agent_names(
@@ -640,7 +640,7 @@ not_intrinsic_resistant <- function(only_sir_columns = FALSE, col_mo = NULL, ver
)
}
),
error = function(e) stop_("in not_intrinsic_resistant(): ", e$message, call = FALSE)
error = function(e) stop_("in not_intrinsic_resistant(): ", conditionMessage(e), call = FALSE)
)
agents <- ab_in_data[ab_in_data %in% names(vars_df_R[which(vars_df_R)])]

View File

@@ -40,6 +40,7 @@
#' - A combination of the above, using `c()`, e.g.:
#' - `c(aminoglycosides(), "AMP", "AMC")`
#' - `c(aminoglycosides(), carbapenems())`
#' - Column indices using numbers
#' - Combination therapy, indicated by using `"+"`, with or without [antimicrobial selectors][antimicrobial_selectors], e.g.:
#' - `"cipro + genta"`
#' - `"TZP+TOB"`
@@ -452,7 +453,7 @@ antibiogram.default <- function(x,
deprecation_warning("antibiotics", "antimicrobials", fn = "antibiogram", is_argument = TRUE)
antimicrobials <- list(...)$antibiotics
}
meet_criteria(antimicrobials, allow_class = "character", allow_NA = FALSE, allow_NULL = FALSE)
meet_criteria(antimicrobials, allow_class = c("character", "numeric", "integer"), allow_NA = FALSE, allow_NULL = FALSE)
if (!is.function(mo_transform)) {
meet_criteria(mo_transform, allow_class = "character", has_length = 1, is_in = c("name", "shortname", "gramstain", colnames(AMR::microorganisms)), allow_NULL = TRUE, allow_NA = TRUE)
}
@@ -575,6 +576,15 @@ antibiogram.default <- function(x,
}
antimicrobials <- unlist(antimicrobials)
} else {
existing_ab_combined_cols <- ab_trycatch[ab_trycatch %like% "[+]" & ab_trycatch %in% colnames(x)]
if (length(existing_ab_combined_cols) > 0 && !is.null(ab_transform)) {
ab_transform <- NULL
warning_(
"Detected column name(s) containing the '+' character, which conflicts with the expected syntax in `antibiogram()`: the '+' is used to combine separate antimicrobial agent columns (e.g., \"AMP+GEN\").\n\n",
"To avoid incorrectly guessing which antimicrobials this represents, `ab_transform` was automatically set to `NULL`.\n\n",
"If this is unintended, please rename the column(s) to avoid using '+' in the name, or set `ab_transform = NULL` explicitly to suppress this message."
)
}
antimicrobials <- ab_trycatch
}
@@ -1194,12 +1204,13 @@ retrieve_wisca_parameters <- function(wisca_model, ...) {
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(pillar::tbl_sum, antibiogram)
tbl_sum.antibiogram <- function(x, ...) {
dims <- paste(format(NROW(x), big.mark = ","), AMR_env$cross_icon, format(NCOL(x), big.mark = ","))
names(dims) <- "An Antibiogram"
if (isTRUE(attributes(x)$wisca)) {
names(dims) <- paste0("An Antibiogram (WISCA / ", attributes(x)$conf_interval * 100, "% CI)")
dims <- c(dims, Type = paste0("WISCA with ", attributes(x)$conf_interval * 100, "% CI"))
} else if (isTRUE(attributes(x)$formatting_type >= 13)) {
names(dims) <- paste0("An Antibiogram (non-WISCA / ", attributes(x)$conf_interval * 100, "% CI)")
dims <- c(dims, Type = paste0("Non-WISCA with ", attributes(x)$conf_interval * 100, "% CI"))
} else {
names(dims) <- paste0("An Antibiogram (non-WISCA)")
dims <- c(dims, Type = paste0("Non-WISCA without CI"))
}
dims
}

View File

@@ -264,7 +264,7 @@ av_validate <- function(x, property, ...) {
# try to catch an error when inputting an invalid argument
# so the 'call.' can be set to FALSE
tryCatch(x[1L] %in% AMR_env$AV_lookup[1, property, drop = TRUE],
error = function(e) stop(e$message, call. = FALSE)
error = function(e) stop(conditionMessage(e), call. = FALSE)
)
if (!all(x %in% AMR_env$AV_lookup[, property, drop = TRUE])) {

View File

@@ -126,7 +126,7 @@ count_resistant <- function(..., only_all_tested = FALSE) {
only_all_tested = only_all_tested,
only_count = TRUE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}
@@ -139,7 +139,7 @@ count_susceptible <- function(..., only_all_tested = FALSE) {
only_all_tested = only_all_tested,
only_count = TRUE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}
@@ -152,7 +152,7 @@ count_S <- function(..., only_all_tested = FALSE) {
only_all_tested = only_all_tested,
only_count = TRUE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}
@@ -165,7 +165,7 @@ count_SI <- function(..., only_all_tested = FALSE) {
only_all_tested = only_all_tested,
only_count = TRUE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}
@@ -178,7 +178,7 @@ count_I <- function(..., only_all_tested = FALSE) {
only_all_tested = only_all_tested,
only_count = TRUE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}
@@ -191,7 +191,7 @@ count_IR <- function(..., only_all_tested = FALSE) {
only_all_tested = only_all_tested,
only_count = TRUE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}
@@ -204,7 +204,7 @@ count_R <- function(..., only_all_tested = FALSE) {
only_all_tested = only_all_tested,
only_count = TRUE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}
@@ -217,7 +217,7 @@ count_all <- function(..., only_all_tested = FALSE) {
only_all_tested = only_all_tested,
only_count = TRUE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}
@@ -240,6 +240,6 @@ count_df <- function(data,
combine_SI = combine_SI,
confidence_level = 0.95 # doesn't matter, will be removed
),
error = function(e) stop_(gsub("in sir_calc_df(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc_df(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}

View File

@@ -175,7 +175,7 @@ custom_mdro_guideline <- function(..., as_factor = TRUE) {
# Value
val <- tryCatch(eval(dots[[i]][[3]]), error = function(e) NULL)
stop_if(is.null(val), "rule ", i, " must return a valid value, it now returns an error: ", tryCatch(eval(dots[[i]][[3]]), error = function(e) e$message))
stop_if(is.null(val), "rule ", i, " must return a valid value, it now returns an error: ", tryCatch(eval(dots[[i]][[3]]), error = function(e) conditionMessage(e)))
stop_if(length(val) > 1, "rule ", i, " must return a value of length 1, not ", length(val))
out[[i]]$value <- as.character(val)
}
@@ -254,7 +254,7 @@ run_custom_mdro_guideline <- function(df, guideline, info) {
for (i in seq_len(n_dots)) {
qry <- tryCatch(eval(parse(text = guideline[[i]]$query), envir = df, enclos = parent.frame()),
error = function(e) {
AMR_env$err_msg <- e$message
AMR_env$err_msg <- conditionMessage(e)
return("error")
}
)

View File

@@ -361,3 +361,15 @@
#' @examples
#' dosage
"dosage"
# TODO #' Data Set with `r format(nrow(esbl_isolates), big.mark = " ")` ESBL Isolates
# TODO #'
# TODO #' A data set containing `r format(nrow(esbl_isolates), big.mark = " ")` microbial isolates with MIC values of common antibiotics and a binary `esbl` column for extended-spectrum beta-lactamase (ESBL) production. This data set contains randomised fictitious data but reflects reality and can be used to practise AMR-related machine learning, e.g., classification modelling with [tidymodels](https://amr-for-r.org/articles/AMR_with_tidymodels.html).
# TODO #' @format A [tibble][tibble::tibble] with `r format(nrow(esbl_isolates), big.mark = " ")` observations and `r ncol(esbl_isolates)` variables:
# TODO #' - `esbl`\cr Logical indicator if the isolate is ESBL-producing
# TODO #' - `genus`\cr Genus of the microorganism
# TODO #' - `AMC:COL`\cr MIC values for 17 antimicrobial agents, transformed to class [`mic`] (see [as.mic()])
# TODO #' @details See our [tidymodels integration][amr-tidymodels] for an example using this data set.
# TODO #' @examples
# TODO #' esbl_isolates
# TODO "esbl_isolates"

View File

@@ -236,12 +236,14 @@ rep.disk <- function(x, ...) {
# this prevents the requirement for putting the dependency in Imports:
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, disk)
get_skimmers.disk <- function(column) {
column <- as.integer(column)
skimr::sfl(
skim_type = "disk",
min = ~ min(as.double(.), na.rm = TRUE),
max = ~ max(as.double(.), na.rm = TRUE),
median = ~ stats::median(as.double(.), na.rm = TRUE),
n_unique = ~ length(unique(stats::na.omit(.))),
hist = ~ skimr::inline_hist(stats::na.omit(as.double(.)))
p0 = ~ stats::quantile(column, probs = 0, na.rm = TRUE, names = FALSE),
p25 = ~ stats::quantile(column, probs = 0.25, na.rm = TRUE, names = FALSE),
p50 = ~ stats::quantile(column, probs = 0.5, na.rm = TRUE, names = FALSE),
p75 = ~ stats::quantile(column, probs = 0.75, na.rm = TRUE, names = FALSE),
p100 = ~ stats::quantile(column, probs = 1, na.rm = TRUE, names = FALSE),
hist = ~ skimr::inline_hist(stats::na.omit(column), 10)
)
}

View File

@@ -442,7 +442,7 @@ eucast_rules <- function(x,
# big speed gain! only analyse unique rows:
pm_distinct(`.rowid`, .keep_all = TRUE) %pm>%
as.data.frame(stringsAsFactors = FALSE)
x[, col_mo] <- as.mo(as.character(x[, col_mo, drop = TRUE]), info = info)
x[, col_mo] <- as.mo(as.character(x[, col_mo, drop = TRUE]), info = FALSE)
# rename col_mo to prevent interference with joined columns
colnames(x)[colnames(x) == col_mo] <- ".col_mo"
col_mo <- ".col_mo"
@@ -450,13 +450,20 @@ eucast_rules <- function(x,
x <- left_join_microorganisms(x, by = col_mo, suffix = c("_oldcols", ""))
x$gramstain <- mo_gramstain(x[, col_mo, drop = TRUE], language = NULL, info = FALSE)
x$genus_species <- trimws(paste(x$genus, x$species))
if (isTRUE(info) && NROW(x) > 10000) {
message_(" OK.", add_fn = list(font_green, font_bold), as_note = FALSE)
if (isTRUE(info) && NROW(x.bak) > 10000) {
message_("OK.", add_fn = list(font_green, font_bold), as_note = FALSE)
}
n_added <- 0
n_changed <- 0
rule_current <- ""
rule_group_current <- ""
rule_group_previous <- ""
rule_next <- ""
rule_previous <- ""
rule_text <- ""
# >>> Apply Other rules: enzyme inhibitors <<< ------------------------------------------
if (any(c("all", "other") %in% rules)) {
if (isTRUE(info)) {
@@ -617,31 +624,16 @@ eucast_rules <- function(x,
eucast_rules_df <- eucast_rules_df %pm>%
rbind_AMR(eucast_rules_df_total %pm>%
subset(reference.rule_group %like% "breakpoint" & reference.version == version_breakpoints))
# eucast_rules_df <- subset(
# eucast_rules_df,
# reference.rule_group %unlike% "breakpoint" |
# (reference.rule_group %like% "breakpoint" & reference.version == version_breakpoints)
# )
}
if (any(c("all", "expected_phenotypes") %in% rules)) {
eucast_rules_df <- eucast_rules_df %pm>%
rbind_AMR(eucast_rules_df_total %pm>%
subset(reference.rule_group %like% "expected" & reference.version == version_expected_phenotypes))
# eucast_rules_df <- subset(
# eucast_rules_df,
# reference.rule_group %unlike% "expected" |
# (reference.rule_group %like% "expected" & reference.version == version_expected_phenotypes)
# )
}
if (any(c("all", "expert") %in% rules)) {
eucast_rules_df <- eucast_rules_df %pm>%
rbind_AMR(eucast_rules_df_total %pm>%
subset(reference.rule_group %like% "expert" & reference.version == version_expertrules))
# eucast_rules_df <- subset(
# eucast_rules_df,
# reference.rule_group %unlike% "expert" |
# (reference.rule_group %like% "expert" & reference.version == version_expertrules)
# )
}
## filter out AmpC de-repressed cephalosporin-resistant mutants ----
# no need to filter on version number here - the rules contain these version number, so are inherently filtered
@@ -664,6 +656,9 @@ eucast_rules <- function(x,
# we only hints on remaining rows in `eucast_rules_df`
screening_abx <- as.character(AMR::antimicrobials$ab[which(AMR::antimicrobials$ab %like% "-S$")])
screening_abx <- screening_abx[screening_abx %in% unique(unlist(strsplit(EUCAST_RULES_DF$and_these_antibiotics[!is.na(EUCAST_RULES_DF$and_these_antibiotics)], ", *")))]
if (isTRUE(info)) {
cat("\n")
}
for (ab_s in screening_abx) {
ab <- gsub("-S$", "", ab_s)
if (ab %in% names(cols_ab) && !ab_s %in% names(cols_ab)) {
@@ -894,7 +889,9 @@ eucast_rules <- function(x,
}
for (i in seq_len(length(custom_rules))) {
rule <- custom_rules[[i]]
rows <- which(eval(parse(text = rule$query), envir = x))
rows <- tryCatch(which(eval(parse(text = rule$query), envir = x)),
error = function(e) stop_(paste0(conditionMessage(e), font_red(" (check available data and compare with the custom rules set)")), call = FALSE)
)
cols <- as.character(rule$result_group)
cols <- c(
cols[cols %in% colnames(x)], # direct column names
@@ -908,9 +905,8 @@ eucast_rules <- function(x,
get_antibiotic_names(cols)
)
if (isTRUE(info)) {
# print rule
cat(italicise_taxonomy(
word_wrap(format_custom_query_rule(rule$query, colours = FALSE),
word_wrap(rule_text,
width = getOption("width") - 30,
extra_indent = 6
),
@@ -1182,7 +1178,7 @@ edit_sir <- function(x,
ifelse(length(rows) > 10, "...", ""),
" while writing value '", to,
"' to column(s) `", paste(cols, collapse = "`, `"),
"`:\n", e$message
"`:\n", conditionMessage(e)
),
call. = FALSE
)

View File

@@ -61,7 +61,7 @@
#'
#' All isolates with a microbial ID of `NA` will be excluded as first isolate.
#'
#' ### Different methods
#' ## Different methods
#'
#' According to previously-mentioned sources, there are different methods (algorithms) to select first isolates with increasing reliability: isolate-based, patient-based, episode-based and phenotype-based. All methods select on a combination of the taxonomic genus and species (not subspecies).
#'
@@ -89,21 +89,29 @@
#' | - Major difference in any antimicrobial result | - `first_isolate(x, type = "points")` |
#' | - Any difference in key antimicrobial results | - `first_isolate(x, type = "keyantimicrobials")` |
#'
#' ### Isolate-based
#' **Isolate-based**
#'
#' _Minimum variables required: Microorganism identifier_
#'
#' This method does not require any selection, as all isolates should be included. It does, however, respect all arguments set in the [first_isolate()] function. For example, the default setting for `include_unknown` (`FALSE`) will omit selection of rows without a microbial ID.
#'
#' ### Patient-based
#' **Patient-based**
#'
#' To include every genus-species combination per patient once, set the `episode_days` to `Inf`. This method makes sure that no duplicate isolates are selected from the same patient. This method is preferred to e.g. identify the first MRSA finding of each patient to determine the incidence. Conversely, in a large longitudinal data set, this could mean that isolates are *excluded* that were found years after the initial isolate.
#' _Minimum variables required: Microorganism identifier, Patient identifier_
#'
#' ### Episode-based
#' This method includes every genus-species combination per patient once. This method makes sure that no duplicate isolates are selected from the same patient. This method is preferred to e.g. identify the first MRSA finding of each patient to determine the incidence. Conversely, in a large longitudinal data set, this could mean that isolates are *excluded* that were found years after the initial isolate.
#'
#' To include every genus-species combination per patient episode once, set the `episode_days` to a sensible number of days. Depending on the type of analysis, this could be 14, 30, 60 or 365. Short episodes are common for analysing specific hospital or ward data or ICU cases, long episodes are common for analysing regional and national data.
#' **Episode-based**
#'
#' _Minimum variables required: Microorganism identifier, Patient identifier, Date_
#'
#' To include every genus-species combination per patient episode once, set the `episode_days` to a sensible number of days. Depending on the type of analysis, this could be e.g., 14, 30, 60 or 365. Short episodes are common for analysing specific hospital or ward data or ICU cases, long episodes are common for analysing regional and national data.
#'
#' This is the most common method to correct for duplicate isolates. Patients are categorised into episodes based on their ID and dates (e.g., the date of specimen receipt or laboratory result). While this is a common method, it does not take into account antimicrobial test results. This means that e.g. a methicillin-resistant *Staphylococcus aureus* (MRSA) isolate cannot be differentiated from a wildtype *Staphylococcus aureus* isolate.
#'
#' ### Phenotype-based
#' **Phenotype-based**
#'
#' _Minimum variables required: Microorganism identifier, Patient identifier, Date, Antimicrobial test results_
#'
#' This is a more reliable method, since it also *weighs* the antibiogram (antimicrobial test results) yielding so-called 'first weighted isolates'. There are two different methods to weigh the antibiogram:
#'

View File

@@ -177,6 +177,7 @@ ggplot_sir <- function(data,
nrow = NULL,
colours = c(
S = "#3CAEA3",
SDD = "#8FD6C4",
SI = "#3CAEA3",
I = "#F6D55C",
IR = "#ED553B",
@@ -205,7 +206,7 @@ ggplot_sir <- function(data,
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE)
language <- validate_language(language)
meet_criteria(nrow, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE)
meet_criteria(colours, allow_class = c("character", "logical"))
meet_criteria(colours, allow_class = c("character", "logical"), allow_NULL = TRUE)
meet_criteria(datalabels, allow_class = "logical", has_length = 1)
meet_criteria(datalabels.size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(datalabels.colour, allow_class = "character", has_length = 1)
@@ -245,7 +246,7 @@ ggplot_sir <- function(data,
) +
theme_sir()
if (fill == "interpretation") {
if (fill == "interpretation" && !is.null(colours) && !isFALSE(colours)) {
p <- suppressWarnings(p + scale_sir_colours(aesthetics = "fill", colours = colours))
}

View File

@@ -41,7 +41,7 @@
#' @inheritParams eucast_rules
#' @param pct_required_classes Minimal required percentage of antimicrobial classes that must be available per isolate, rounded down. For example, with the default guideline, 17 antimicrobial classes must be available for *S. aureus*. Setting this `pct_required_classes` argument to `0.5` (default) means that for every *S. aureus* isolate at least 8 different classes must be available. Any lower number of available classes will return `NA` for that isolate.
#' @param combine_SI A [logical] to indicate whether all values of S and I must be merged into one, so resistance is only considered when isolates are R, not I. As this is the default behaviour of the [mdro()] function, it follows the redefinition by EUCAST about the interpretation of I (increased exposure) in 2019, see section 'Interpretation of S, I and R' below. When using `combine_SI = FALSE`, resistance is considered when isolates are R or I.
#' @param verbose A [logical] to turn Verbose mode on and off (default is off). In Verbose mode, the function does not return the MDRO results, but instead returns a data set in logbook form with extensive info about which isolates would be MDRO-positive, or why they are not.
#' @param verbose A [logical] to turn Verbose mode on and off (default is off). In Verbose mode, the function returns a data set with the MDRO results in logbook form with extensive info about which isolates would be MDRO-positive, or why they are not.
#' @details
#' These functions are context-aware. This means that the `x` argument can be left blank if used inside a [data.frame] call, see *Examples*.
#'
@@ -174,48 +174,23 @@ mdro <- function(x = NULL,
}
# get gene values as TRUE/FALSE
if (is.character(esbl)) {
meet_criteria(esbl, is_in = colnames(x), allow_NA = FALSE, has_length = 1)
esbl <- x[[esbl]]
meet_criteria(esbl, allow_class = "logical", allow_NA = TRUE)
} else if (length(esbl) == 1) {
esbl <- rep(esbl, NROW(x))
}
if (is.character(carbapenemase)) {
meet_criteria(carbapenemase, is_in = colnames(x), allow_NA = FALSE, has_length = 1)
carbapenemase <- x[[carbapenemase]]
meet_criteria(carbapenemase, allow_class = "logical", allow_NA = TRUE)
} else if (length(carbapenemase) == 1) {
carbapenemase <- rep(carbapenemase, NROW(x))
}
if (is.character(mecA)) {
meet_criteria(mecA, is_in = colnames(x), allow_NA = FALSE, has_length = 1)
mecA <- x[[mecA]]
meet_criteria(mecA, allow_class = "logical", allow_NA = TRUE)
} else if (length(mecA) == 1) {
mecA <- rep(mecA, NROW(x))
}
if (is.character(mecC)) {
meet_criteria(mecC, is_in = colnames(x), allow_NA = FALSE, has_length = 1)
mecC <- x[[mecC]]
meet_criteria(mecC, allow_class = "logical", allow_NA = TRUE)
} else if (length(mecC) == 1) {
mecC <- rep(mecC, NROW(x))
}
if (is.character(vanA)) {
meet_criteria(vanA, is_in = colnames(x), allow_NA = FALSE, has_length = 1)
vanA <- x[[vanA]]
meet_criteria(vanA, allow_class = "logical", allow_NA = TRUE)
} else if (length(vanA) == 1) {
vanA <- rep(vanA, NROW(x))
}
if (is.character(vanB)) {
meet_criteria(vanB, is_in = colnames(x), allow_NA = FALSE, has_length = 1)
vanB <- x[[vanB]]
meet_criteria(vanB, allow_class = "logical", allow_NA = TRUE)
} else if (length(vanB) == 1) {
vanB <- rep(vanB, NROW(x))
resolve_gene_var <- function(x, gene, varname) {
if (is.character(gene)) {
meet_criteria(gene, is_in = colnames(x), allow_NA = FALSE, has_length = 1)
gene <- x[[gene]]
meet_criteria(gene, allow_class = "logical", allow_NA = TRUE)
} else if (length(gene) == 1) {
gene <- rep(gene, NROW(x))
}
x[[varname]] <- gene
x
}
x <- resolve_gene_var(x, esbl, "esbl")
x <- resolve_gene_var(x, carbapenemase, "carbapenemase")
x <- resolve_gene_var(x, mecA, "mecA")
x <- resolve_gene_var(x, mecC, "mecC")
x <- resolve_gene_var(x, vanA, "vanA")
x <- resolve_gene_var(x, vanB, "vanB")
info.bak <- info
# don't throw info's more than once per call
@@ -772,7 +747,7 @@ mdro <- function(x = NULL,
)
}
x[rows_to_change, "MDRO"] <<- to
x[rows_to_change, "reason"] <<- reason
x[rows_to_change, "reason"] <<- paste0(x[rows_to_change, "reason", drop = TRUE], "; ", reason)
x[rows_not_to_change, "reason"] <<- "guideline criteria not met"
}
}
@@ -854,7 +829,7 @@ mdro <- function(x = NULL,
x <- left_join_microorganisms(x, by = col_mo)
x$MDRO <- ifelse(!is.na(x$genus), 1, NA_integer_)
x$row_number <- seq_len(nrow(x))
x$reason <- NA_character_
x$reason <- ""
x$all_nonsusceptible_columns <- ""
if (guideline$code == "cmi2012") {
@@ -1498,7 +1473,7 @@ mdro <- function(x = NULL,
}
trans_tbl(
3, # positive
rows = which(x$order == "Enterobacterales" & esbl == TRUE),
rows = which(x$order == "Enterobacterales" & x$esbl == TRUE),
cols = "any",
any_all = "any",
reason = "Enterobacterales: ESBL"
@@ -1519,17 +1494,18 @@ mdro <- function(x = NULL,
)
trans_tbl(
3,
rows = which(x$order == "Enterobacterales" & carbapenemase == TRUE),
rows = which(x$order == "Enterobacterales" & x$carbapenemase == TRUE),
cols = "any",
any_all = "any",
reason = "Enterobacterales: carbapenemase"
)
c.freundii_complex <- AMR::microorganisms.groups$mo_name[AMR::microorganisms.groups$mo_group_name == "Citrobacter freundii complex"]
trans_tbl(
3,
rows = which(col_values(x, SXT) == "R" &
(col_values(x, GEN) == "R" | col_values(x, TOB) == "R" | col_values(x, AMK) == "R") &
(col_values(x, CIP) == "R" | col_values(x, NOR) == "R" | col_values(x, LVX) == "R") &
(x$genus %in% c("Enterobacter", "Providencia") | paste(x$genus, x$species) %in% c("Citrobacter freundii", "Klebsiella aerogenes", "Hafnia alvei", "Morganella morganii"))),
(x$genus %in% c("Enterobacter", "Providencia") | paste(x$genus, x$species) %in% c(c.freundii_complex, "Klebsiella aerogenes", "Hafnia alvei", "Morganella morganii"))),
cols = c(SXT, aminoglycosides, fluoroquinolones),
any_all = "any",
reason = "Enterobacterales group II: aminoglycoside + fluoroquinolone + cotrimoxazol"
@@ -1557,14 +1533,14 @@ mdro <- function(x = NULL,
)
trans_tbl(
2, # unconfirmed
rows = which(x[[col_mo]] %in% AMR::microorganisms.groups$mo[AMR::microorganisms.groups$mo_group_name == "Acinetobacter baumannii complex"] & is.na(carbapenemase)),
rows = which(x[[col_mo]] %in% AMR::microorganisms.groups$mo[AMR::microorganisms.groups$mo_group_name == "Acinetobacter baumannii complex"] & is.na(x$carbapenemase)),
cols = carbapenems,
any_all = "any",
reason = "A. baumannii-calcoaceticus complex: potential carbapenemase"
)
trans_tbl(
3,
rows = which(x[[col_mo]] %in% AMR::microorganisms.groups$mo[AMR::microorganisms.groups$mo_group_name == "Acinetobacter baumannii complex"] & carbapenemase == TRUE),
rows = which(x[[col_mo]] %in% AMR::microorganisms.groups$mo[AMR::microorganisms.groups$mo_group_name == "Acinetobacter baumannii complex"] & x$carbapenemase == TRUE),
cols = carbapenems,
any_all = "any",
reason = "A. baumannii-calcoaceticus complex: carbapenemase"
@@ -1574,6 +1550,7 @@ mdro <- function(x = NULL,
x$psae <- 0
x$psae <- x$psae + ifelse(NA_as_FALSE(col_values(x, TOB) == "R") | NA_as_FALSE(col_values(x, AMK) == "R"), 1, 0)
x$psae <- x$psae + ifelse(NA_as_FALSE(col_values(x, IPM) == "R") | NA_as_FALSE(col_values(x, MEM) == "R"), 1, 0)
x$psae <- x$psae + ifelse(NA_as_FALSE(x$carbapenemase), 1, 0)
x$psae <- x$psae + ifelse(NA_as_FALSE(col_values(x, PIP) == "R") | NA_as_FALSE(col_values(x, TZP) == "R"), 1, 0)
x$psae <- x$psae + ifelse(NA_as_FALSE(col_values(x, CAZ) == "R") | NA_as_FALSE(col_values(x, CZA) == "R"), 1, 0)
x$psae <- x$psae + ifelse(NA_as_FALSE(col_values(x, CIP) == "R") | NA_as_FALSE(col_values(x, NOR) == "R") | NA_as_FALSE(col_values(x, LVX) == "R"), 1, 0)
@@ -1602,7 +1579,7 @@ mdro <- function(x = NULL,
)
trans_tbl(
3,
rows = which(x$genus == "Enterococcus" & x$species == "faecium" & (vanA == TRUE | vanB == TRUE)),
rows = which(x$genus == "Enterococcus" & x$species == "faecium" & (x$vanA == TRUE | x$vanB == TRUE)),
cols = c(PEN, AMX, AMP, VAN),
any_all = "any",
reason = "E. faecium: vanA/vanB gene + penicillin group"
@@ -1611,14 +1588,14 @@ mdro <- function(x = NULL,
# Staphylococcus aureus complex (= aureus, argenteus or schweitzeri)
trans_tbl(
2,
rows = which(x$genus == "Staphylococcus" & x$species %in% c("aureus", "argenteus", "schweitzeri") & (is.na(mecA) | is.na(mecC))),
rows = which(x$genus == "Staphylococcus" & x$species %in% c("aureus", "argenteus", "schweitzeri") & (is.na(x$mecA) | is.na(x$mecC))),
cols = c(AMC, TZP, FLC, OXA, FOX, FOX1),
any_all = "any",
reason = "S. aureus complex: potential MRSA"
)
trans_tbl(
3,
rows = which(x$genus == "Staphylococcus" & x$species %in% c("aureus", "argenteus", "schweitzeri") & (mecA == TRUE | mecC == TRUE)),
rows = which(x$genus == "Staphylococcus" & x$species %in% c("aureus", "argenteus", "schweitzeri") & (x$mecA == TRUE | x$mecC == TRUE)),
cols = "any",
any_all = "any",
reason = "S. aureus complex: mecA/mecC gene"
@@ -1899,6 +1876,10 @@ mdro <- function(x = NULL,
# fill in empty reasons
x$reason[is.na(x$reason)] <- "not covered by guideline"
x[rows_empty, "reason"] <- paste(x[rows_empty, "reason"], "(note: no available test results)")
# starting semicolons must be removed
x$reason <- trimws(gsub("^;", "", x$reason))
# if criteria were not met initially, but later they were, then they have a following semicolon; remove the initial lack of meeting criteria
x$reason <- trimws(gsub("guideline criteria not met;", "", x$reason, fixed = TRUE))
# format data set
colnames(x)[colnames(x) == col_mo] <- "microorganism"
x$microorganism <- mo_name(x$microorganism, language = NULL)

View File

@@ -31,7 +31,7 @@
#'
#' Calculates a normalised mean for antimicrobial resistance between multiple observations, to help to identify similar isolates without comparing antibiograms by hand.
#' @param x A vector of class [sir][as.sir()], [mic][as.mic()] or [disk][as.disk()], or a [data.frame] containing columns of any of these classes.
#' @param ... Variables to select. Supports [tidyselect language][tidyselect::language] (such as `column1:column4` and `where(is.mic)`), and can thus also be [antimicrobial selectors][amr_selector()].
#' @param ... Variables to select. Supports [tidyselect language][tidyselect::starts_with()] such as `where(is.mic)`, `starts_with(...)`, or `column1:column4`, and can thus also be [antimicrobial selectors][amr_selector()].
#' @param combine_SI A [logical] to indicate whether all values of S, SDD, and I must be merged into one, so the input only consists of S+I vs. R (susceptible vs. resistant) - the default is `TRUE`.
#' @details The mean AMR distance is effectively [the Z-score](https://en.wikipedia.org/wiki/Standard_score); a normalised numeric value to compare AMR test results which can help to identify similar isolates, without comparing antibiograms by hand.
#'

20
R/mic.R
View File

@@ -432,11 +432,17 @@ pillar_shaft.mic <- function(x, ...) {
}
crude_numbers <- as.double(x)
operators <- gsub("[^<=>]+", "", as.character(x))
# colourise operators
operators[!is.na(operators) & operators != ""] <- font_silver(operators[!is.na(operators) & operators != ""], collapse = NULL)
out <- trimws(paste0(operators, trimws(format(crude_numbers))))
out[is.na(x)] <- font_na(NA)
# make trailing zeroes less visible
out[out %like% "[.]"] <- gsub("([.]?0+)$", font_silver("\\1"), out[out %like% "[.]"], perl = TRUE)
if (is_dark()) {
fn <- font_silver
} else {
fn <- font_white
}
out[out %like% "[.]"] <- gsub("([.]?0+)$", fn("\\1"), out[out %like% "[.]"], perl = TRUE)
create_pillar_column(out, align = "right", width = max(nchar(font_stripstyle(out))))
}
@@ -590,12 +596,12 @@ get_skimmers.mic <- function(column) {
column <- as.mic(column) # make sure that currently implemented MIC levels are used
skimr::sfl(
skim_type = "mic",
p0 = ~ stats::quantile(., probs = 0, na.rm = TRUE, names = FALSE),
p25 = ~ stats::quantile(., probs = 0.25, na.rm = TRUE, names = FALSE),
p50 = ~ stats::quantile(., probs = 0.5, na.rm = TRUE, names = FALSE),
p75 = ~ stats::quantile(., probs = 0.75, na.rm = TRUE, names = FALSE),
p100 = ~ stats::quantile(., probs = 1, na.rm = TRUE, names = FALSE),
hist = ~ skimr::inline_hist(log2(stats::na.omit(.)), 5)
p0 = ~ stats::quantile(column, probs = 0, na.rm = TRUE, names = FALSE),
p25 = ~ stats::quantile(column, probs = 0.25, na.rm = TRUE, names = FALSE),
p50 = ~ stats::quantile(column, probs = 0.5, na.rm = TRUE, names = FALSE),
p75 = ~ stats::quantile(column, probs = 0.75, na.rm = TRUE, names = FALSE),
p100 = ~ stats::quantile(column, probs = 1, na.rm = TRUE, names = FALSE),
hist = ~ skimr::inline_hist(log2(stats::na.omit(column)), 10)
)
}

18
R/mo.R
View File

@@ -675,7 +675,7 @@ pillar_shaft.mo <- function(x, ...) {
}
# add the names to the bugs as mouse-over!
if (tryCatch(isTRUE(getExportedValue("ansi_has_hyperlink_support", ns = asNamespace("cli"))()), error = function(e) FALSE)) {
if (in_rstudio()) {
out[!x %in% c("UNKNOWN", NA)] <- font_url(
url = paste0(
x[!x %in% c("UNKNOWN", NA)], ": ",
@@ -747,13 +747,17 @@ freq.mo <- function(x, ...) {
# this prevents the requirement for putting the dependency in Imports:
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, mo)
get_skimmers.mo <- function(column) {
mo <- as.mo(column, keep_synonyms = TRUE, language = NULL, info = FALSE)
mo <- mo[!is.na(mo)]
spp <- mo[mo_species(mo, keep_synonyms = TRUE, language = NULL, info = FALSE) != ""]
skimr::sfl(
skim_type = "mo",
unique_total = ~ length(unique(stats::na.omit(.))),
gram_negative = ~ sum(mo_is_gram_negative(.), na.rm = TRUE),
gram_positive = ~ sum(mo_is_gram_positive(.), na.rm = TRUE),
top_genus = ~ names(sort(-table(mo_genus(stats::na.omit(.), language = NULL))))[1L],
top_species = ~ names(sort(-table(mo_name(stats::na.omit(.), language = NULL))))[1L]
n_unique = ~ length(unique(mo)),
gram_negative = ~ sum(mo_is_gram_negative(mo, keep_synonyms = TRUE, language = NULL, info = FALSE), na.rm = TRUE),
gram_positive = ~ sum(mo_is_gram_positive(mo, keep_synonyms = TRUE, language = NULL, info = FALSE), na.rm = TRUE),
yeast = ~ sum(mo_is_yeast(mo, keep_synonyms = TRUE, language = NULL, info = FALSE), na.rm = TRUE),
top_genus = ~ names(sort(-table(mo_genus(mo, keep_synonyms = TRUE, language = NULL, info = FALSE))))[1L],
top_species = ~ names(sort(-table(mo_name(spp, keep_synonyms = TRUE, language = NULL, info = FALSE))))[1L],
)
}
@@ -1186,7 +1190,7 @@ parse_and_convert <- function(x) {
parsed <- gsub('"', "", parsed, fixed = TRUE)
parsed
},
error = function(e) stop(e$message, call. = FALSE)
error = function(e) stop(conditionMessage(e), call. = FALSE)
) # this will also be thrown when running `as.mo(no_existing_object)`
}
out <- trimws2(out)

View File

@@ -974,7 +974,7 @@ mo_validate <- function(x, property, language, keep_synonyms = keep_synonyms, ..
# try to catch an error when inputting an invalid argument
# so the 'call.' can be set to FALSE
tryCatch(x[1L] %in% unlist(AMR_env$MO_lookup[1, property, drop = TRUE]),
error = function(e) stop(e$message, call. = FALSE)
error = function(e) stop(conditionMessage(e), call. = FALSE)
)
dots <- list(...)

View File

@@ -99,7 +99,7 @@ pca <- function(x,
new_list <- list(0)
for (i in seq_len(length(dots) - 1)) {
new_list[[i]] <- tryCatch(eval(dots[[i + 1]], envir = x),
error = function(e) stop(e$message, call. = FALSE)
error = function(e) stop(conditionMessage(e), call. = FALSE)
)
if (length(new_list[[i]]) == 1) {
if (is.character(new_list[[i]]) && new_list[[i]] %in% colnames(x)) {

View File

@@ -52,11 +52,19 @@
#' @details
#' ### The `scale_*_mic()` Functions
#'
#' The functions [scale_x_mic()], [scale_y_mic()], [scale_colour_mic()], and [scale_fill_mic()] functions allow to plot the [mic][as.mic()] class (MIC values) on a continuous, logarithmic scale. They also allow to rescale the MIC range with an 'inside' or 'outside' range if required, and retain the operators in MIC values (such as `>=`) if desired. Missing intermediate log2 levels will be plotted too.
#' The functions [scale_x_mic()], [scale_y_mic()], [scale_colour_mic()], and [scale_fill_mic()] functions allow to plot the [mic][as.mic()] class (MIC values) on a continuous, logarithmic scale.
#'
#' There is normally no need to add these scale functions to your plot, as they are applied automatically when plotting values of class [mic][as.mic()].
#'
#' When manually added though, they allow to rescale the MIC range with an 'inside' or 'outside' range if required, and provide the option to retain the operators in MIC values (such as `>=`). Missing intermediate log2 levels will always be plotted too.
#'
#' ### The `scale_*_sir()` Functions
#'
#' The functions [scale_x_sir()], [scale_colour_sir()], and [scale_fill_sir()] functions allow to plot the [sir][as.sir()] class in the right order (`r paste(levels(NA_sir_), collapse = " < ")`). At default, they translate the S/I/R values to an interpretative text ("Susceptible", "Resistant", etc.) in any of the `r length(AMR:::LANGUAGES_SUPPORTED)` supported languages (use `language = NULL` to keep S/I/R). Also, except for [scale_x_sir()], they set colour-blind friendly colours to the `colour` and `fill` aesthetics.
#' The functions [scale_x_sir()], [scale_colour_sir()], and [scale_fill_sir()] functions allow to plot the [sir][as.sir()] class in the right order (`r paste(levels(NA_sir_), collapse = " < ")`).
#'
#' There is normally no need to add these scale functions to your plot, as they are applied automatically when plotting values of class [sir][as.sir()].
#'
#' At default, they translate the S/I/R values to an interpretative text ("Susceptible", "Resistant", etc.) in any of the `r length(AMR:::LANGUAGES_SUPPORTED)` supported languages (use `language = NULL` to keep S/I/R). Also, except for [scale_x_sir()], they set colour-blind friendly colours to the `colour` and `fill` aesthetics.
#'
#' ### Additional `ggplot2` Functions
#'
@@ -90,6 +98,10 @@
#' autoplot(some_mic_values, mo = "Escherichia coli", ab = "cipro")
#' }
#' if (require("ggplot2")) {
#' autoplot(some_mic_values, mo = "Staph aureus", ab = "Ceftaroline", guideline = "CLSI")
#' }
#'
#' if (require("ggplot2")) {
#' # support for 27 languages, various guidelines, and many options
#' autoplot(some_disk_values,
#' mo = "Escherichia coli", ab = "cipro",
@@ -110,17 +122,12 @@
#' ) +
#' geom_col()
#' mic_plot +
#' labs(title = "without scale_x_mic()")
#' labs(title = "scale_x_mic() automatically applied")
#' }
#' if (require("ggplot2")) {
#' mic_plot +
#' scale_x_mic() +
#' labs(title = "with scale_x_mic()")
#' }
#' if (require("ggplot2")) {
#' mic_plot +
#' scale_x_mic(keep_operators = "all") +
#' labs(title = "with scale_x_mic() keeping all operators")
#' scale_x_mic(keep_operators = "none") +
#' labs(title = "with scale_x_mic() keeping no operators")
#' }
#' if (require("ggplot2")) {
#' mic_plot +
@@ -146,8 +153,8 @@
#' aes(group, mic)
#' ) +
#' geom_boxplot() +
#' geom_violin(linetype = 2, colour = "grey", fill = NA) +
#' scale_y_mic()
#' geom_violin(linetype = 2, colour = "grey30", fill = NA) +
#' labs(title = "scale_y_mic() automatically applied")
#' }
#' if (require("ggplot2")) {
#' ggplot(
@@ -158,7 +165,7 @@
#' aes(group, mic)
#' ) +
#' geom_boxplot() +
#' geom_violin(linetype = 2, colour = "grey", fill = NA) +
#' geom_violin(linetype = 2, colour = "grey30", fill = NA) +
#' scale_y_mic(mic_range = c(NA, 0.25))
#' }
#'
@@ -179,7 +186,7 @@
#'
#' # Plotting using scale_y_mic() and scale_colour_sir() ------------------
#' if (require("ggplot2")) {
#' plain <- ggplot(
#' mic_sir_plot <- ggplot(
#' data.frame(
#' mic = some_mic_values,
#' group = some_groups,
@@ -191,23 +198,18 @@
#' aes(x = group, y = mic, colour = sir)
#' ) +
#' theme_minimal() +
#' geom_boxplot(fill = NA, colour = "grey") +
#' geom_boxplot(fill = NA, colour = "grey30") +
#' geom_jitter(width = 0.25)
#'
#' plain
#' labs(title = "scale_y_mic()/scale_colour_sir() automatically applied")
#'
#' mic_sir_plot
#' }
#' if (require("ggplot2")) {
#' # and now with our MIC and SIR scale functions:
#' plain +
#' scale_y_mic() +
#' scale_colour_sir()
#' }
#' if (require("ggplot2")) {
#' plain +
#' mic_sir_plot +
#' scale_y_mic(mic_range = c(0.005, 32), name = "Our MICs!") +
#' scale_colour_sir(
#' language = "pt",
#' name = "Support in 27 languages"
#' language = "pt", # Portuguese
#' name = "Support in 28 languages"
#' )
#' }
#' }
@@ -225,6 +227,9 @@
#' plot(some_sir_values)
NULL
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(ggplot2::scale_type, mic)
scale_type.mic <- function(x) c("mic", "discrete")
create_scale_mic <- function(aest, keep_operators, mic_range = NULL, ...) {
ggplot_fn <- getExportedValue(paste0("scale_", aest, "_continuous"),
ns = asNamespace("ggplot2")
@@ -243,6 +248,7 @@ create_scale_mic <- function(aest, keep_operators, mic_range = NULL, ...) {
as.double(rescale_mic(x = as.double(as.mic(x)), keep_operators = keep_operators, mic_range = mic_range, as.mic = TRUE))
}
scale$transform_df <- function(self, df) {
out <- list()
if (!aest %in% colnames(df)) {
# support for geom_hline(), geom_vline(), etc
other_x <- c("xintercept", "xmin", "xmax", "xend", "width")
@@ -254,11 +260,11 @@ create_scale_mic <- function(aest, keep_operators, mic_range = NULL, ...) {
} else {
stop_("No support for plotting df with `scale_", aest, "_mic()` with columns ", vector_and(colnames(df), sort = FALSE))
}
out <- rescale_mic(x = as.double(as.mic(df[[aest_val]])), keep_operators = "none", mic_range = NULL, as.mic = TRUE)
if (!is.null(self$mic_values_rescaled) && any(out < min(self$mic_values_rescaled, na.rm = TRUE) | out > max(self$mic_values_rescaled, na.rm = TRUE), na.rm = TRUE)) {
mics <- rescale_mic(x = as.double(as.mic(df[[aest_val]])), keep_operators = "none", mic_range = NULL, as.mic = TRUE)
if (!is.null(self$mic_values_rescaled) && any(mics < min(self$mic_values_rescaled, na.rm = TRUE) | mics > max(self$mic_values_rescaled, na.rm = TRUE), na.rm = TRUE)) {
warning_("The value for `", aest_val, "` is outside the plotted MIC range, consider using/updating the `mic_range` argument in `scale_", aest, "_mic()`.")
}
df[[aest_val]] <- log2(as.double(out))
out[[aest_val]] <- log2(as.double(mics))
} else {
self$mic_values_rescaled <- rescale_mic(x = as.double(as.mic(df[[aest]])), keep_operators = keep_operators, mic_range = mic_range, as.mic = TRUE)
# create new breaks and labels here
@@ -279,14 +285,18 @@ create_scale_mic <- function(aest, keep_operators, mic_range = NULL, ...) {
self$mic_values_levels[1] <- paste0("<=", self$mic_values_levels[1])
self$mic_values_levels[length(self$mic_values_levels)] <- paste0(">=", self$mic_values_levels[length(self$mic_values_levels)])
}
self$mic_values_log <- log2(as.double(self$mic_values_rescaled))
if (aest == "y" && "group" %in% colnames(df) && "x" %in% colnames(df)) {
df$group <- as.integer(factor(df$x))
if (aest == "y" && "group" %in% colnames(df)) {
if (!"x" %in% colnames(df) || all(is.na(df$x))) {
out$group <- 1
} else {
out$group <- as.integer(factor(df$x))
}
}
df[[aest]] <- self$mic_values_log
out[[aest]] <- self$mic_values_log
}
df
out
}
scale$breaks <- function(..., self) {
@@ -313,7 +323,6 @@ create_scale_mic <- function(aest, keep_operators, mic_range = NULL, ...) {
}
}
}
scale$limits <- function(x, ..., self) {
if (!is.null(self$mic_limits_set)) {
if (is.function(self$mic_limits_set)) {
@@ -325,7 +334,7 @@ create_scale_mic <- function(aest, keep_operators, mic_range = NULL, ...) {
rng <- range(log2(as.mic(self$mic_values_levels)))
# add 0.5 extra space
rng <- c(rng[1] - 0.5, rng[2] + 0.5)
if (!is.na(x[1]) && x[1] == 0) {
if (!is.null(x) && !is.na(x[1]) && x[1] == 0) {
# scale that start at 0 must remain so, e.g. in case of geom_col()
rng[1] <- 0
}
@@ -373,10 +382,15 @@ scale_fill_mic <- function(keep_operators = "edges", mic_range = NULL, ...) {
create_scale_mic("fill", keep_operators = keep_operators, mic_range = mic_range, ...)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(ggplot2::scale_type, sir)
scale_type.sir <- function(x) c("sir", "discrete")
create_scale_sir <- function(aesthetics, colours_SIR, language, eucast_I, ...) {
args <- list(...)
args[c("value", "labels", "limits")] <- NULL
colours_SIR <- expand_SIR_colours(colours_SIR, unname = FALSE)
if (identical(aesthetics, "x")) {
ggplot_fn <- ggplot2::scale_x_discrete
} else {
@@ -385,24 +399,19 @@ create_scale_sir <- function(aesthetics, colours_SIR, language, eucast_I, ...) {
args,
list(
aesthetics = aesthetics,
values = c(
S = colours_SIR[1],
SDD = colours_SIR[2],
I = colours_SIR[2],
R = colours_SIR[3],
NI = "grey30"
)
values = c(colours_SIR, NI = "grey30")
)
)
}
scale <- do.call(ggplot_fn, args)
scale$labels <- function(x) {
stop_ifnot(all(x %in% c(levels(NA_sir_), NA)),
stop_ifnot(all(x %in% c(levels(NA_sir_), "SI", "IR", NA)),
"Apply `scale_", aesthetics[1], "_sir()` to a variable of class 'sir', see `?as.sir`.",
call = FALSE
)
x <- as.character(as.sir(x))
x <- as.character(x)
x[!x %in% c("SI", "IR")] <- as.character(as.sir(x[!x %in% c("SI", "IR")]))
if (!is.null(language)) {
x[x == "S"] <- "(S) Susceptible"
x[x == "SDD"] <- "(SDD) Susceptible dose-dependent"
@@ -412,6 +421,8 @@ create_scale_sir <- function(aesthetics, colours_SIR, language, eucast_I, ...) {
x[x == "I"] <- "(I) Intermediate"
}
x[x == "R"] <- "(R) Resistant"
x[x == "SI"] <- "(S/I) Susceptible"
x[x == "IR"] <- "(I/R) Non-susceptible"
x[x == "NI"] <- "(NI) Non-interpretable"
x <- translate_AMR(x, language = language)
}
@@ -419,7 +430,7 @@ create_scale_sir <- function(aesthetics, colours_SIR, language, eucast_I, ...) {
}
scale$limits <- function(x, ...) {
# force SIR in the right order
as.character(sort(factor(x, levels = levels(NA_sir_))))
as.character(sort(factor(x, levels = c(levels(NA_sir_), "SI", "IR"))))
}
scale
@@ -427,11 +438,16 @@ create_scale_sir <- function(aesthetics, colours_SIR, language, eucast_I, ...) {
#' @rdname plot
#' @export
scale_x_sir <- function(colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
scale_x_sir <- function(colours_SIR = c(
S = "#3CAEA3",
SDD = "#8FD6C4",
I = "#F6D55C",
R = "#ED553B"
),
language = get_AMR_locale(),
eucast_I = getOption("AMR_guideline", "EUCAST") == "EUCAST",
...) {
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3))
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3, 4))
language <- validate_language(language)
meet_criteria(eucast_I, allow_class = "logical", has_length = 1)
create_scale_sir(aesthetics = "x", colours_SIR = colours_SIR, language = language, eucast_I = eucast_I)
@@ -439,11 +455,16 @@ scale_x_sir <- function(colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
#' @rdname plot
#' @export
scale_colour_sir <- function(colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
scale_colour_sir <- function(colours_SIR = c(
S = "#3CAEA3",
SDD = "#8FD6C4",
I = "#F6D55C",
R = "#ED553B"
),
language = get_AMR_locale(),
eucast_I = getOption("AMR_guideline", "EUCAST") == "EUCAST",
...) {
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3))
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3, 4))
language <- validate_language(language)
meet_criteria(eucast_I, allow_class = "logical", has_length = 1)
args <- list(...)
@@ -463,11 +484,16 @@ scale_color_sir <- scale_colour_sir
#' @rdname plot
#' @export
scale_fill_sir <- function(colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
scale_fill_sir <- function(colours_SIR = c(
S = "#3CAEA3",
SDD = "#8FD6C4",
I = "#F6D55C",
R = "#ED553B"
),
language = get_AMR_locale(),
eucast_I = getOption("AMR_guideline", "EUCAST") == "EUCAST",
...) {
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3))
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3, 4))
language <- validate_language(language)
meet_criteria(eucast_I, allow_class = "logical", has_length = 1)
args <- list(...)
@@ -491,7 +517,12 @@ plot.mic <- function(x,
main = deparse(substitute(x)),
ylab = translate_AMR("Frequency", language = language),
xlab = translate_AMR("Minimum Inhibitory Concentration (mg/L)", language = language),
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
colours_SIR = c(
S = "#3CAEA3",
SDD = "#8FD6C4",
I = "#F6D55C",
R = "#ED553B"
),
language = get_AMR_locale(),
expand = TRUE,
include_PKPD = getOption("AMR_include_PKPD", TRUE),
@@ -503,16 +534,13 @@ plot.mic <- function(x,
meet_criteria(main, allow_class = "character", has_length = 1, allow_NULL = TRUE)
meet_criteria(ylab, allow_class = "character", has_length = 1)
meet_criteria(xlab, allow_class = "character", has_length = 1)
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3))
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3, 4))
language <- validate_language(language)
meet_criteria(expand, allow_class = "logical", has_length = 1)
x <- as.mic(x) # make sure that currently implemented MIC levels are used
if (length(colours_SIR) == 1) {
colours_SIR <- rep(colours_SIR, 3)
}
main <- gsub(" +", " ", paste0(main, collapse = " "))
colours_SIR <- expand_SIR_colours(colours_SIR)
x <- plotrange_as_table(x, expand = expand)
cols_sub <- plot_colours_subtitle_guideline(
@@ -549,13 +577,17 @@ plot.mic <- function(x,
legend_col <- colours_SIR[1]
}
if (any(cols_sub$cols == colours_SIR[2] & cols_sub$count > 0)) {
legend_txt <- c(legend_txt, paste("(I)", plot_name_of_I(cols_sub$guideline)))
legend_txt <- c(legend_txt, "(SDD) Susceptible dose-dependent")
legend_col <- c(legend_col, colours_SIR[2])
}
if (any(cols_sub$cols == colours_SIR[3] & cols_sub$count > 0)) {
legend_txt <- c(legend_txt, "(R) Resistant")
legend_txt <- c(legend_txt, paste("(I)", plot_name_of_I(cols_sub$guideline)))
legend_col <- c(legend_col, colours_SIR[3])
}
if (any(cols_sub$cols == colours_SIR[4] & cols_sub$count > 0)) {
legend_txt <- c(legend_txt, "(R) Resistant")
legend_col <- c(legend_col, colours_SIR[4])
}
legend("top",
x.intersp = 0.5,
@@ -580,7 +612,12 @@ barplot.mic <- function(height,
main = deparse(substitute(height)),
ylab = translate_AMR("Frequency", language = language),
xlab = translate_AMR("Minimum Inhibitory Concentration (mg/L)", language = language),
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
colours_SIR = c(
S = "#3CAEA3",
SDD = "#8FD6C4",
I = "#F6D55C",
R = "#ED553B"
),
language = get_AMR_locale(),
expand = TRUE,
...) {
@@ -590,7 +627,7 @@ barplot.mic <- function(height,
meet_criteria(mo, allow_class = c("mo", "character"), allow_NULL = TRUE)
meet_criteria(ab, allow_class = c("ab", "character"), allow_NULL = TRUE)
meet_criteria(guideline, allow_class = "character", has_length = 1)
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3))
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3, 4))
language <- validate_language(language)
meet_criteria(expand, allow_class = "logical", has_length = 1)
@@ -622,7 +659,12 @@ autoplot.mic <- function(object,
title = deparse(substitute(object)),
ylab = translate_AMR("Frequency", language = language),
xlab = translate_AMR("Minimum Inhibitory Concentration (mg/L)", language = language),
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
colours_SIR = c(
S = "#3CAEA3",
SDD = "#8FD6C4",
I = "#F6D55C",
R = "#ED553B"
),
language = get_AMR_locale(),
expand = TRUE,
include_PKPD = getOption("AMR_include_PKPD", TRUE),
@@ -635,7 +677,7 @@ autoplot.mic <- function(object,
meet_criteria(title, allow_class = "character", allow_NULL = TRUE)
meet_criteria(ylab, allow_class = "character", has_length = 1)
meet_criteria(xlab, allow_class = "character", has_length = 1)
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3))
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3, 4))
language <- validate_language(language)
meet_criteria(expand, allow_class = "logical", has_length = 1)
@@ -646,6 +688,8 @@ autoplot.mic <- function(object,
title <- gsub(" +", " ", paste0(title, collapse = " "))
}
colours_SIR <- expand_SIR_colours(colours_SIR)
object <- as.mic(object) # make sure that currently implemented MIC levels are used
x <- plotrange_as_table(object, expand = expand)
cols_sub <- plot_colours_subtitle_guideline(
@@ -665,12 +709,14 @@ autoplot.mic <- function(object,
colnames(df) <- c("mic", "count")
df$cols <- cols_sub$cols
df$cols[df$cols == colours_SIR[1]] <- "(S) Susceptible"
df$cols[df$cols == colours_SIR[2]] <- paste("(I)", plot_name_of_I(cols_sub$guideline))
df$cols[df$cols == colours_SIR[3]] <- "(R) Resistant"
df$cols[df$cols == colours_SIR[2]] <- "(SDD) Susceptible dose-dependent"
df$cols[df$cols == colours_SIR[3]] <- paste("(I)", plot_name_of_I(cols_sub$guideline))
df$cols[df$cols == colours_SIR[4]] <- "(R) Resistant"
df$cols <- factor(translate_into_language(df$cols, language = language),
levels = translate_into_language(
c(
"(S) Susceptible",
"(SDD) Susceptible dose-dependent",
paste("(I)", plot_name_of_I(cols_sub$guideline)),
"(R) Resistant"
),
@@ -684,10 +730,10 @@ autoplot.mic <- function(object,
vals <- c(
"(S) Susceptible" = colours_SIR[1],
"(SDD) Susceptible dose-dependent" = colours_SIR[2],
"(I) Susceptible, incr. exp." = colours_SIR[2],
"(I) Intermediate" = colours_SIR[2],
"(R) Resistant" = colours_SIR[3],
"(NI) Non-interpretable" = "grey"
"(I) Susceptible, incr. exp." = colours_SIR[3],
"(I) Intermediate" = colours_SIR[3],
"(R) Resistant" = colours_SIR[4],
"(NI) Non-interpretable" = "grey30"
)
names(vals) <- translate_into_language(names(vals), language = language)
p <- p +
@@ -731,7 +777,12 @@ plot.disk <- function(x,
mo = NULL,
ab = NULL,
guideline = getOption("AMR_guideline", "EUCAST"),
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
colours_SIR = c(
S = "#3CAEA3",
SDD = "#8FD6C4",
I = "#F6D55C",
R = "#ED553B"
),
language = get_AMR_locale(),
expand = TRUE,
include_PKPD = getOption("AMR_include_PKPD", TRUE),
@@ -743,14 +794,12 @@ plot.disk <- function(x,
meet_criteria(mo, allow_class = c("mo", "character"), allow_NULL = TRUE)
meet_criteria(ab, allow_class = c("ab", "character"), allow_NULL = TRUE)
meet_criteria(guideline, allow_class = "character", has_length = 1)
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3))
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3, 4))
language <- validate_language(language)
meet_criteria(expand, allow_class = "logical", has_length = 1)
if (length(colours_SIR) == 1) {
colours_SIR <- rep(colours_SIR, 3)
}
main <- gsub(" +", " ", paste0(main, collapse = " "))
colours_SIR <- expand_SIR_colours(colours_SIR)
x <- plotrange_as_table(x, expand = expand)
cols_sub <- plot_colours_subtitle_guideline(
@@ -783,12 +832,16 @@ plot.disk <- function(x,
if (any(colours_SIR %in% cols_sub$cols)) {
legend_txt <- character(0)
legend_col <- character(0)
if (any(cols_sub$cols == colours_SIR[3] & cols_sub$count > 0)) {
if (any(cols_sub$cols == colours_SIR[4] & cols_sub$count > 0)) {
legend_txt <- "(R) Resistant"
legend_col <- colours_SIR[3]
legend_col <- colours_SIR[4]
}
if (any(cols_sub$cols == colours_SIR[3] & cols_sub$count > 0)) {
legend_txt <- c(legend_txt, paste("(I)", plot_name_of_I(cols_sub$guideline)))
legend_col <- c(legend_col, colours_SIR[3])
}
if (any(cols_sub$cols == colours_SIR[2] & cols_sub$count > 0)) {
legend_txt <- c(legend_txt, paste("(I)", plot_name_of_I(cols_sub$guideline)))
legend_txt <- c(legend_txt, "(SDD) Susceptible dose-dependent")
legend_col <- c(legend_col, colours_SIR[2])
}
if (any(cols_sub$cols == colours_SIR[1] & cols_sub$count > 0)) {
@@ -818,7 +871,12 @@ barplot.disk <- function(height,
mo = NULL,
ab = NULL,
guideline = getOption("AMR_guideline", "EUCAST"),
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
colours_SIR = c(
S = "#3CAEA3",
SDD = "#8FD6C4",
I = "#F6D55C",
R = "#ED553B"
),
language = get_AMR_locale(),
expand = TRUE,
...) {
@@ -828,7 +886,7 @@ barplot.disk <- function(height,
meet_criteria(mo, allow_class = c("mo", "character"), allow_NULL = TRUE)
meet_criteria(ab, allow_class = c("ab", "character"), allow_NULL = TRUE)
meet_criteria(guideline, allow_class = "character", has_length = 1)
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3))
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3, 4))
language <- validate_language(language)
meet_criteria(expand, allow_class = "logical", has_length = 1)
@@ -858,7 +916,12 @@ autoplot.disk <- function(object,
ylab = translate_AMR("Frequency", language = language),
xlab = translate_AMR("Disk diffusion diameter (mm)", language = language),
guideline = getOption("AMR_guideline", "EUCAST"),
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
colours_SIR = c(
S = "#3CAEA3",
SDD = "#8FD6C4",
I = "#F6D55C",
R = "#ED553B"
),
language = get_AMR_locale(),
expand = TRUE,
include_PKPD = getOption("AMR_include_PKPD", TRUE),
@@ -871,7 +934,7 @@ autoplot.disk <- function(object,
meet_criteria(mo, allow_class = c("mo", "character"), allow_NULL = TRUE)
meet_criteria(ab, allow_class = c("ab", "character"), allow_NULL = TRUE)
meet_criteria(guideline, allow_class = "character", has_length = 1)
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3))
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3, 4))
language <- validate_language(language)
meet_criteria(expand, allow_class = "logical", has_length = 1)
@@ -882,6 +945,8 @@ autoplot.disk <- function(object,
title <- gsub(" +", " ", paste0(title, collapse = " "))
}
colours_SIR <- expand_SIR_colours(colours_SIR)
x <- plotrange_as_table(object, expand = expand)
cols_sub <- plot_colours_subtitle_guideline(
x = x,
@@ -899,10 +964,10 @@ autoplot.disk <- function(object,
df <- as.data.frame(x, stringsAsFactors = TRUE)
colnames(df) <- c("disk", "count")
df$cols <- cols_sub$cols
df$cols[df$cols == colours_SIR[1]] <- "(S) Susceptible"
df$cols[df$cols == colours_SIR[2]] <- paste("(I)", plot_name_of_I(cols_sub$guideline))
df$cols[df$cols == colours_SIR[3]] <- "(R) Resistant"
df$cols[df$cols == colours_SIR[2]] <- "(SDD) Susceptible dose-dependent"
df$cols[df$cols == colours_SIR[3]] <- paste("(I)", plot_name_of_I(cols_sub$guideline))
df$cols[df$cols == colours_SIR[4]] <- "(R) Resistant"
df$cols <- factor(translate_into_language(df$cols, language = language),
levels = translate_into_language(
c(
@@ -920,10 +985,10 @@ autoplot.disk <- function(object,
vals <- c(
"(S) Susceptible" = colours_SIR[1],
"(SDD) Susceptible dose-dependent" = colours_SIR[2],
"(I) Susceptible, incr. exp." = colours_SIR[2],
"(I) Intermediate" = colours_SIR[2],
"(R) Resistant" = colours_SIR[3],
"(NI) Non-interpretable" = "grey"
"(I) Susceptible, incr. exp." = colours_SIR[3],
"(I) Intermediate" = colours_SIR[3],
"(R) Resistant" = colours_SIR[4],
"(NI) Non-interpretable" = "grey30"
)
names(vals) <- translate_into_language(names(vals), language = language)
p <- p +
@@ -1024,22 +1089,26 @@ barplot.sir <- function(height,
main = deparse(substitute(height)),
xlab = translate_AMR("Antimicrobial Interpretation", language = language),
ylab = translate_AMR("Frequency", language = language),
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
colours_SIR = c(
S = "#3CAEA3",
SDD = "#8FD6C4",
I = "#F6D55C",
R = "#ED553B"
),
language = get_AMR_locale(),
expand = TRUE,
...) {
meet_criteria(xlab, allow_class = "character", has_length = 1)
meet_criteria(main, allow_class = "character", has_length = 1, allow_NULL = TRUE)
meet_criteria(ylab, allow_class = "character", has_length = 1)
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3))
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3, 4))
language <- validate_language(language)
meet_criteria(expand, allow_class = "logical", has_length = 1)
if (length(colours_SIR) == 1) {
colours_SIR <- rep(colours_SIR, 3)
}
colours_SIR <- expand_SIR_colours(colours_SIR)
# add SDD and N to colours
colours_SIR <- c(colours_SIR[1:2], colours_SIR[2], colours_SIR[3], "#888888")
colours_SIR <- c(colours_SIR, "grey30")
main <- gsub(" +", " ", paste0(main, collapse = " "))
x <- table(height)
@@ -1065,14 +1134,19 @@ autoplot.sir <- function(object,
title = deparse(substitute(object)),
xlab = translate_AMR("Antimicrobial Interpretation", language = language),
ylab = translate_AMR("Frequency", language = language),
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
colours_SIR = c(
S = "#3CAEA3",
SDD = "#8FD6C4",
I = "#F6D55C",
R = "#ED553B"
),
language = get_AMR_locale(),
...) {
stop_ifnot_installed("ggplot2")
meet_criteria(title, allow_class = "character", allow_NULL = TRUE)
meet_criteria(ylab, allow_class = "character", has_length = 1)
meet_criteria(xlab, allow_class = "character", has_length = 1)
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3))
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3, 4))
if ("main" %in% names(list(...))) {
title <- list(...)$main
@@ -1081,9 +1155,7 @@ autoplot.sir <- function(object,
title <- gsub(" +", " ", paste0(title, collapse = " "))
}
if (length(colours_SIR) == 1) {
colours_SIR <- rep(colours_SIR, 3)
}
colours_SIR <- expand_SIR_colours(colours_SIR)
df <- as.data.frame(table(object), stringsAsFactors = TRUE)
colnames(df) <- c("x", "n")
@@ -1095,9 +1167,9 @@ autoplot.sir <- function(object,
values = c(
"S" = colours_SIR[1],
"SDD" = colours_SIR[2],
"I" = colours_SIR[2],
"R" = colours_SIR[3],
"NI" = "#888888"
"I" = colours_SIR[3],
"R" = colours_SIR[4],
"NI" = "grey30"
),
limits = force
) +
@@ -1223,9 +1295,9 @@ plot_colours_subtitle_guideline <- function(x, mo, ab, guideline, colours_SIR, f
cols[is.na(sir)] <- "#BEBEBE"
cols[sir == "S"] <- colours_SIR[1]
cols[sir == "SDD"] <- colours_SIR[2]
cols[sir == "I"] <- colours_SIR[2]
cols[sir == "R"] <- colours_SIR[3]
cols[sir == "NI"] <- "#888888"
cols[sir == "I"] <- colours_SIR[3]
cols[sir == "R"] <- colours_SIR[4]
cols[sir == "NI"] <- "grey30"
sub <- bquote(.(abname) ~ "-" ~ italic(.(moname)) ~ .(guideline_txt))
} else {
cols <- "#BEBEBE"
@@ -1284,10 +1356,15 @@ scale_y_percent <- function(breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.
#' @export
scale_sir_colours <- function(...,
aesthetics,
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B")) {
colours_SIR = c(
S = "#3CAEA3",
SDD = "#8FD6C4",
I = "#F6D55C",
R = "#ED553B"
)) {
stop_ifnot_installed("ggplot2")
meet_criteria(aesthetics, allow_class = "character", is_in = c("alpha", "colour", "color", "fill", "linetype", "shape", "size"))
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3))
meet_criteria(colours_SIR, allow_class = "character", has_length = c(1, 3, 4))
if ("fill" %in% aesthetics && message_not_thrown_before("scale_sir_colours", "fill", entire_session = TRUE)) {
warning_("Using `scale_sir_colours()` for the `fill` aesthetic has been superseded by `scale_fill_sir()`, please use that instead. This warning will be shown once per session.")
@@ -1296,67 +1373,48 @@ scale_sir_colours <- function(...,
warning_("Using `scale_sir_colours()` for the `colour` aesthetic has been superseded by `scale_colour_sir()`, please use that instead. This warning will be shown once per session.")
}
if (length(colours_SIR) == 1) {
colours_SIR <- rep(colours_SIR, 3)
}
# behaviour until AMR pkg v1.5.0 and also when coming from ggplot_sir()
if ("colours" %in% names(list(...))) {
original_cols <- c(
S = colours_SIR[1],
SI = colours_SIR[1],
I = colours_SIR[2],
IR = colours_SIR[3],
R = colours_SIR[3]
)
colours <- replace(original_cols, names(list(...)$colours), list(...)$colours)
colours_SIR <- list(...)$colours
}
colours_SIR <- expand_SIR_colours(colours_SIR, unname = FALSE)
# behaviour when coming from ggplot_sir()
if ("colours" %in% names(list(...))) {
# limits = force is needed in ggplot2 3.3.4 and 3.3.5, see here;
# https://github.com/tidyverse/ggplot2/issues/4511#issuecomment-866185530
return(ggplot2::scale_fill_manual(values = colours, limits = force, aesthetics = aesthetics))
return(ggplot2::scale_fill_manual(values = colours_SIR, limits = force, aesthetics = aesthetics))
}
if (identical(unlist(list(...)), FALSE)) {
return(invisible())
}
names_susceptible <- c(
"S", "SI", "IS", "S+I", "I+S", "susceptible", "Susceptible",
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Susceptible"),
"replacement",
drop = TRUE
])
)
colours_SIR <- unname(colours_SIR)
names_susceptible <- c("S", "SI", "IS", "S+I", "I+S", "susceptible", "Susceptible")
names_susceptible_dose_dep <- c("SDD", "susceptible dose-dependent", "Susceptible dose-dependent")
names_incr_exposure <- c(
"I", "intermediate", "increased exposure", "incr. exposure",
"Increased exposure", "Incr. exposure", "Susceptible, incr. exp.",
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Intermediate"),
"replacement",
drop = TRUE
]),
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Susceptible, incr. exp."),
"replacement",
drop = TRUE
])
)
names_resistant <- c(
"R", "IR", "RI", "R+I", "I+R", "resistant", "Resistant",
unique(TRANSLATIONS[which(TRANSLATIONS$pattern == "Resistant"),
"replacement",
drop = TRUE
])
"Increased exposure", "Incr. exposure", "Susceptible, incr. exp."
)
names_resistant <- c("R", "IR", "RI", "R+I", "I+R", "resistant", "Resistant")
susceptible <- rep(colours_SIR[1], length(names_susceptible))
names(susceptible) <- names_susceptible
incr_exposure <- rep(colours_SIR[2], length(names_incr_exposure))
susceptible_dose_dep <- rep(colours_SIR[2], length(names_susceptible_dose_dep))
names(susceptible_dose_dep) <- names_susceptible_dose_dep
incr_exposure <- rep(colours_SIR[3], length(names_incr_exposure))
names(incr_exposure) <- names_incr_exposure
resistant <- rep(colours_SIR[3], length(names_resistant))
resistant <- rep(colours_SIR[4], length(names_resistant))
names(resistant) <- names_resistant
original_cols <- c(susceptible, incr_exposure, resistant)
original_cols <- c(susceptible, susceptible_dose_dep, incr_exposure, resistant)
dots <- c(...)
# replace S, I, R as colours: scale_sir_colours(mydatavalue = "S")
# replace S, SDD, I, R as colours: scale_sir_colours(mydatavalue = "S")
dots[dots == "S"] <- colours_SIR[1]
dots[dots == "I"] <- colours_SIR[2]
dots[dots == "R"] <- colours_SIR[3]
dots[dots == "SDD"] <- colours_SIR[2]
dots[dots == "I"] <- colours_SIR[3]
dots[dots == "R"] <- colours_SIR[4]
cols <- replace(original_cols, names(dots), dots)
# limits = force is needed in ggplot2 3.3.4 and 3.3.5, see here;
# https://github.com/tidyverse/ggplot2/issues/4511#issuecomment-866185530
@@ -1435,3 +1493,39 @@ labels_sir_count <- function(position = NULL,
}
)
}
expand_SIR_colours <- function(colours_SIR, unname = TRUE) {
sir_order <- c("S", "SDD", "I", "R", "SI", "IR")
if (is.null(names(colours_SIR))) {
if (length(colours_SIR) == 1) {
colours_SIR <- rep(colours_SIR, 4)
} else if (length(colours_SIR) == 3) {
# old method for AMR < 3.0.1 which allowed for 3 colours
# fill in green for SDD as extra colour
colours_SIR <- c(colours_SIR[1], colours_SIR[1], colours_SIR[2], colours_SIR[3])
}
if (length(colours_SIR) == 4) {
# add colours for SI (same as S) and IR (same as R)
colours_SIR <- c(colours_SIR[1:4], colours_SIR[1], colours_SIR[4])
}
names(colours_SIR) <- sir_order
} else {
# named input: match and reorder
stop_ifnot(
all(names(colours_SIR) %in% sir_order),
"Unknown names in `colours_SIR`. Expected any of: ", vector_or(levels(NA_sir_), quotes = FALSE, sort = FALSE), "."
)
if (length(colours_SIR) == 4) {
# add colours for SI (same as S) and IR (same as R)
colours_SIR <- c(colours_SIR[1:4], SI = unname(colours_SIR[1]), IR = unname(colours_SIR[4]))
}
colours_SIR <- colours_SIR[sir_order]
}
if (unname) {
colours_SIR <- unname(colours_SIR)
}
return(colours_SIR)
}

View File

@@ -237,7 +237,7 @@ resistance <- function(...,
only_all_tested = only_all_tested,
only_count = FALSE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}
@@ -255,7 +255,7 @@ susceptibility <- function(...,
only_all_tested = only_all_tested,
only_count = FALSE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}
@@ -283,7 +283,7 @@ sir_confidence_interval <- function(...,
only_all_tested = only_all_tested,
only_count = TRUE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
n <- tryCatch(
sir_calc(...,
@@ -291,7 +291,7 @@ sir_confidence_interval <- function(...,
only_all_tested = only_all_tested,
only_count = TRUE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
if (x == 0) {
@@ -347,7 +347,7 @@ proportion_R <- function(...,
only_all_tested = only_all_tested,
only_count = FALSE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}
@@ -365,7 +365,7 @@ proportion_IR <- function(...,
only_all_tested = only_all_tested,
only_count = FALSE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}
@@ -383,7 +383,7 @@ proportion_I <- function(...,
only_all_tested = only_all_tested,
only_count = FALSE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}
@@ -401,7 +401,7 @@ proportion_SI <- function(...,
only_all_tested = only_all_tested,
only_count = FALSE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}
@@ -419,7 +419,7 @@ proportion_S <- function(...,
only_all_tested = only_all_tested,
only_count = FALSE
),
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}
@@ -443,6 +443,6 @@ proportion_df <- function(data,
combine_SI = combine_SI,
confidence_level = confidence_level
),
error = function(e) stop_(gsub("in sir_calc_df(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc_df(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}

View File

@@ -31,13 +31,17 @@
#'
#' These functions can be used for generating random MIC values and disk diffusion diameters, for AMR data analysis practice. By providing a microorganism and antimicrobial drug, the generated results will reflect reality as much as possible.
#' @param size Desired size of the returned vector. If used in a [data.frame] call or `dplyr` verb, will get the current (group) size if left blank.
#' @param mo Any [character] that can be coerced to a valid microorganism code with [as.mo()].
#' @param mo Any [character] that can be coerced to a valid microorganism code with [as.mo()]. Can be the same length as `size`.
#' @param ab Any [character] that can be coerced to a valid antimicrobial drug code with [as.ab()].
#' @param prob_SIR A vector of length 3: the probabilities for "S" (1st value), "I" (2nd value) and "R" (3rd value).
#' @param skew Direction of skew for MIC or disk values, either `"right"` or `"left"`. A left-skewed distribution has the majority of the data on the right.
#' @param severity Skew severity; higher values will increase the skewedness. Default is `2`; use `0` to prevent skewedness.
#' @param ... Ignored, only in place to allow future extensions.
#' @details The base \R function [sample()] is used for generating values.
#'
#' Generated values are based on the EUCAST `r max(as.integer(gsub("[^0-9]", "", subset(clinical_breakpoints, guideline %like% "EUCAST")$guideline)))` guideline as implemented in the [clinical_breakpoints] data set. To create specific generated values per bug or drug, set the `mo` and/or `ab` argument.
#' @details
#' Internally, MIC and disk zone values are sampled based on clinical breakpoints defined in the [clinical_breakpoints] data set. To create specific generated values per bug or drug, set the `mo` and/or `ab` argument. The MICs are sampled on a log2 scale and disks linearly, using weighted probabilities. The weights are based on the `skew` and `severity` arguments:
#' * `skew = "right"` places more emphasis on lower MIC or higher disk values.
#' * `skew = "left"` places more emphasis on higher MIC or lower disk values.
#' * `severity` controls the exponential bias applied.
#' @return class `mic` for [random_mic()] (see [as.mic()]) and class `disk` for [random_disk()] (see [as.disk()])
#' @name random
#' @rdname random
@@ -47,8 +51,13 @@
#' random_disk(25)
#' random_sir(25)
#'
#' # add more skewedness, make more realistic by setting a bug and/or drug:
#' disks <- random_disk(100, severity = 2, mo = "Escherichia coli", ab = "CIP")
#' plot(disks)
#' # `plot()` and `ggplot2::autoplot()` allow for coloured bars if `mo` and `ab` are set
#' plot(disks, mo = "Escherichia coli", ab = "CIP", guideline = "CLSI 2025")
#'
#' \donttest{
#' # make the random generation more realistic by setting a bug and/or drug:
#' random_mic(25, "Klebsiella pneumoniae") # range 0.0625-64
#' random_mic(25, "Klebsiella pneumoniae", "meropenem") # range 0.0625-16
#' random_mic(25, "Streptococcus pneumoniae", "meropenem") # range 0.0625-4
@@ -57,26 +66,61 @@
#' random_disk(25, "Klebsiella pneumoniae", "ampicillin") # range 11-17
#' random_disk(25, "Streptococcus pneumoniae", "ampicillin") # range 12-27
#' }
random_mic <- function(size = NULL, mo = NULL, ab = NULL, ...) {
random_mic <- function(size = NULL, mo = NULL, ab = NULL, skew = "right", severity = 1, ...) {
meet_criteria(size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE, allow_NULL = TRUE)
meet_criteria(mo, allow_class = "character", has_length = 1, allow_NULL = TRUE)
meet_criteria(mo, allow_class = "character", has_length = c(1, size), allow_NULL = TRUE)
meet_criteria(ab, allow_class = "character", has_length = 1, allow_NULL = TRUE)
meet_criteria(skew, allow_class = "character", is_in = c("right", "left"), has_length = 1)
meet_criteria(severity, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE)
if (is.null(size)) {
size <- NROW(get_current_data(arg_name = "size", call = -3))
}
random_exec("MIC", size = size, mo = mo, ab = ab)
if (length(mo) > 1) {
out <- rep(NA_mic_, length(size))
p <- progress_ticker(n = length(unique(mo)), n_min = 10, title = "Generating random MIC values")
for (mo_ in unique(mo)) {
p$tick()
out[which(mo == mo_)] <- random_exec("MIC", size = sum(mo == mo_), mo = mo_, ab = ab, skew = skew, severity = severity)
}
out <- as.mic(out, keep_operators = "none")
if (stats::runif(1) > 0.5 && length(unique(out)) > 1) {
out[out == min(out)] <- paste0("<=", out[out == min(out)])
}
if (stats::runif(1) > 0.5 && length(unique(out)) > 1) {
out[out == max(out) & out %unlike% "<="] <- paste0(">=", out[out == max(out) & out %unlike% "<="])
}
return(out)
} else {
random_exec("MIC", size = size, mo = mo, ab = ab, skew = skew, severity = severity)
}
}
#' @rdname random
#' @export
random_disk <- function(size = NULL, mo = NULL, ab = NULL, ...) {
random_disk <- function(size = NULL, mo = NULL, ab = NULL, skew = "left", severity = 1, ...) {
meet_criteria(size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE, allow_NULL = TRUE)
meet_criteria(mo, allow_class = "character", has_length = 1, allow_NULL = TRUE)
meet_criteria(mo, allow_class = "character", has_length = c(1, size), allow_NULL = TRUE)
meet_criteria(ab, allow_class = "character", has_length = 1, allow_NULL = TRUE)
meet_criteria(skew, allow_class = "character", is_in = c("right", "left"), has_length = 1)
meet_criteria(severity, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE)
if (is.null(size)) {
size <- NROW(get_current_data(arg_name = "size", call = -3))
}
random_exec("DISK", size = size, mo = mo, ab = ab)
if (length(mo) > 1) {
out <- rep(NA_mic_, length(size))
p <- progress_ticker(n = length(unique(mo)), n_min = 10, title = "Generating random MIC values")
for (mo_ in unique(mo)) {
p$tick()
out[which(mo == mo_)] <- random_exec("DISK", size = sum(mo == mo_), mo = mo_, ab = ab, skew = skew, severity = severity)
}
out <- as.disk(out)
return(out)
} else {
random_exec("DISK", size = size, mo = mo, ab = ab, skew = skew, severity = severity)
}
}
#' @rdname random
@@ -90,78 +134,60 @@ random_sir <- function(size = NULL, prob_SIR = c(0.33, 0.33, 0.33), ...) {
sample(as.sir(c("S", "I", "R")), size = size, replace = TRUE, prob = prob_SIR)
}
random_exec <- function(method_type, size, mo = NULL, ab = NULL) {
df <- AMR::clinical_breakpoints %pm>%
pm_filter(guideline %like% "EUCAST") %pm>%
pm_arrange(pm_desc(guideline)) %pm>%
subset(guideline == max(guideline) &
method == method_type &
type == "human")
random_exec <- function(method_type, size, mo = NULL, ab = NULL, skew = "right", severity = 1) {
df <- AMR::clinical_breakpoints %pm>% subset(method == method_type & type == "human")
if (!is.null(mo)) {
mo_coerced <- as.mo(mo)
mo_include <- c(
mo_coerced,
as.mo(mo_genus(mo_coerced)),
as.mo(mo_family(mo_coerced)),
as.mo(mo_order(mo_coerced))
)
df_new <- df %pm>%
subset(mo %in% mo_include)
if (nrow(df_new) > 0) {
df <- df_new
} else {
warning_("in `random_", tolower(method_type), "()`: no rows found that match mo '", mo, "', ignoring argument `mo`")
}
mo_coerced <- as.mo(mo, info = FALSE)
mo_include <- c(mo_coerced, as.mo(mo_genus(mo_coerced)), as.mo(mo_family(mo_coerced)), as.mo(mo_order(mo_coerced)))
df_new <- df %pm>% subset(mo %in% mo_include)
if (nrow(df_new) > 0) df <- df_new
}
if (!is.null(ab)) {
ab_coerced <- as.ab(ab)
df_new <- df %pm>%
subset(ab %in% ab_coerced)
if (nrow(df_new) > 0) {
df <- df_new
} else {
warning_("in `random_", tolower(method_type), "()`: no rows found that match ab '", ab, "' (", ab_name(ab_coerced, tolower = TRUE, language = NULL), "), ignoring argument `ab`")
}
df_new <- df %pm>% subset(ab %in% ab_coerced)
if (nrow(df_new) > 0) df <- df_new
}
if (method_type == "MIC") {
# set range
mic_range <- c(0.001, 0.002, 0.005, 0.010, 0.025, 0.0625, 0.125, 0.250, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256)
lowest_mic <- min(df$breakpoint_S, na.rm = TRUE)
lowest_mic <- log2(lowest_mic) + sample(c(-3:2), 1)
lowest_mic <- 2^lowest_mic
highest_mic <- max(df$breakpoint_R, na.rm = TRUE)
highest_mic <- log2(highest_mic) + sample(c(-3:1), 1)
highest_mic <- max(lowest_mic * 2, 2^highest_mic)
# get highest/lowest +/- random 1 to 3 higher factors of two
max_range <- mic_range[min(
length(mic_range),
which(mic_range == max(df$breakpoint_R[!is.na(df$breakpoint_R)], na.rm = TRUE)) + sample(c(1:3), 1)
)]
min_range <- mic_range[max(
1,
which(mic_range == min(df$breakpoint_S, na.rm = TRUE)) - sample(c(1:3), 1)
)]
mic_range_new <- mic_range[mic_range <= max_range & mic_range >= min_range]
if (length(mic_range_new) == 0) {
mic_range_new <- mic_range
}
out <- as.mic(sample(mic_range_new, size = size, replace = TRUE))
# 50% chance that lowest will get <= and highest will get >=
out <- skewed_values(COMMON_MIC_VALUES, size = size, min = lowest_mic, max = highest_mic, skew = skew, severity = severity)
if (stats::runif(1) > 0.5 && length(unique(out)) > 1) {
out[out == min(out)] <- paste0("<=", out[out == min(out)])
}
if (stats::runif(1) > 0.5 && length(unique(out)) > 1) {
out[out == max(out)] <- paste0(">=", out[out == max(out)])
out[out == max(out) & out %unlike% "<="] <- paste0(">=", out[out == max(out) & out %unlike% "<="])
}
return(out)
return(as.mic(out))
} else if (method_type == "DISK") {
set_range <- seq(
from = as.integer(min(df$breakpoint_R[!is.na(df$breakpoint_R)], na.rm = TRUE) / 1.25),
to = as.integer(max(df$breakpoint_S, na.rm = TRUE) * 1.25),
disk_range <- seq(
from = floor(min(df$breakpoint_R[!is.na(df$breakpoint_R)], na.rm = TRUE) / 1.25),
to = ceiling(max(df$breakpoint_S[df$breakpoint_S != 50], na.rm = TRUE) * 1.25),
by = 1
)
out <- sample(set_range, size = size, replace = TRUE)
out[out < 6] <- sample(c(6:10), length(out[out < 6]), replace = TRUE)
out[out > 50] <- sample(c(40:50), length(out[out > 50]), replace = TRUE)
disk_range <- disk_range[disk_range >= 6 & disk_range <= 50]
out <- skewed_values(disk_range, size = size, min = min(disk_range), max = max(disk_range), skew = skew, severity = severity)
return(as.disk(out))
}
}
skewed_values <- function(values, size, min, max, skew = c("right", "left"), severity = 1) {
skew <- match.arg(skew)
range_vals <- values[values >= min & values <= max]
if (length(range_vals) < 2) range_vals <- values
ranks <- seq_along(range_vals)
weights <- switch(skew,
right = rev(ranks)^severity,
left = ranks^severity
)
weights <- weights / sum(weights)
sample(range_vals, size = size, replace = TRUE, prob = weights)
}

133
R/sir.R
View File

@@ -69,7 +69,9 @@
#' @param reference_data A [data.frame] to be used for interpretation, which defaults to the [clinical_breakpoints] data set. Changing this argument allows for using own interpretation guidelines. This argument must contain a data set that is equal in structure to the [clinical_breakpoints] data set (same column names and column types). Please note that the `guideline` argument will be ignored when `reference_data` is manually set.
#' @param threshold Maximum fraction of invalid antimicrobial interpretations of `x`, see *Examples*.
#' @param conserve_capped_values Deprecated, use `capped_mic_handling` instead.
#' @param ... For using on a [data.frame]: names of columns to apply [as.sir()] on (supports tidy selection such as `column1:column4`). Otherwise: arguments passed on to methods.
#' @param ... For using on a [data.frame]: selection of columns to apply `as.sir()` to. Supports [tidyselect language][tidyselect::starts_with()] such as `where(is.mic)`, `starts_with(...)`, or `column1:column4`, and can thus also be [antimicrobial selectors][amr_selector()] such as `as.sir(df, penicillins())`.
#'
#' Otherwise: arguments passed on to methods.
#' @details
#' *Note: The clinical breakpoints in this package were validated through, and imported from, [WHONET](https://whonet.org). The public use of this `AMR` package has been endorsed by both CLSI and EUCAST. See [clinical_breakpoints] for more information.*
#'
@@ -159,7 +161,7 @@
#'
#' The function [is.sir()] detects if the input contains class `sir`. If the input is a [data.frame] or [list], it iterates over all columns/items and returns a [logical] vector.
#'
#' The base R function [as.double()] can be used to retrieve quantitative values from a `sir` object: `"S"` = 1, `"I"`/`"SDD"` = 2, `"R"` = 3. All other values are rendered `NA` . **Note:** Do not use `as.integer()`, since that (because of how R works internally) will return the factor level indices, and not these aforementioned quantitative values.
#' The base R function [as.double()] can be used to retrieve quantitative values from a `sir` object: `"S"` = 1, `"I"`/`"SDD"` = 2, `"R"` = 3. All other values are rendered `NA`. **Note:** Do not use `as.integer()`, since that (because of how R works internally) will return the factor level indices, and not these aforementioned quantitative values.
#'
#' The function [is_sir_eligible()] returns `TRUE` when a column contains at most 5% potentially invalid antimicrobial interpretations, and `FALSE` otherwise. The threshold of 5% can be set with the `threshold` argument. If the input is a [data.frame], it iterates over all columns and returns a [logical] vector.
#' @section Interpretation of SIR:
@@ -225,9 +227,12 @@
#' df_wide %>% mutate_if(is.mic, as.sir)
#' df_wide %>% mutate_if(function(x) is.mic(x) | is.disk(x), as.sir)
#' df_wide %>% mutate(across(where(is.mic), as.sir))
#'
#' df_wide %>% mutate_at(vars(amoxicillin:tobra), as.sir)
#' df_wide %>% mutate(across(amoxicillin:tobra, as.sir))
#'
#' df_wide %>% mutate(across(aminopenicillins(), as.sir))
#'
#' # approaches that all work with additional arguments:
#' df_long %>%
#' # given a certain data type, e.g. MIC values
@@ -722,8 +727,17 @@ as.sir.data.frame <- function(x,
meet_criteria(info, allow_class = "logical", has_length = 1)
meet_criteria(parallel, allow_class = "logical", has_length = 1)
meet_criteria(max_cores, allow_class = c("numeric", "integer"), has_length = 1)
x.bak <- x
if (tryCatch(length(list(...)) > 0, error = function(e) TRUE)) {
sel <- colnames(pm_select(x, ...))
} else {
sel <- colnames(x)
}
if (!is.null(col_mo)) {
sel <- sel[sel != col_mo]
}
for (i in seq_len(ncol(x))) {
# don't keep factors, overwriting them is hard
if (is.factor(x[, i, drop = TRUE])) {
@@ -803,15 +817,6 @@ as.sir.data.frame <- function(x,
}
i <- 0
if (tryCatch(length(list(...)) > 0, error = function(e) TRUE)) {
sel <- colnames(pm_select(x, ...))
} else {
sel <- colnames(x)
}
if (!is.null(col_mo)) {
sel <- sel[sel != col_mo]
}
ab_cols <- colnames(x)[vapply(FUN.VALUE = logical(1), x, function(y) {
i <<- i + 1
check <- is.mic(y) | is.disk(y)
@@ -863,7 +868,7 @@ as.sir.data.frame <- function(x,
cl <- tryCatch(parallel::makeCluster(n_cores, type = "PSOCK"),
error = function(e) {
if (isTRUE(info)) {
message_("Could not create parallel cluster, using single-core computation. Error message: ", e$message, add_fn = font_red)
message_("Could not create parallel cluster, using single-core computation. Error message: ", conditionMessage(e), add_fn = font_red)
}
return(NULL)
}
@@ -1135,7 +1140,6 @@ as_sir_method <- function(method_short,
current_sir_interpretation_history <- NROW(AMR_env$sir_interpretation_history)
if (isTRUE(info) && message_not_thrown_before("as.sir", "sir_interpretation_history")) {
message()
message_("Run `sir_interpretation_history()` afterwards to retrieve a logbook with all details of the breakpoint interpretations.\n\n", add_fn = font_green)
}
@@ -1553,7 +1557,7 @@ as_sir_method <- function(method_short,
))
if (breakpoint_type == "animal") {
# 2025-03-13 for now, only strictly follow guideline for current host, no extrapolation
# 2025-03-13/ for now, only strictly follow guideline for current host, no extrapolation
breakpoints_current <- breakpoints_current[which(breakpoints_current$host == host_current), , drop = FALSE]
}
@@ -1651,26 +1655,23 @@ as_sir_method <- function(method_short,
next
}
# sort on host and taxonomic rank
# (this will e.g. prefer 'species' breakpoints over 'order' breakpoints)
if (is.na(uti_current)) {
breakpoints_current <- breakpoints_current %pm>%
# `uti` is a column in the data set
# this will put UTI = FALSE first, then UTI = NA, then UTI = TRUE
pm_mutate(uti_index = ifelse(!is.na(uti) & uti == FALSE, 1,
ifelse(is.na(uti), 2,
3
)
)) %pm>%
# be as specific as possible (i.e. prefer species over genus):
pm_arrange(rank_index, uti_index)
} else if (uti_current == TRUE) {
breakpoints_current <- breakpoints_current %pm>%
subset(uti == TRUE) %pm>%
# be as specific as possible (i.e. prefer species over genus):
pm_arrange(rank_index)
# if the user explicitly set uti, keep only those rows
if (!is.na(uti_current)) {
breakpoints_current <- breakpoints_current[breakpoints_current$uti == uti_current, , drop = FALSE]
}
# build a helper factor so FALSE < NA < TRUE
uti_index <- factor(
ifelse(is.na(breakpoints_current$uti), "NA",
as.character(breakpoints_current$uti)
),
levels = c("FALSE", "NA", "TRUE")
)
# sort on host and taxonomic rank first, then by UTI
# (this will e.g. prefer 'species' breakpoints over 'order' breakpoints)
breakpoints_current <- breakpoints_current[order(breakpoints_current$rank_index, uti_index), , drop = FALSE]
# throw messages for different body sites
site <- breakpoints_current[1L, "site", drop = FALSE] # this is the one we'll take
if (is.na(site)) {
@@ -1682,7 +1683,7 @@ as_sir_method <- function(method_short,
# only UTI breakpoints available
notes_current <- paste0(
notes_current, "\n",
paste0("Breakpoints for ", font_bold(ab_formatted), " in ", mo_formatted, " are only available for (uncomplicated) urinary tract infections (UTI); assuming `uti = TRUE`.")
paste0("Breakpoints for ", font_bold(ab_formatted), " in ", mo_formatted, " are only available for (uncomplicated) urinary tract infections (UTI) - assuming `uti = TRUE`.")
)
} else if (nrow(breakpoints_current) > 1 && length(unique(breakpoints_current$site)) > 1 && any(is.na(uti_current)) && all(c(TRUE, FALSE) %in% breakpoints_current$uti, na.rm = TRUE) && message_not_thrown_before("as.sir", "siteUTI", mo_current, ab_current)) {
# both UTI and Non-UTI breakpoints available
@@ -1705,7 +1706,7 @@ as_sir_method <- function(method_short,
new_sir <- rep(as.sir("R"), length(rows))
notes_current <- paste0(
notes_current, "\n",
paste0("Intrinsic resistance applied for ", ab_formatted, " in ", mo_formatted, "")
paste0("Intrinsic resistance applied for ", ab_formatted, " in ", mo_formatted, ".")
)
} else if (nrow(breakpoints_current) == 0) {
# no rules available
@@ -1713,41 +1714,48 @@ as_sir_method <- function(method_short,
} else {
# then run the rules
breakpoints_current <- breakpoints_current[1L, , drop = FALSE]
if (breakpoints_current$rank_index > 3) {
# we resort to a high-level taxonomic record since there are no breakpoint on genus (rank_index = 3) or lower, so note this
notes_current <- paste0(
"No genus- or species-level breakpoint available - applying higher taxonomic level instead.\n",
notes_current
)
}
notes_current <- paste0(
notes_current, "\n",
ifelse(breakpoints_current$mo == "UNKNOWN" | breakpoints_current$ref_tbl %like% "PK.*PD",
"Some PK/PD breakpoints were applied - use `include_PKPD = FALSE` to prevent this",
"Some PK/PD breakpoints were applied - use `include_PKPD = FALSE` to prevent this.",
""
),
"\n",
ifelse(breakpoints_current$site %like% "screen" | breakpoints_current$ref_tbl %like% "screen",
"Some screening breakpoints were applied - use `include_screening = FALSE` to prevent this",
"Some screening breakpoints were applied - use `include_screening = FALSE` to prevent this.",
""
),
"\n",
ifelse(method == "mic" & capped_mic_handling %in% c("conservative", "inverse") & as.character(values_bak) %like% "^[<][0-9]",
paste0("MIC values with the operator '<' are all considered 'S' since capped_mic_handling = \"", capped_mic_handling, "\""),
paste0("MIC values with the operator '<' are all considered 'S' since capped_mic_handling = \"", capped_mic_handling, "\"."),
""
),
"\n",
ifelse(method == "mic" & capped_mic_handling %in% c("conservative", "inverse") & as.character(values_bak) %like% "^[>][0-9]",
paste0("MIC values with the operator '>' are all considered 'R' since capped_mic_handling = \"", capped_mic_handling, "\""),
paste0("MIC values with the operator '>' are all considered 'R' since capped_mic_handling = \"", capped_mic_handling, "\"."),
""
),
"\n",
ifelse(method == "mic" & capped_mic_handling %in% c("conservative", "standard") & as.character(values_bak) %like% "^[><]=[0-9]" & as.double(values) > breakpoints_current$breakpoint_S & as.double(values) < breakpoints_current$breakpoint_R,
paste0("MIC values within the breakpoint guideline range with the operator '<=' or '>=' are considered 'NI' (non-interpretable) since capped_mic_handling = \"", capped_mic_handling, "\""),
paste0("MIC values within the breakpoint guideline range with the operator '<=' or '>=' are considered 'NI' (non-interpretable) since capped_mic_handling = \"", capped_mic_handling, "\"."),
""
),
"\n",
ifelse(method == "mic" & capped_mic_handling %in% c("conservative", "standard") & as.character(values_bak) %like% "^<=[0-9]" & as.double(values) == breakpoints_current$breakpoint_R,
paste0("MIC values at the R breakpoint with the operator '<=' are considered 'NI' (non-interpretable) since capped_mic_handling = \"", capped_mic_handling, "\""),
paste0("MIC values at the R breakpoint with the operator '<=' are considered 'NI' (non-interpretable) since capped_mic_handling = \"", capped_mic_handling, "\"."),
""
),
"\n",
ifelse(method == "mic" & capped_mic_handling %in% c("conservative", "standard") & as.character(values_bak) %like% "^>=[0-9]" & as.double(values) == breakpoints_current$breakpoint_S,
paste0("MIC values at the S breakpoint with the operator '>=' are considered 'NI' (non-interpretable) since capped_mic_handling = \"", capped_mic_handling, "\""),
paste0("MIC values at the S breakpoint with the operator '>=' are considered 'NI' (non-interpretable) since capped_mic_handling = \"", capped_mic_handling, "\"."),
""
)
)
@@ -1757,7 +1765,7 @@ as_sir_method <- function(method_short,
notes_current <- paste0(
notes_current, "\n",
ifelse(!is.na(breakpoints_current$breakpoint_S) & is.na(breakpoints_current$breakpoint_R),
"NAs because of missing R breakpoints were substituted with R since substitute_missing_r_breakpoint = TRUE",
"NAs because of missing R breakpoints were substituted with R since substitute_missing_r_breakpoint = TRUE.",
""
)
)
@@ -1796,7 +1804,7 @@ as_sir_method <- function(method_short,
}
# write to verbose output
notes_current <- trimws2(notes_current)
notes_current <- gsub("\n\n", "\n", trimws2(notes_current), fixed = TRUE)
notes_current[notes_current == ""] <- NA_character_
out <- data.frame(
# recycling 1 to 2 rows does not always seem to work, which is why vectorise_log_entry() was added
@@ -1904,11 +1912,11 @@ pillar_shaft.sir <- function(x, ...) {
# colours will anyway not work when has_colour() == FALSE,
# but then the indentation should also not be applied
out[is.na(x)] <- font_grey(" NA")
out[x == "NI"] <- font_grey_bg(font_black(" NI "))
out[x == "S"] <- font_green_bg(" S ")
out[x == "SDD"] <- font_green_lighter_bg(" SDD ")
out[x == "I"] <- font_orange_bg(" I ")
out[x == "SDD"] <- font_orange_bg(" SDD ")
out[x == "R"] <- font_rose_bg(" R ")
out[x == "NI"] <- font_grey_bg(font_black(" NI "))
}
create_pillar_column(out, align = "left", width = 5)
}
@@ -1966,33 +1974,18 @@ freq.sir <- function(x, ...) {
# this prevents the requirement for putting the dependency in Imports:
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(skimr::get_skimmers, sir)
get_skimmers.sir <- function(column) {
# get the variable name 'skim_variable'
name_call <- function(.data) {
calls <- sys.calls()
frms <- sys.frames()
calls_txt <- vapply(calls, function(x) paste(deparse(x), collapse = ""), FUN.VALUE = character(1))
if (any(calls_txt %like% "skim_variable", na.rm = TRUE)) {
ind <- which(calls_txt %like% "skim_variable")[1L]
vars <- tryCatch(eval(parse(text = ".data$skim_variable$sir"), envir = frms[[ind]]),
error = function(e) NULL
)
tryCatch(ab_name(as.character(calls[[length(calls)]][[2]]), language = NULL, info = FALSE),
error = function(e) NA_character_
)
} else {
NA_character_
}
}
# TODO add here in AMR 3.1.0 details about guideline
skimr::sfl(
skim_type = "sir",
ab_name = name_call,
count_R = count_R,
count_S = count_susceptible,
# guideline = function(x) "EUCAST 2025", # or "Multiple"
# origin = function(x) "MIC", # or "Multiple"
count_S = count_S,
count_I = count_I,
prop_R = ~ proportion_R(., minimum = 0),
prop_S = ~ susceptibility(., minimum = 0),
prop_I = ~ proportion_I(., minimum = 0)
count_R = count_R,
prop_S = ~ round(proportion_S(., minimum = 0) * 100, 1),
prop_I = ~ round(proportion_I(., minimum = 0) * 100, 1),
prop_R = ~ round(proportion_R(., minimum = 0) * 100, 1),
hist = ~ skimr::inline_hist(as.double(stats::na.omit(.)), 3)
)
}

View File

@@ -244,7 +244,7 @@ sir_calc_df <- function(type, # "proportion", "count" or "both"
translate_ab <- get_translate_ab(translate_ab)
data.bak <- data
# select only groups and antimicrobials
# select only groups and antibiotics
if (is_null_or_grouped_tbl(data)) {
data_has_groups <- TRUE
groups <- get_group_names(data)
@@ -255,10 +255,12 @@ sir_calc_df <- function(type, # "proportion", "count" or "both"
}
data <- as.data.frame(data, stringsAsFactors = FALSE)
if (isTRUE(combine_SI)) {
for (i in seq_len(ncol(data))) {
if (is.sir(data[, i, drop = TRUE])) {
data[, i] <- as.character(data[, i, drop = TRUE])
for (i in seq_len(ncol(data))) {
# transform SIR columns
if (is.sir(data[, i, drop = TRUE])) {
data[, i] <- as.character(data[, i, drop = TRUE])
if (isTRUE(combine_SI)) {
if ("SDD" %in% data[, i, drop = TRUE] && message_not_thrown_before("sir_calc_df", combine_SI, entire_session = TRUE)) {
message_("Note that `sir_calc_df()` will also count dose-dependent susceptibility, 'SDD', as 'SI' when `combine_SI = TRUE`. This note will be shown once for this session.", as_note = FALSE)
}
@@ -364,7 +366,7 @@ sir_calc_df <- function(type, # "proportion", "count" or "both"
} else {
# don't use as.sir() here, as it would add the class 'sir' and we would like
# the same data structure as output, regardless of input
if (out$value[out$interpretation == "SDD"] > 0) {
if (any(out$value[out$interpretation == "SDD"] > 0, na.rm = TRUE)) {
out$interpretation <- factor(out$interpretation, levels = c("S", "SDD", "I", "R"), ordered = TRUE)
} else {
out$interpretation <- factor(out$interpretation, levels = c("S", "I", "R"), ordered = TRUE)

View File

@@ -47,6 +47,6 @@ sir_df <- function(data,
combine_SI = combine_SI,
confidence_level = confidence_level
),
error = function(e) stop_(gsub("in sir_calc_df(): ", "", e$message, fixed = TRUE), call = -5)
error = function(e) stop_(gsub("in sir_calc_df(): ", "", conditionMessage(e), fixed = TRUE), call = -5)
)
}

Binary file not shown.

265
R/tidymodels.R.no_include Normal file
View File

@@ -0,0 +1,265 @@
#' AMR Extensions for Tidymodels
#'
#' This family of functions allows using AMR-specific data types such as `<mic>` and `<sir>` inside `tidymodels` pipelines.
#' @inheritParams recipes::step_center
#' @details
#' You can read more in our online [AMR with tidymodels introduction](https://amr-for-r.org/articles/AMR_with_tidymodels.html).
#'
#' Tidyselect helpers include:
#' - [all_mic()] and [all_mic_predictors()] to select `<mic>` columns
#' - [all_sir()] and [all_sir_predictors()] to select `<sir>` columns
#'
#' Pre-processing pipeline steps include:
#' - [step_mic_log2()] to convert MIC columns to numeric (via `as.numeric()`) and apply a log2 transform, to be used with [all_mic_predictors()]
#' - [step_sir_numeric()] to convert SIR columns to numeric (via `as.numeric()`), to be used with [all_sir_predictors()]: `"S"` = 1, `"I"`/`"SDD"` = 2, `"R"` = 3. All other values are rendered `NA`. Keep this in mind for further processing, especially if the model does not allow for `NA` values.
#'
#' These steps integrate with `recipes::recipe()` and work like standard preprocessing steps. They are useful for preparing data for modelling, especially with classification models.
#' @seealso [recipes::recipe()], [as.mic()], [as.sir()]
#' @name amr-tidymodels
#' @keywords internal
#' @export
#' @examples
#' if (require("tidymodels")) {
#'
#' # The below approach formed the basis for this paper: DOI 10.3389/fmicb.2025.1582703
#' # Presence of ESBL genes was predicted based on raw MIC values.
#'
#'
#' # example data set in the AMR package
#' esbl_isolates
#'
#' # Prepare a binary outcome and convert to ordered factor
#' data <- esbl_isolates %>%
#' mutate(esbl = factor(esbl, levels = c(FALSE, TRUE), ordered = TRUE))
#'
#' # Split into training and testing sets
#' split <- initial_split(data)
#' training_data <- training(split)
#' testing_data <- testing(split)
#'
#' # Create and prep a recipe with MIC log2 transformation
#' mic_recipe <- recipe(esbl ~ ., data = training_data) %>%
#'
#' # Optionally remove non-predictive variables
#' remove_role(genus, old_role = "predictor") %>%
#'
#' # Apply the log2 transformation to all MIC predictors
#' step_mic_log2(all_mic_predictors()) %>%
#'
#' # And apply the preparation steps
#' prep()
#'
#' # View prepped recipe
#' mic_recipe
#'
#' # Apply the recipe to training and testing data
#' out_training <- bake(mic_recipe, new_data = NULL)
#' out_testing <- bake(mic_recipe, new_data = testing_data)
#'
#' # Fit a logistic regression model
#' fitted <- logistic_reg(mode = "classification") %>%
#' set_engine("glm") %>%
#' fit(esbl ~ ., data = out_training)
#'
#' # Generate predictions on the test set
#' predictions <- predict(fitted, out_testing) %>%
#' bind_cols(out_testing)
#'
#' # Evaluate predictions using standard classification metrics
#' our_metrics <- metric_set(accuracy, kap, ppv, npv)
#' metrics <- our_metrics(predictions, truth = esbl, estimate = .pred_class)
#'
#' # Show performance
#' metrics
#' }
all_mic <- function() {
x <- tidymodels_amr_select(levels(NA_mic_))
names(x)
}
#' @rdname amr-tidymodels
#' @export
all_mic_predictors <- function() {
x <- tidymodels_amr_select(levels(NA_mic_))
intersect(x, recipes::has_role("predictor"))
}
#' @rdname amr-tidymodels
#' @export
all_sir <- function() {
x <- tidymodels_amr_select(levels(NA_sir_))
names(x)
}
#' @rdname amr-tidymodels
#' @export
all_sir_predictors <- function() {
x <- tidymodels_amr_select(levels(NA_sir_))
intersect(x, recipes::has_role("predictor"))
}
#' @rdname amr-tidymodels
#' @export
step_mic_log2 <- function(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = recipes::rand_id("mic_log2")) {
recipes::add_step(
recipe,
step_mic_log2_new(
terms = rlang::enquos(...),
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
)
}
step_mic_log2_new <- function(terms, role, trained, columns, skip, id) {
recipes::step(
subclass = "mic_log2",
terms = terms,
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::prep, step_mic_log2)
prep.step_mic_log2 <- function(x, training, info = NULL, ...) {
col_names <- recipes::recipes_eval_select(x$terms, training, info)
recipes::check_type(training[, col_names], types = "ordered")
step_mic_log2_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
skip = x$skip,
id = x$id
)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::bake, step_mic_log2)
bake.step_mic_log2 <- function(object, new_data, ...) {
recipes::check_new_data(object$columns, object, new_data)
for (col in object$columns) {
new_data[[col]] <- log2(as.numeric(as.mic(new_data[[col]])))
}
new_data
}
#' @export
print.step_mic_log2 <- function(x, width = max(20, options()$width - 35), ...) {
title <- "Log2 transformation of MIC columns"
recipes::print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::tidy, step_mic_log2)
tidy.step_mic_log2 <- function(x, ...) {
if (recipes::is_trained(x)) {
res <- tibble::tibble(terms = x$columns)
} else {
res <- tibble::tibble(terms = recipes::sel2char(x$terms))
}
res$id <- x$id
res
}
#' @rdname amr-tidymodels
#' @export
step_sir_numeric <- function(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = recipes::rand_id("sir_numeric")) {
recipes::add_step(
recipe,
step_sir_numeric_new(
terms = rlang::enquos(...),
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
)
}
step_sir_numeric_new <- function(terms, role, trained, columns, skip, id) {
recipes::step(
subclass = "sir_numeric",
terms = terms,
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::prep, step_sir_numeric)
prep.step_sir_numeric <- function(x, training, info = NULL, ...) {
col_names <- recipes::recipes_eval_select(x$terms, training, info)
recipes::check_type(training[, col_names], types = "ordered")
step_sir_numeric_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
skip = x$skip,
id = x$id
)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::bake, step_sir_numeric)
bake.step_sir_numeric <- function(object, new_data, ...) {
recipes::check_new_data(object$columns, object, new_data)
for (col in object$columns) {
new_data[[col]] <- as.numeric(as.sir(new_data[[col]]))
}
new_data
}
#' @export
print.step_sir_numeric <- function(x, width = max(20, options()$width - 35), ...) {
title <- "Numeric transformation of SIR columns"
recipes::print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rawNamespace if(getRversion() >= "3.0.0") S3method(recipes::tidy, step_sir_numeric)
tidy.step_sir_numeric <- function(x, ...) {
if (recipes::is_trained(x)) {
res <- tibble::tibble(terms = x$columns)
} else {
res <- tibble::tibble(terms = recipes::sel2char(x$terms))
}
res$id <- x$id
res
}
tidymodels_amr_select <- function(check_vector) {
df <- get_current_data()
ind <- which(
vapply(
FUN.VALUE = logical(1),
df,
function(x) all(x %in% c(check_vector, NA), na.rm = TRUE) & any(x %in% check_vector),
USE.NAMES = TRUE
),
useNames = TRUE
)
ind
}

View File

@@ -258,6 +258,11 @@ translate_into_language <- function(from,
return(from)
}
if (only_affect_ab_names == TRUE) {
df_trans$pattern[df_trans$regular_expr == TRUE] <- paste0(df_trans$pattern[df_trans$regular_expr == TRUE], "$")
df_trans$pattern[df_trans$regular_expr == TRUE] <- gsub("$$", "$", df_trans$pattern[df_trans$regular_expr == TRUE], fixed = TRUE)
}
lapply(
# starting with longest pattern, since more general translations are shorter, such as 'Group'
order(nchar(df_trans$pattern), decreasing = TRUE),

View File

@@ -30,7 +30,6 @@
# These are all S3 implementations for the vctrs package,
# that is used internally by tidyverse packages such as dplyr.
# They are to convert AMR-specific classes to bare characters and integers.
# All of them will be exported using s3_register() in R/zzz.R when loading the package.
# see https://github.com/tidyverse/dplyr/issues/5955 why this is required

View File

@@ -127,7 +127,7 @@ AMR_env$cross_icon <- if (isTRUE(base::l10n_info()$`UTF-8`)) "\u00d7" else "x"
suppressWarnings(suppressMessages(add_custom_antimicrobials(x)))
packageStartupMessage("OK.")
},
error = function(e) packageStartupMessage("Failed: ", e$message)
error = function(e) packageStartupMessage("Failed: ", conditionMessage(e))
)
}
}
@@ -143,7 +143,7 @@ AMR_env$cross_icon <- if (isTRUE(base::l10n_info()$`UTF-8`)) "\u00d7" else "x"
suppressWarnings(suppressMessages(add_custom_microorganisms(x)))
packageStartupMessage("OK.")
},
error = function(e) packageStartupMessage("Failed: ", e$message)
error = function(e) packageStartupMessage("Failed: ", conditionMessage(e))
)
}
}

View File

@@ -49,8 +49,11 @@ To install the latest 'beta' version:
```{r, eval = FALSE}
install.packages("AMR", repos = "beta.amr-for-r.org")
```
# if this does not work, try to install directly from GitHub using the 'remotes' package:
If this does not work, try to install directly from GitHub using the `remotes` package:
```{r, eval = FALSE}
remotes::install_github("msberends/AMR")
```

View File

@@ -58,8 +58,12 @@ To install the latest beta version:
``` r
install.packages("AMR", repos = "beta.amr-for-r.org")
```
# if this does not work, try to install directly from GitHub using the 'remotes' package:
If this does not work, try to install directly from GitHub using the
`remotes` package:
``` r
remotes::install_github("msberends/AMR")
```

View File

@@ -234,6 +234,7 @@ reference:
- "`antimicrobials`"
- "`clinical_breakpoints`"
- "`example_isolates`"
# TODO - "`esbl_isolates`"
- "`microorganisms.codes`"
- "`microorganisms.groups`"
- "`intrinsic_resistant`"

View File

@@ -1,3 +1,5 @@
This version is a bugfix release (v3.0.1) following the release of v3.0.0 in June 2025.
As with all previous >20 releases, some CHECKs on `oldrel` may return a `NOTE` for narrowly exceeding the installation size limit. This has been reduced to a minimum in prior coordination with CRAN maintainers and currently returns only an `INFO` on `release` and `devel`.
We treat this as a high-impact package: it was published in the *Journal of Statistical Software* (2022), is listed in the CRAN Task View "Epidemiology", and (based on cranlogs download statistics) is used globally. If there is anything to address, we would appreciate being informed before archiving the current version. We conduct extensive automated unit testing and have no indication of unresolved issues.

View File

@@ -56,7 +56,8 @@ os.makedirs(r_lib_path, exist_ok=True)
os.environ['R_LIBS_SITE'] = r_lib_path
from rpy2 import robjects
from rpy2.robjects import pandas2ri
from rpy2.robjects.conversion import localconverter
from rpy2.robjects import default_converter, numpy2ri, pandas2ri
from rpy2.robjects.packages import importr, isinstalled
# Import base and utils
@@ -94,27 +95,26 @@ if r_amr_version != python_amr_version:
print(f"AMR: Setting up R environment and AMR datasets...", flush=True)
# Activate the automatic conversion between R and pandas DataFrames
pandas2ri.activate()
with localconverter(default_converter + numpy2ri.converter + pandas2ri.converter):
# example_isolates
example_isolates = robjects.r('''
df <- AMR::example_isolates
df[] <- lapply(df, function(x) {
if (inherits(x, c("Date", "POSIXt", "factor"))) {
as.character(x)
} else {
x
}
})
df <- df[, !sapply(df, is.list)]
df
''')
example_isolates['date'] = pd.to_datetime(example_isolates['date'])
# example_isolates
example_isolates = pandas2ri.rpy2py(robjects.r('''
df <- AMR::example_isolates
df[] <- lapply(df, function(x) {
if (inherits(x, c("Date", "POSIXt", "factor"))) {
as.character(x)
} else {
x
}
})
df <- df[, !sapply(df, is.list)]
df
'''))
example_isolates['date'] = pd.to_datetime(example_isolates['date'])
# microorganisms
microorganisms = pandas2ri.rpy2py(robjects.r('AMR::microorganisms[, !sapply(AMR::microorganisms, is.list)]'))
antimicrobials = pandas2ri.rpy2py(robjects.r('AMR::antimicrobials[, !sapply(AMR::antimicrobials, is.list)]'))
clinical_breakpoints = pandas2ri.rpy2py(robjects.r('AMR::clinical_breakpoints[, !sapply(AMR::clinical_breakpoints, is.list)]'))
# microorganisms
microorganisms = robjects.r('AMR::microorganisms[, !sapply(AMR::microorganisms, is.list)]')
antimicrobials = robjects.r('AMR::antimicrobials[, !sapply(AMR::antimicrobials, is.list)]')
clinical_breakpoints = robjects.r('AMR::clinical_breakpoints[, !sapply(AMR::clinical_breakpoints, is.list)]')
base.options(warn = 0)
@@ -129,16 +129,15 @@ echo "from .datasets import clinical_breakpoints" >> $init_file
# Write header to the functions Python file, including the convert_to_python function
cat <<EOL > "$functions_file"
import functools
import rpy2.robjects as robjects
from rpy2.robjects.packages import importr
from rpy2.robjects.vectors import StrVector, FactorVector, IntVector, FloatVector, DataFrame
from rpy2.robjects import pandas2ri
from rpy2.robjects.conversion import localconverter
from rpy2.robjects import default_converter, numpy2ri, pandas2ri
import pandas as pd
import numpy as np
# Activate automatic conversion between R data frames and pandas data frames
pandas2ri.activate()
# Import the AMR R package
amr_r = importr('AMR')
@@ -156,10 +155,8 @@ def convert_to_python(r_output):
return list(r_output) # Convert to a Python list of integers or floats
# Check if it's a pandas-compatible R data frame
elif isinstance(r_output, pd.DataFrame):
elif isinstance(r_output, (pd.DataFrame, DataFrame)):
return r_output # Return as pandas DataFrame (already converted by pandas2ri)
elif isinstance(r_output, DataFrame):
return pandas2ri.rpy2py(r_output) # Return as pandas DataFrame
# Check if the input is a NumPy array and has a string data type
if isinstance(r_output, np.ndarray) and np.issubdtype(r_output.dtype, np.str_):
@@ -167,6 +164,15 @@ def convert_to_python(r_output):
# Fall-back
return r_output
def r_to_python(r_func):
"""Decorator that runs an rpy2 function under a localconverter
and then applies convert_to_python to its output."""
@functools.wraps(r_func)
def wrapper(*args, **kwargs):
with localconverter(default_converter + numpy2ri.converter + pandas2ri.converter):
return convert_to_python(r_func(*args, **kwargs))
return wrapper
EOL
# Directory where the .Rd files are stored (update path as needed)
@@ -246,11 +252,12 @@ for rd_file in "$rd_dir"/*.Rd; do
gsub("FALSE", "False", func_args)
gsub("NULL", "None", func_args)
# Write the Python function definition to the output file
print "def " func_name_py "(" func_args "):" >> "'"$functions_file"'"
print " \"\"\"Please see our website of the R package for the full manual: https://amr-for-r.org\"\"\"" >> "'"$functions_file"'"
print " return convert_to_python(amr_r." func_name_py "(" func_args "))" >> "'"$functions_file"'"
# Write the Python function definition to the output file, using decorator
print "@r_to_python" >> "'"$functions_file"'"
print "def " func_name_py "(" func_args "):" >> "'"$functions_file"'"
print " \"\"\"Please see our website of the R package for the full manual: https://amr-for-r.org\"\"\"" >> "'"$functions_file"'"
print " return amr_r." func_name_py "(" func_args ")" >> "'"$functions_file"'"
print "from .functions import " func_name_py >> "'"$init_file"'"
}
' "$rd_file"

View File

@@ -663,7 +663,9 @@ if (files_changed()) {
}
# Update index.md and README.md -------------------------------------------
if (files_changed("man/microorganisms.Rd") ||
if (files_changed("README.Rmd") ||
files_changed("index.Rmd") ||
files_changed("man/microorganisms.Rd") ||
files_changed("man/antimicrobials.Rd") ||
files_changed("man/clinical_breakpoints.Rd") ||
files_changed("man/antibiogram.Rd") ||

File diff suppressed because it is too large Load Diff

View File

@@ -108,3 +108,18 @@ writeLines(contents, "R/aa_helper_pm_functions.R")
# note: pm_left_join() will be overwritten by aaa_helper_functions.R, which contains a faster implementation
# replace `res <- as.data.frame(res)` with `res <- as.data.frame(res, stringsAsFactors = FALSE)`
# after running, pm_select must be altered. The line:
# col_pos <- pm_select_positions(.data, ..., .group_pos = TRUE)
# ... must be replaced with this to support tidyselect functionality such as `starts_with()`:
# col_pos <- tryCatch(pm_select_positions(.data, ..., .group_pos = TRUE), error = function(e) NULL)
# if (is.null(col_pos)) {
# # try with tidyverse
# select_dplyr <- import_fn("select", "dplyr", error_on_fail = FALSE)
# if (!is.null(select_dplyr)) {
# col_pos <- which(colnames(.data) %in% colnames(select_dplyr(.data, ...)))
# } else {
# # this will throw an error as it did, but dplyr is not available, so no other option
# col_pos <- pm_select_positions(.data, ..., .group_pos = TRUE)
# }
# }

View File

@@ -1 +1 @@
228840b3941753c4adee2b781d901590
d12f1c78feaecbb4d1631f9c735ad49b

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -116,7 +116,7 @@
"CSU" 68718 "Cefsumide" "Cephalosporins (unclassified gen.)" "NA" "NA" "cefsulmid,cefsumido,cefsumidum" "NA"
"CPT" 56841980 "Ceftaroline" "Cephalosporins (5th gen.)" "J01DI02,QJ01DI02" "ceftar,cfro" "ceftaroine,teflaro,zinforo" "73604-1,73605-8,73626-4,73627-2,73649-6,73650-4,74170-2"
"CPA" "Ceftaroline/avibactam" "Cephalosporins (5th gen.)" "NA" "NA" "NA" "73604-1,73626-4,73649-6"
"CAZ" 5481173 "Ceftazidime" "Cephalosporins (3rd gen.)" "J01DD02,QJ01DD02" "Other beta-lactam antibacterials" "Third-generation cephalosporins" "caz,cefta,ceftaz,cfta,cftz,taz,tz,xtz" "ceftazimide,ceptaz,fortam,fortaz,fortum,glazidim,kefazim,modacin,pentacef,tazicef,tizime" 4 "g" "101481-0,101482-8,101483-6,132-1,133-9,134-7,135-4,18893-8,21151-6,3449-6,35774-9,35775-6,35776-4,42352-5,55648-0,55649-8,55650-6,55651-4,58705-5,6995-5,73603-3,73625-6,73648-8,80960-8,87734-0,90850-9"
"CAZ" 5481173 "Ceftazidime" "Cephalosporins (3rd gen.)" "J01DD02,QJ01DD02" "Other beta-lactam antibacterials" "Third-generation cephalosporins" "caz,cef,cefta,ceftaz,cfta,cftz,taz,tz,xtz" "ceftazimide,ceptaz,fortam,fortaz,fortum,glazidim,kefazim,modacin,pentacef,tazicef,tizime" 4 "g" "101481-0,101482-8,101483-6,132-1,133-9,134-7,135-4,18893-8,21151-6,3449-6,35774-9,35775-6,35776-4,42352-5,55648-0,55649-8,55650-6,55651-4,58705-5,6995-5,73603-3,73625-6,73648-8,80960-8,87734-0,90850-9"
"CZA" 90643431 "Ceftazidime/avibactam" "Cephalosporins (3rd gen.)" "J01DD52,QJ01DD52" "cfav" "avycaz,zavicefta" 6 "g" "101483-6,73603-3,73625-6,73648-8,87734-0"
"CCV" 9575352 "Ceftazidime/clavulanic acid" "Cephalosporins (3rd gen.)" "J01DD52,QJ01DD52" "Other beta-lactam antibacterials" "Third-generation cephalosporins" "czcl,tazcla,xtzl" "NA" 6 "g" "NA"
"CEM" 6537431 "Cefteram" "Cephalosporins (3rd gen.)" "J01DD18,QJ01DD18" "cefter" "cefterame,cefteramum,ceftetrame" 0.4 "g" "100047-0,76144-5"
@@ -162,7 +162,7 @@
"CYC" 6234 "Cycloserine" "Oxazolidinones" "J04AB01,QJ04AB01" "Drugs for treatment of tuberculosis" "Antibiotics" "cycl,cyclos" "cicloserina,closina,cyclorin,cycloserin,cycloserinum,farmiserina,levcicloserina,levcycloserine,levcycloserinum,micoserina,miroserina,miroseryn,novoserin,oxamicina,oxamycin,seromycin,tebemicina,wasserina" 0.75 "g" "16702-3,18914-2,212-1,213-9,214-7,215-4,23608-3,25207-2,25208-0,25209-8,25251-0,3519-6,55667-0"
"DAL" 23724878 "Dalbavancin" "Glycopeptides" "J01XA04,QJ01XA04" "Other antibacterials" "Glycopeptide antibacterials" "dalb,dalbav" "dalbavancina,dalvance,xydalba,zeven" 1.5 "g" "41688-3,41689-1,41690-9,41734-5"
"DAN" 71335 "Danofloxacin" "Fluoroquinolones" "QJ01MA92" "danofl" "advocin,danofloxacine,danofloxacino,danofloxacinum" "73601-7,73623-1,73646-2"
"DPS" 2955 "Dapsone" "Other antibacterials" "D10AX05,J04BA02,QD10AX05,QJ04BA02" "Drugs for treatment of lepra" "Drugs for treatment of lepra" "NA" "aczone,atrisone,avlosulfon,avlosulfone,avlosulphone,benzenamide,benzenamine,bissulfone,bissulphone,croysulfone,croysulphone,dapson,dapsona,dapsonum,daspone,diaphenylsulfon,diaphenylsulfone,diaphenylsulphon,diaphenylsulphone,diphenasone,diphone,disulfone,disulone,disulphone,dubronax,dumitone,eporal,medapsol,novophone,servidapson,sulfadione,sulfona,sulfonyldianiline,sulphadione,sulphonyldianiline,tarimyl,udolac,undolac" 50 "mg" "51698-9,9747-7"
"DPS" 2955 "Dapsone" "Other antibacterials" "D10AX05,J04BA02,QD10AX05,QJ04BA02" "Drugs for treatment of lepra" "Drugs for treatment of lepra" "dao" "aczone,atrisone,avlosulfon,avlosulfone,avlosulphone,benzenamide,benzenamine,bissulfone,bissulphone,croysulfone,croysulphone,dapson,dapsona,dapsonum,daspone,diaphenylsulfon,diaphenylsulfone,diaphenylsulphon,diaphenylsulphone,diphenasone,diphone,disulfone,disulone,disulphone,dubronax,dumitone,eporal,medapsol,novophone,servidapson,sulfadione,sulfona,sulfonyldianiline,sulphadione,sulphonyldianiline,tarimyl,udolac,undolac" 50 "mg" "51698-9,9747-7"
"DAP" 16134395 "Daptomycin" "Other antibacterials" "J01XX09,QJ01XX09" "Other antibacterials" "Other antibacterials" "dap,dapt,dapt25,dapt50,daptom" "cidecin,cubicin,dapcin,daptomicina,daptomycine,daptomycinum,deptomycin" 0.28 "g" "35787-1,35788-9,35789-7,41691-7"
"DFX" 487101 "Delafloxacin" "Fluoroquinolones" "J01MA23,QJ01MA23" "NA" "baxdela,delafloxacinum,quofenix" 0.9 "g" 0.6 "g" "88885-9,90447-4,93790-4"
"DLM" 6480466 "Delamanid" "Antimycobacterials" "J04AK06,QJ04AK06" "Drugs for treatment of tuberculosis" "Other drugs for treatment of tuberculosis" "dela" "deltyba" 0.2 "g" "93851-4,96109-4"
@@ -184,7 +184,7 @@
"ERV" 54726192 "Eravacycline" "Tetracyclines" "J01AA13,QJ01AA13" "Tetracyclines" "Tetracyclines" "erav" "xerava" 0.14 "g" "100049-6,85423-2,93767-2"
"ETP" 150610 "Ertapenem" "Carbapenems" "J01DH03,QJ01DH03" "Other beta-lactam antibacterials" "Carbapenems" "erta,ertape,etp" "ertapenemsalt,invanz" 1 "g" "101486-9,35799-6,35800-2,35801-0,35802-8"
"ERY" 12560 "Erythromycin" "Macrolides/lincosamides" "D10AF02,J01FA01,QD10AF02,QJ01FA01,QJ51FA01,QS01AA17,S01AA17" "Macrolides, lincosamides and streptogramins" "Macrolides" "e,em,ery,ery32,eryt,eryth" "abboticin,abomacetin,acneryne,acnesol,aknemycin,aknin,benzamycin,derimer,deripil,dotycin,dumotrycin,emgel,emuvin,emycin,endoeritrin,erecin,erisone,eritomicina,eritrocina,eritromicina,ermycin,eryacne,eryacnen,erycen,erycette,erycinum,eryderm,erydermer,erygel,eryhexal,erymax,erymed,erysafe,erytab,erythro,erythroderm,erythrogran,erythroguent,erythromast,erythromid,erythromycine,erythromycinum,erytop,erytrociclin,ilocaps,ilosone,iloticina,ilotycin,inderm,latotryd,lederpax,mephamycin,mercina,oftamolets,pantoderm,pantodrin,pantomicina,pharyngocin,primacine,propiocine,proterytrin,retcin,robimycin,sansac,spotex,staticin,stiemicyn,stiemycin,tiprocin,torlamicina,wemid" 2 "g" 1 "g" "100050-4,11576-6,12298-6,16829-4,16830-2,18919-1,18920-9,20380-2,232-9,233-7,234-5,235-2,236-0,23633-1,237-8,238-6,239-4,25224-7,25275-9,3597-2,7009-4"
"ETH" 14052 "Ethambutol" "Antimycobacterials" "J04AK02,QJ04AK02" "Drugs for treatment of tuberculosis" "Other drugs for treatment of tuberculosis" "etha,ethamb" "aethambutolum,dadibutol,diambutol,etambutol,etambutolo,ethambutolum,myambutol,purderal,servambutol,tibutol" 1.2 "g" 1.2 "g" "100051-2,16841-9,18921-7,20381-0,23625-7,240-2,241-0,242-8,243-6,25187-6,25194-2,25195-9,25230-4,25404-5,3607-9,42645-2,42646-0,55154-9,55674-6,56025-0,7010-2,89491-5"
"ETH" 14052 "Ethambutol" "Antimycobacterials" "J04AK02,QJ04AK02" "Drugs for treatment of tuberculosis" "Other drugs for treatment of tuberculosis" "emb,etha,ethamb" "aethambutolum,dadibutol,diambutol,etambutol,etambutolo,ethambutolum,myambutol,purderal,servambutol,tibutol" 1.2 "g" 1.2 "g" "100051-2,16841-9,18921-7,20381-0,23625-7,240-2,241-0,242-8,243-6,25187-6,25194-2,25195-9,25230-4,25404-5,3607-9,42645-2,42646-0,55154-9,55674-6,56025-0,7010-2,89491-5"
"ETI" 456476 "Ethambutol/isoniazid" "Antimycobacterials" "J04AM03,QJ04AM03" "Drugs for treatment of tuberculosis" "Combinations of drugs for treatment of tuberculosis" "NA" "NA" "NA"
"ETI1" 2761171 "Ethionamide" "Antimycobacterials" "J04AD03,QJ04AD03" "Drugs for treatment of tuberculosis" "Thiocarbamide derivatives" "ethi,ethion" "aethionamidum,aetina,aetiva,amidazin,amidazine,atina,ethimide,ethina,ethinamide,ethionamidum,ethioniamide,ethylisothiamide,ethyonomide,etimid,etiocidan,etionamid,etionamida,etionamide,etioniamid,etionid,etionizin,etionizina,etionizine,fatoliamid,iridocin,iridozin,isothin,isotiamida,itiocide,nicotion,nisotin,nizotin,rigenicid,sertinon,teberus,thianid,thianide,thioamide,thiodine,thiomid,thioniden,tianid,tiomid,trecator,trekator,trescatyl,trescazide,tubenamide,tubermin,tuberoid,tuberoson" 0.75 "g" "16099-4,16845-0,18922-5,20382-8,23617-4,25183-5,25196-7,25198-3,25231-2,41693-3,42647-8,42648-6,7011-0,96110-2"
"ETO" 6034 "Ethopabate" "Other antibacterials" "QP51AX17" "NA" "ethopabat" "NA"
@@ -202,7 +202,7 @@
"FLM" 3374 "Flumequine" "Quinolones" "J01MB07,QJ01MB07" "Quinolone antibacterials" "Other quinolones" "flumeq" "apurone,fantacin,flumequina,flumequino,flumequinum,flumigal,flumiquil,flumisol,flumix,imequyl" 1.2 "g" "55675-3,55676-1,55677-9,55678-7"
"FLR1" 71260 "Flurithromycin" "Macrolides/lincosamides" "J01FA14,QJ01FA14" "Macrolides, lincosamides and streptogramins" "Macrolides" "NA" "abbot,beritromicina,berythromycin,berythromycine,berythromycinum,flurithromycine,flurithromycinum,fluritromicina,fluritromycinum,flurizic,mizar" 0.75 "g" "NA"
"FFL" 214356 "Fosfluconazole" "Antifungals/antimycotics" "NA" "NA" "fosfluconazol,procif,prodif" "NA"
"FOS" 446987 "Fosfomycin" "Other antibacterials" "J01XX01,QJ01XX01,QS02AA17,S02AA17" "Other antibacterials" "Other antibacterials" "ff,fm,fo,fof,fos,fosf,fosfom,fosmyc" "fosfocina,fosfomicin,fosfomicina,fosfomycine,fosfomycinum,fosfonomycin,infectophos,phosphonemycin,phosphonomycin,veramina" 3 "g" 8 "g" "25596-8,25653-7,35809-3,35810-1"
"FOS" 446987 "Fosfomycin" "Phosphonics" "J01XX01,QJ01XX01,QS02AA17,S02AA17" "Other antibacterials" "Other antibacterials" "ff,fm,fo,fof,fos,fosf,fosfom,fosmyc" "fosfocina,fosfomicin,fosfomicina,fosfomycine,fosfomycinum,fosfonomycin,infectophos,phosphonemycin,phosphonomycin,veramina" 3 "g" 8 "g" "25596-8,25653-7,35809-3,35810-1"
"FMD" 572 "Fosmidomycin" "Other antibacterials" "NA" "NA" "fosmidomicina,fosmidomycina,fosmidomycine,fosmidomycinsalt,fosmidomycinum" "NA"
"FRM" 8378 "Framycetin" "Aminoglycosides" "D09AA01,QD09AA01,QJ01GB91,QR01AX08,QS01AA07,R01AX08,S01AA07" "fram,framyc" "actilin,actiline,antibiotique,bycomycin,enterfram,fradiomycin,fradiomycinum,framicetina,framidal,framycetine,framycetinum,framycin,framygen,francetin,jernadex,myacyne,mycerin,mycifradin,neobrettin,neolate,neomas,neomcin,neomicina,neomin,neomycine,neomycinum,nivemycin,soframycin,soframycine" "18926-6,257-6,258-4,259-2,260-0,55679-5"
"FUR" 6870646 "Furazidin" "Other antibacterials" "J01XE03,QJ01XE03" "Other antibacterials" "Nitrofuran derivatives" "NA" "akritoin,furagin,furaginum,furamag,furazidine,hydantoin" 0.3 "g" "NA"
@@ -268,7 +268,7 @@
"MET" 6087 "Meticillin" "Beta-lactams/penicillins" "J01CF03,QJ01CF03,QJ51CF03" "Beta-lactam antibacterials, penicillins" "Beta-lactamase resistant penicillins" "methic,meti" "belfacillin,celbenin,celpilline,cinopenil,dimocillin,estafcilina,flabelline,lucopenin,metacillin,methcillin,methicillin,methicillinanhydrous,methicillinhydrate,methicillinsalt,methicillinum,methycillin,meticilina,meticillina,meticilline,meticillinsalt,meticillinum,penaureus,penysol,staficyn,staphcillin,synticillin" 4 "g" "NA"
"MTP" 68590 "Metioprim" "Other antibacterials" "NA" "NA" "methioprim,metioprima,metioprime,metioprimum" "NA"
"MXT" 3047729 "Metioxate" "Fluoroquinolones" "NA" "NA" "metioxato,metioxatum" "NA"
"MTR" 4173 "Metronidazole" "Other antibacterials" "A01AB17,D06BX01,G01AF01,J01XD01,P01AB01,QA01AB17,QD06BX01,QG01AF01,QJ01XD01,QP51CA01" "Other antibacterials" "Imidazole derivatives" "metr,metron,mnz" "acromona,anagiardil,arilin,atrivyl,bexon,clont,danizol,deflamon,donnan,efloran,elyzol,entizol,eumin,flagemona,flagesol,flagil,flagyl,flazol,flegyl,florazole,fossyol,giatricol,gineflavir,givagil,hydroxydimetridazole,hydroxymetronidazole,izoklion,klion,klont,mepagyl,meronidal,metric,metrolag,metrolyl,metromidol,metronidazolo,metronidazolum,metroplex,metrotop,mexibol,monagyl,monasin,nalox,nidagyl,noritate,novonidazol,nuvessa,orvagil,polibiotic,protostat,rathimed,rosaced,rosased,sanatrichom,satric,takimetol,trichazol,trichex,trichobrol,trichocide,trichomol,trichopal,trichopol,tricocet,tricom,trikacide,trikamon,trikhopol,trikojol,trikozol,trimeks,trivazol,vagilen,vagimid,vandazole,vertisal,wagitran,zadstat,zidoval" 2 "g" 1.5 "g" "10991-8,18946-4,326-9,327-7,328-5,329-3,7031-8"
"MTR" 4173 "Metronidazole" "Other antibacterials" "A01AB17,D06BX01,G01AF01,J01XD01,P01AB01,QA01AB17,QD06BX01,QG01AF01,QJ01XD01,QP51CA01" "Other antibacterials" "Imidazole derivatives" "metr,metron,mnz,mtz" "acromona,anagiardil,arilin,atrivyl,bexon,clont,danizol,deflamon,donnan,efloran,elyzol,entizol,eumin,flagemona,flagesol,flagil,flagyl,flazol,flegyl,florazole,fossyol,giatricol,gineflavir,givagil,hydroxydimetridazole,hydroxymetronidazole,izoklion,klion,klont,mepagyl,meronidal,metric,metrolag,metrolyl,metromidol,metronidazolo,metronidazolum,metroplex,metrotop,mexibol,monagyl,monasin,nalox,nidagyl,noritate,novonidazol,nuvessa,orvagil,polibiotic,protostat,rathimed,rosaced,rosased,sanatrichom,satric,takimetol,trichazol,trichex,trichobrol,trichocide,trichomol,trichopal,trichopol,tricocet,tricom,trikacide,trikamon,trikhopol,trikojol,trikozol,trimeks,trivazol,vagilen,vagimid,vandazole,vertisal,wagitran,zadstat,zidoval" 2 "g" 1.5 "g" "10991-8,18946-4,326-9,327-7,328-5,329-3,7031-8"
"MEZ" 656511 "Mezlocillin" "Beta-lactams/penicillins" "J01CA10,QJ01CA10" "Beta-lactam antibacterials, penicillins" "Penicillins with extended spectrum" "mez,mezl,mezlo,mz" "baycipen,baypen,mezlin,mezlocilina,mezlocilline,mezlocillinsalt,mezlocillinum,multocillin" 6 "g" "18947-2,330-1,331-9,332-7,333-5,3820-8,41702-2,54194-6,54195-3,54196-1"
"MSU" "Mezlocillin/sulbactam" "Beta-lactams/penicillins" "NA" "mezsul" "NA" "54194-6,54195-3,54196-1"
"MIF" 477468 "Micafungin" "Antifungals/antimycotics" "J02AX05,QJ02AX05" "Antimycotics for systemic use" "Other antimycotics for systemic use" "mica,micafu" "fungard,funguard,micafungina,micafunginsalt,mycamine" 0.1 "g" "53812-4,58418-5,65340-2,85048-7"
@@ -339,7 +339,7 @@
"PMR" 5284447 "Pimaricin" "Antifungals/antimycotics" "NA" "natamycin" "delvocid,delvolan,delvopos,mycophyt,myprozine,natacyn,natafucin,natajen,natamatrix,natamax,natamicina,natamycin,natamycine,natamycinum,pimafucin,pimaracin,pimaricine,pimarizin,synogil,tennecetin" "NA"
"PPA" 4831 "Pipemidic acid" "Quinolones" "J01MB04,QJ01MB04" "Quinolone antibacterials" "Other quinolones" "pipaci,pipz,pizu" "deblaston,dolcol,filtrax,karunomazin,memento,nuril,palin,pipedac,pipemid,pipemidate,pipemidic,pipemidicacid,pipram,pipurin,tractur,uromidin,urosten,uroval" 0.8 "g" "NA"
"PIP" 43672 "Piperacillin" "Beta-lactams/penicillins" "J01CA12,QJ01CA12" "Beta-lactam antibacterials, penicillins" "Penicillins with extended spectrum" "pi,pip,pipc,pipe,pipera,pp" "penmalin,pentcillin,peperacillin,peracin,piperacilina,piperacillina,piperacilline,piperacillinhydrate,piperacillinum,pipercillin,pipracil,tazocin" 14 "g" "101490-1,101491-9,18969-6,18970-4,25268-4,3972-7,407-7,408-5,409-3,410-1,411-9,412-7,413-5,414-3,54197-9,54198-7,54199-5,55704-1,7043-3,7044-1"
"PIS" "Piperacillin/sulbactam" "Beta-lactams/penicillins" "J01CR05,QJ01CR05" "NA" "NA" 14 "g" "54197-9,54198-7,54199-5,55704-1"
"PIS" "Piperacillin/sulbactam" "Beta-lactams/penicillins" "NA" "NA" "NA" 14 "g" "54197-9,54198-7,54199-5,55704-1"
"TZP" 461573 "Piperacillin/tazobactam" "Beta-lactams/penicillins" "J01CR05,QJ01CR05" "Beta-lactam antibacterials, penicillins" "Combinations of penicillins, incl. beta-lactamase inhibitors" "p/t,piptaz,piptazo,pit,pita,pt,ptc,ptz,tzp" "piptazobactam,tazonam,zobactin,zosyn" 14 "g" "101491-9,18970-4,411-9,412-7,413-5,414-3,7044-1"
"PRC" 71978 "Piridicillin" "Beta-lactams/penicillins" "NA" "NA" "NA" "NA"
"PRL" 157385 "Pirlimycin" "Macrolides/lincosamides" "QJ51FF90" "pirlim" "pirlimycina,pirlimycine,pirlimycinum,pirsue" "35829-1,35830-9,35831-7"
@@ -370,7 +370,7 @@
"RBC" 44631912 "Ribociclib" "Antifungals/antimycotics" "L01EF02,QL01EF02" "Antimycotics for systemic use" "Triazole derivatives" "ribo" "kisqali" 0.45 "g" "NA"
"RST" 33042 "Ribostamycin" "Aminoglycosides" "J01GB10,QJ01GB10" "Aminoglycoside antibacterials" "Other aminoglycosides" "NA" "exaluren,hetangmycin,ribastamin,ribostamicina,ribostamycine,ribostamycinum,vistamycin,xylostatin" 1 "g" "NA"
"RID1" 16659285 "Ridinilazole" "Other antibacterials" "NA" "NA" "ridinilazol" "NA"
"RIB" 135398743 "Rifabutin" "Antimycobacterials" "J04AB04,QJ04AB04" "Drugs for treatment of tuberculosis" "Antibiotics" "ansamy,rifb" "alfacid,ansamicin,ansamycins,ansatipin,ansatipine,assatipin,mycobutin,rifabutinum" 0.15 "g" "100699-8,16100-0,16386-5,16387-3,19149-4,20386-9,23630-7,24032-5,25199-1,25200-7,25201-5,42655-1,42656-9,54183-9,96113-6"
"RIB" 135398743 "Rifabutin" "Antimycobacterials" "J04AB04,QJ04AB04" "Drugs for treatment of tuberculosis" "Antibiotics" "ansamy,rfb,rifb" "alfacid,ansamicin,ansamycins,ansatipin,ansatipine,assatipin,mycobutin,rifabutinum" 0.15 "g" "100699-8,16100-0,16386-5,16387-3,19149-4,20386-9,23630-7,24032-5,25199-1,25200-7,25201-5,42655-1,42656-9,54183-9,96113-6"
"RIF" 135398735 "Rifampicin" "Antimycobacterials" "J04AB02,QJ04AB02,QJ54AB02" "Drugs for treatment of tuberculosis" "Antibiotics" "rifa,rifamp" "abrifam,archidyn,arficin,arzide,benemicin,doloresum,eremfat,famcin,fenampicin,rifadin,rifadine,rifagen,rifaldazin,rifaldazine,rifaldin,rifam,rifamor,rifampicina,rifampicine,rifampicinum,rifampin,rifamsolin,rifapiam,rifaprodin,rifcin,rifinah,rifobac,rifoldin,rifoldine,riforal,rimactan,rimactane,rimactazid,rimactizid,rimazid,sinerdol,tubocin" 0.6 "g" 0.6 "g" "NA"
"REI" 135483893 "Rifampicin/ethambutol/isoniazid" "Antimycobacterials" "J04AM07,QJ04AM07" "Drugs for treatment of tuberculosis" "Combinations of drugs for treatment of tuberculosis" "NA" "isonarif,rifamate,rifamazid" "NA"
"RFI" "Rifampicin/isoniazid" "Antimycobacterials" "J04AM02,QJ04AM02" "Drugs for treatment of tuberculosis" "Combinations of drugs for treatment of tuberculosis" "NA" "NA" "NA"
@@ -391,7 +391,6 @@
"SRC" 54681908 "Sarecycline" "Tetracyclines" "J01AA14,QJ01AA14" "Tetracyclines" "Tetracyclines" "NA" "sareciclina,seysara" 0.1 "g" "NA"
"SRX" 9933415 "Sarmoxicillin" "Beta-lactams/penicillins" "NA" "NA" "sarmoxillina,sarmoxilline,sarmoxillinum" "NA"
"SEC" 71815 "Secnidazole" "Other antibacterials" "P01AB07" "NA" "flagentyl,secnidal,secnidazolum,secnil,sindose,solosec" 2 "g" "NA"
"SMF" "Simvastatin/fenofibrate" "Antimycobacterials" "C10BA04,QC10BA04" "Drugs for treatment of tuberculosis" "Other drugs for treatment of tuberculosis" "simv" "NA" "NA"
"SIS" 36119 "Sisomicin" "Aminoglycosides" "J01GB08,QJ01GB08" "Aminoglycoside antibacterials" "Other aminoglycosides" "siso,sisomy" "rickamicin,salvamina,sisomicina,sisomicine,sisomicinum,sisomin,sisomycin,sissomicin,sizomycin" 0.24 "g" "18979-5,447-3,448-1,449-9,450-7,55714-0"
"SIT" 461399 "Sitafloxacin" "Fluoroquinolones" "J01MA21,QJ01MA21" "sitafl" "gracevit" 0.1 "g" "NA"
"SDA" 2724368 "Sodium aminosalicylate" "Antimycobacterials" "J04AA02,QJ04AA02" "Drugs for treatment of tuberculosis" "Aminosalicylic acid and derivatives" "NA" "bactylan,lepasen,monopas,tubersan" 14 "g" 14 "g" "NA"
@@ -495,4 +494,4 @@
"VOR" 71616 "Voriconazole" "Antifungals/antimycotics" "J02AC03,QJ02AC03" "Antimycotics for systemic use" "Triazole derivatives" "vori,vorico,vrc" "vfend,voriconazol,voriconazolum,voriconzole,vorikonazole" 0.4 "g" 0.4 "g" "32379-0,35862-2,35863-0,38370-3,41199-1,41200-7,53902-3,73676-9,80553-1,80651-3"
"XBR" 72144 "Xibornol" "Other antibacterials" "J01XX02,QJ01XX02" "Other antibacterials" "Other antibacterials" "NA" "bactacine,bracen,nanbacine,xibornolo,xibornolum" "NA"
"ZID" 77846445 "Zidebactam" "Other antibacterials" "NA" "NA" "zidebactamsalt" "NA"
"ZFD" "Zoliflodacin" "NA" "NA" "NA" "NA"
"ZFD" "Zoliflodacin" "NA" "zol" "NA" "NA"

Binary file not shown.

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@@ -1 +1 @@
5908f9e6e7687dfb8301d27fb26d1790
6dc4dded108052760bfb626df03435e2

View File

@@ -283,7 +283,7 @@ for (i in 2:length(sheets_to_analyse)) {
guideline_name = guideline_name
)
),
error = function(e) message(e$message)
error = function(e) message(conditionMessage(e))
)
}

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -28,8 +28,8 @@ AMR:::reset_all_thrown_messages()
> Now available for Python too! [Click here](./articles/AMR_for_Python.html) to read more.
<div style="display: flex; font-size: 0.8em;">
<p style="text-align:left; width: 50%;"><small><a href="https://amr-for-r.org/">https://amr-for-r.org</a></small></p>
<p style="text-align:right; width: 50%;"><small><a href="https://doi.org/10.18637/jss.v104.i03" target="_blank">https://doi.org/10.18637/jss.v104.i03</a></small></p>
<p style="text-align:left; width: 50%;"><small><a href="https://amr-for-r.org/">amr-for-r.org</a></small></p>
<p style="text-align:right; width: 50%;"><small><a href="https://doi.org/10.18637/jss.v104.i03" target="_blank">doi.org/10.18637/jss.v104.i03</a></small></p>
</div>
<a href="./reference/clinical_breakpoints.html#response-from-clsi-and-eucast"><img src="./endorsement_clsi_eucast.jpg" class="endorse_img" align="right" height="120" /></a>
@@ -133,7 +133,7 @@ ggplot(data.frame(mic = some_mic_values,
sir = interpretation),
aes(x = group, y = mic, colour = sir)) +
theme_minimal() +
geom_boxplot(fill = NA, colour = "grey") +
geom_boxplot(fill = NA, colour = "grey30") +
geom_jitter(width = 0.25) +
# NEW scale function: plot MIC values to x, y, colour or fill

View File

@@ -27,12 +27,12 @@
<p style="text-align:left; width: 50%;">
<small><a href="https://amr-for-r.org/">https://amr-for-r.org</a></small>
<small><a href="https://amr-for-r.org/">amr-for-r.org</a></small>
</p>
<p style="text-align:right; width: 50%;">
<small><a href="https://doi.org/10.18637/jss.v104.i03" target="_blank">https://doi.org/10.18637/jss.v104.i03</a></small>
<small><a href="https://doi.org/10.18637/jss.v104.i03" target="_blank">doi.org/10.18637/jss.v104.i03</a></small>
</p>
</div>
@@ -171,14 +171,14 @@ example_isolates %>%
select(bacteria,
aminoglycosides(),
carbapenems())
#> Using column 'mo' as input for mo_fullname()
#> Using column 'mo' as input for mo_is_gram_negative()
#> Using column 'mo' as input for mo_is_intrinsic_resistant()
#> Using column 'mo' as input for `mo_fullname()`
#> Using column 'mo' as input for `mo_is_gram_negative()`
#> Using column 'mo' as input for `mo_is_intrinsic_resistant()`
#> Determining intrinsic resistance based on 'EUCAST Expected Resistant
#> Phenotypes' v1.2 (2023). This note will be shown once per session.
#> For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
#> For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
#> For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
#> For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
#> # A tibble: 35 × 7
#> bacteria GEN TOB AMK KAN IPM MEM
#> <chr> <sir> <sir> <sir> <sir> <sir> <sir>
@@ -215,9 +215,9 @@ output format automatically (such as markdown, LaTeX, HTML, etc.).
``` r
antibiogram(example_isolates,
antimicrobials = c(aminoglycosides(), carbapenems()))
#> For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
#> For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
#> For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
#> For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
```
| Pathogen | Amikacin | Gentamicin | Imipenem | Kanamycin | Meropenem | Tobramycin |
@@ -289,7 +289,7 @@ ggplot(data.frame(mic = some_mic_values,
sir = interpretation),
aes(x = group, y = mic, colour = sir)) +
theme_minimal() +
geom_boxplot(fill = NA, colour = "grey") +
geom_boxplot(fill = NA, colour = "grey30") +
geom_jitter(width = 0.25) +
# NEW scale function: plot MIC values to x, y, colour or fill
@@ -321,9 +321,9 @@ example_isolates %>%
#> # A tibble: 3 × 5
#> ward GEN_total_R GEN_conf_int TOB_total_R TOB_conf_int
#> <chr> <dbl> <chr> <dbl> <chr>
#> 1 Clinical 0.2289362 0.205-0.254 0.3147503 0.284-0.347
#> 2 ICU 0.2902655 0.253-0.33 0.4004739 0.353-0.449
#> 3 Outpatient 0.2 0.131-0.285 0.3676471 0.254-0.493
#> 1 Clinical 0.229 0.205-0.254 0.315 0.284-0.347
#> 2 ICU 0.290 0.253-0.33 0.400 0.353-0.449
#> 3 Outpatient 0.2 0.131-0.285 0.368 0.254-0.493
```
Or use [antimicrobial
@@ -340,44 +340,44 @@ out <- example_isolates %>%
# calculate AMR using resistance(), over all aminoglycosides and polymyxins:
summarise(across(c(aminoglycosides(), polymyxins()),
resistance))
#> For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
#> For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
#> For polymyxins() using column 'COL' (colistin)
#> For `polymyxins()` using column 'COL' (colistin)
#> Warning: There was 1 warning in `summarise()`.
#> In argument: `across(c(aminoglycosides(), polymyxins()), resistance)`.
#> In group 3: `ward = "Outpatient"`.
#> Caused by warning:
#> ! Introducing NA: only 23 results available for KAN in group: ward =
#> "Outpatient" (minimum = 30).
#> "Outpatient" (`minimum` = 30).
out
#> # A tibble: 3 × 6
#> ward GEN TOB AMK KAN COL
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Clinical 0.2289362 0.3147503 0.6258993 1 0.7802956
#> 2 ICU 0.2902655 0.4004739 0.6624473 1 0.8574144
#> 3 Outpatient 0.2 0.3676471 0.6052632 NA 0.8888889
#> ward GEN TOB AMK KAN COL
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Clinical 0.229 0.315 0.626 1 0.780
#> 2 ICU 0.290 0.400 0.662 1 0.857
#> 3 Outpatient 0.2 0.368 0.605 NA 0.889
```
``` r
# transform the antibiotic columns to names:
out %>% set_ab_names()
#> # A tibble: 3 × 6
#> ward gentamicin tobramycin amikacin kanamycin colistin
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Clinical 0.2289362 0.3147503 0.6258993 1 0.7802956
#> 2 ICU 0.2902655 0.4004739 0.6624473 1 0.8574144
#> 3 Outpatient 0.2 0.3676471 0.6052632 NA 0.8888889
#> ward gentamicin tobramycin amikacin kanamycin colistin
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Clinical 0.229 0.315 0.626 1 0.780
#> 2 ICU 0.290 0.400 0.662 1 0.857
#> 3 Outpatient 0.2 0.368 0.605 NA 0.889
```
``` r
# transform the antibiotic column to ATC codes:
out %>% set_ab_names(property = "atc")
#> # A tibble: 3 × 6
#> ward J01GB03 J01GB01 J01GB06 J01GB04 J01XB01
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Clinical 0.2289362 0.3147503 0.6258993 1 0.7802956
#> 2 ICU 0.2902655 0.4004739 0.6624473 1 0.8574144
#> 3 Outpatient 0.2 0.3676471 0.6052632 NA 0.8888889
#> ward J01GB03 J01GB01 J01GB06 J01GB04 J01XB01
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Clinical 0.229 0.315 0.626 1 0.780
#> 2 ICU 0.290 0.400 0.662 1 0.857
#> 3 Outpatient 0.2 0.368 0.605 NA 0.889
```
## What else can you do with this package?

View File

@@ -4,20 +4,23 @@
\alias{age_groups}
\title{Split Ages into Age Groups}
\usage{
age_groups(x, split_at = c(12, 25, 55, 75), na.rm = FALSE)
age_groups(x, split_at = c(0, 12, 25, 55, 75), names = NULL,
na.rm = FALSE)
}
\arguments{
\item{x}{Age, e.g. calculated with \code{\link[=age]{age()}}.}
\item{split_at}{Values to split \code{x} at - the default is age groups 0-11, 12-24, 25-54, 55-74 and 75+. See \emph{Details}.}
\item{names}{Optional names to be given to the various age groups.}
\item{na.rm}{A \link{logical} to indicate whether missing values should be removed.}
}
\value{
Ordered \link{factor}
}
\description{
Split ages into age groups defined by the \code{split} argument. This allows for easier demographic (antimicrobial resistance) analysis.
Split ages into age groups defined by the \code{split} argument. This allows for easier demographic (antimicrobial resistance) analysis. The function returns an ordered \link{factor}.
}
\details{
To split ages, the input for the \code{split_at} argument can be:
@@ -41,6 +44,7 @@ age_groups(ages, 50)
# split into 0-19, 20-49 and 50+
age_groups(ages, c(20, 50))
age_groups(ages, c(20, 50), names = c("Under 20 years", "20 to 50 years", "Over 50 years"))
# split into groups of ten years
age_groups(ages, 1:10 * 10)

View File

@@ -56,6 +56,7 @@ retrieve_wisca_parameters(wisca_model, ...)
\item \code{c(aminoglycosides(), "AMP", "AMC")}
\item \code{c(aminoglycosides(), carbapenems())}
}
\item Column indices using numbers
\item Combination therapy, indicated by using \code{"+"}, with or without \link[=antimicrobial_selectors]{antimicrobial selectors}, e.g.:
\itemize{
\item \code{"cipro + genta"}

View File

@@ -181,7 +181,7 @@ The \code{\link[=not_intrinsic_resistant]{not_intrinsic_resistant()}} function c
\item \code{\link[=aminoglycosides]{aminoglycosides()}} can select: \cr amikacin (AMK), amikacin/fosfomycin (AKF), apramycin (APR), arbekacin (ARB), astromicin (AST), bekanamycin (BEK), dibekacin (DKB), framycetin (FRM), gentamicin (GEN), gentamicin-high (GEH), habekacin (HAB), hygromycin (HYG), isepamicin (ISE), kanamycin (KAN), kanamycin-high (KAH), kanamycin/cephalexin (KAC), micronomicin (MCR), neomycin (NEO), netilmicin (NET), pentisomicin (PIM), plazomicin (PLZ), propikacin (PKA), ribostamycin (RST), sisomicin (SIS), streptoduocin (STR), streptomycin (STR1), streptomycin-high (STH), tobramycin (TOB), and tobramycin-high (TOH)
\item \code{\link[=aminopenicillins]{aminopenicillins()}} can select: \cr amoxicillin (AMX) and ampicillin (AMP)
\item \code{\link[=antifungals]{antifungals()}} can select: \cr amorolfine (AMO), amphotericin B (AMB), amphotericin B-high (AMH), anidulafungin (ANI), butoconazole (BUT), caspofungin (CAS), ciclopirox (CIX), clotrimazole (CTR), econazole (ECO), fluconazole (FLU), flucytosine (FCT), fosfluconazole (FFL), griseofulvin (GRI), hachimycin (HCH), ibrexafungerp (IBX), isavuconazole (ISV), isoconazole (ISO), itraconazole (ITR), ketoconazole (KET), manogepix (MGX), micafungin (MIF), miconazole (MCZ), nystatin (NYS), oteseconazole (OTE), pimaricin (PMR), posaconazole (POS), rezafungin (RZF), ribociclib (RBC), sulconazole (SUC), terbinafine (TRB), terconazole (TRC), and voriconazole (VOR)
\item \code{\link[=antimycobacterials]{antimycobacterials()}} can select: \cr 4-aminosalicylic acid (AMA), calcium aminosalicylate (CLA), capreomycin (CAP), clofazimine (CLF), delamanid (DLM), enviomycin (ENV), ethambutol (ETH), ethambutol/isoniazid (ETI), ethionamide (ETI1), isoniazid (INH), isoniazid/sulfamethoxazole/trimethoprim/pyridoxine (IST), morinamide (MRN), p-aminosalicylic acid (PAS), pretomanid (PMD), protionamide (PTH), pyrazinamide (PZA), rifabutin (RIB), rifampicin (RIF), rifampicin/ethambutol/isoniazid (REI), rifampicin/isoniazid (RFI), rifampicin/pyrazinamide/ethambutol/isoniazid (RPEI), rifampicin/pyrazinamide/isoniazid (RPI), rifamycin (RFM), rifapentine (RFP), simvastatin/fenofibrate (SMF), sodium aminosalicylate (SDA), streptomycin/isoniazid (STI), terizidone (TRZ), thioacetazone (TAT), thioacetazone/isoniazid (THI1), tiocarlide (TCR), and viomycin (VIO)
\item \code{\link[=antimycobacterials]{antimycobacterials()}} can select: \cr 4-aminosalicylic acid (AMA), calcium aminosalicylate (CLA), capreomycin (CAP), clofazimine (CLF), delamanid (DLM), enviomycin (ENV), ethambutol (ETH), ethambutol/isoniazid (ETI), ethionamide (ETI1), isoniazid (INH), isoniazid/sulfamethoxazole/trimethoprim/pyridoxine (IST), morinamide (MRN), p-aminosalicylic acid (PAS), pretomanid (PMD), protionamide (PTH), pyrazinamide (PZA), rifabutin (RIB), rifampicin (RIF), rifampicin/ethambutol/isoniazid (REI), rifampicin/isoniazid (RFI), rifampicin/pyrazinamide/ethambutol/isoniazid (RPEI), rifampicin/pyrazinamide/isoniazid (RPI), rifamycin (RFM), rifapentine (RFP), sodium aminosalicylate (SDA), streptomycin/isoniazid (STI), terizidone (TRZ), thioacetazone (TAT), thioacetazone/isoniazid (THI1), tiocarlide (TCR), and viomycin (VIO)
\item \code{\link[=betalactams]{betalactams()}} can select: \cr amoxicillin (AMX), amoxicillin/clavulanic acid (AMC), amoxicillin/sulbactam (AXS), ampicillin (AMP), ampicillin/sulbactam (SAM), apalcillin (APL), aspoxicillin (APX), azidocillin (AZD), azlocillin (AZL), aztreonam (ATM), aztreonam/avibactam (AZA), aztreonam/nacubactam (ANC), bacampicillin (BAM), benzathine benzylpenicillin (BNB), benzathine phenoxymethylpenicillin (BNP), benzylpenicillin (PEN), benzylpenicillin screening test (PEN-S), biapenem (BIA), carbenicillin (CRB), carindacillin (CRN), carumonam (CAR), cefacetrile (CAC), cefaclor (CEC), cefadroxil (CFR), cefalexin (LEX), cefaloridine (RID), cefalotin (CEP), cefamandole (MAN), cefapirin (HAP), cefatrizine (CTZ), cefazedone (CZD), cefazolin (CZO), cefcapene (CCP), cefcapene pivoxil (CCX), cefdinir (CDR), cefditoren (DIT), cefditoren pivoxil (DIX), cefepime (FEP), cefepime/amikacin (CFA), cefepime/clavulanic acid (CPC), cefepime/enmetazobactam (FPE), cefepime/nacubactam (FNC), cefepime/tazobactam (FPT), cefepime/zidebactam (FPZ), cefetamet (CAT), cefetamet pivoxil (CPI), cefetecol (CCL), cefetrizole (CZL), cefiderocol (FDC), cefixime (CFM), cefmenoxime (CMX), cefmetazole (CMZ), cefodizime (DIZ), cefonicid (CID), cefoperazone (CFP), cefoperazone/sulbactam (CSL), ceforanide (CND), cefoselis (CSE), cefotaxime (CTX), cefotaxime screening test (CTX-S), cefotaxime/clavulanic acid (CTC), cefotaxime/sulbactam (CTS), cefotetan (CTT), cefotiam (CTF), cefotiam hexetil (CHE), cefovecin (FOV), cefoxitin (FOX), cefoxitin screening test (FOX-S), cefozopran (ZOP), cefpimizole (CFZ), cefpiramide (CPM), cefpirome (CPO), cefpodoxime (CPD), cefpodoxime proxetil (CPX), cefpodoxime/clavulanic acid (CDC), cefprozil (CPR), cefquinome (CEQ), cefroxadine (CRD), cefsulodin (CFS), cefsumide (CSU), ceftaroline (CPT), ceftaroline/avibactam (CPA), ceftazidime (CAZ), ceftazidime/avibactam (CZA), ceftazidime/clavulanic acid (CCV), cefteram (CEM), cefteram pivoxil (CPL), ceftezole (CTL), ceftibuten (CTB), ceftiofur (TIO), ceftizoxime (CZX), ceftizoxime alapivoxil (CZP), ceftobiprole (BPR), ceftobiprole medocaril (CFM1), ceftolozane/tazobactam (CZT), ceftriaxone (CRO), ceftriaxone/beta-lactamase inhibitor (CEB), cefuroxime (CXM), cefuroxime axetil (CXA), cephradine (CED), ciclacillin (CIC), clometocillin (CLM), cloxacillin (CLO), dicloxacillin (DIC), doripenem (DOR), epicillin (EPC), ertapenem (ETP), flucloxacillin (FLC), hetacillin (HET), imipenem (IPM), imipenem/EDTA (IPE), imipenem/relebactam (IMR), latamoxef (LTM), lenampicillin (LEN), loracarbef (LOR), mecillinam (MEC), meropenem (MEM), meropenem/nacubactam (MNC), meropenem/vaborbactam (MEV), metampicillin (MTM), meticillin (MET), mezlocillin (MEZ), mezlocillin/sulbactam (MSU), nafcillin (NAF), oxacillin (OXA), oxacillin screening test (OXA-S), panipenem (PAN), penamecillin (PNM), penicillin/novobiocin (PNO), penicillin/sulbactam (PSU), pheneticillin (PHE), phenoxymethylpenicillin (PHN), piperacillin (PIP), piperacillin/sulbactam (PIS), piperacillin/tazobactam (TZP), piridicillin (PRC), pivampicillin (PVM), pivmecillinam (PME), procaine benzylpenicillin (PRB), propicillin (PRP), razupenem (RZM), ritipenem (RIT), ritipenem acoxil (RIA), sarmoxicillin (SRX), sulbenicillin (SBC), sultamicillin (SLT6), talampicillin (TAL), tebipenem (TBP), temocillin (TEM), ticarcillin (TIC), ticarcillin/clavulanic acid (TCC), and tigemonam (TMN)
\item \code{\link[=betalactams_with_inhibitor]{betalactams_with_inhibitor()}} can select: \cr amoxicillin/clavulanic acid (AMC), amoxicillin/sulbactam (AXS), ampicillin/sulbactam (SAM), aztreonam/avibactam (AZA), aztreonam/nacubactam (ANC), cefepime/amikacin (CFA), cefepime/clavulanic acid (CPC), cefepime/enmetazobactam (FPE), cefepime/nacubactam (FNC), cefepime/tazobactam (FPT), cefepime/zidebactam (FPZ), cefoperazone/sulbactam (CSL), cefotaxime/clavulanic acid (CTC), cefotaxime/sulbactam (CTS), cefpodoxime/clavulanic acid (CDC), ceftaroline/avibactam (CPA), ceftazidime/avibactam (CZA), ceftazidime/clavulanic acid (CCV), ceftolozane/tazobactam (CZT), ceftriaxone/beta-lactamase inhibitor (CEB), imipenem/relebactam (IMR), meropenem/nacubactam (MNC), meropenem/vaborbactam (MEV), mezlocillin/sulbactam (MSU), penicillin/novobiocin (PNO), penicillin/sulbactam (PSU), piperacillin/sulbactam (PIS), piperacillin/tazobactam (TZP), and ticarcillin/clavulanic acid (TCC)
\item \code{\link[=carbapenems]{carbapenems()}} can select: \cr biapenem (BIA), doripenem (DOR), ertapenem (ETP), imipenem (IPM), imipenem/EDTA (IPE), imipenem/relebactam (IMR), meropenem (MEM), meropenem/nacubactam (MNC), meropenem/vaborbactam (MEV), panipenem (PAN), razupenem (RZM), ritipenem (RIT), ritipenem acoxil (RIA), and tebipenem (TBP)

View File

@@ -5,9 +5,9 @@
\alias{antimicrobials}
\alias{antibiotics}
\alias{antivirals}
\title{Data Sets with 617 Antimicrobial Drugs}
\title{Data Sets with 616 Antimicrobial Drugs}
\format{
\subsection{For the \link{antimicrobials} data set: a \link[tibble:tibble]{tibble} with 497 observations and 14 variables:}{
\subsection{For the \link{antimicrobials} data set: a \link[tibble:tibble]{tibble} with 496 observations and 14 variables:}{
\itemize{
\item \code{ab}\cr antimicrobial ID as used in this package (such as \code{AMC}), using the official EARS-Net (European Antimicrobial Resistance Surveillance Network) codes where available. \emph{\strong{This is a unique identifier.}}
\item \code{cid}\cr Compound ID as found in PubChem. \emph{\strong{This is a unique identifier.}}
@@ -50,7 +50,7 @@ LOINC:
}
}
An object of class \code{deprecated_amr_dataset} (inherits from \code{tbl_df}, \code{tbl}, \code{data.frame}) with 497 rows and 14 columns.
An object of class \code{deprecated_amr_dataset} (inherits from \code{tbl_df}, \code{tbl}, \code{data.frame}) with 496 rows and 14 columns.
An object of class \code{tbl_df} (inherits from \code{tbl}, \code{data.frame}) with 120 rows and 11 columns.
}

View File

@@ -75,7 +75,9 @@ sir_interpretation_history(clean = FALSE)
\arguments{
\item{x}{Vector of values (for class \code{\link{mic}}: MIC values in mg/L, for class \code{\link{disk}}: a disk diffusion radius in millimetres).}
\item{...}{For using on a \link{data.frame}: names of columns to apply \code{\link[=as.sir]{as.sir()}} on (supports tidy selection such as \code{column1:column4}). Otherwise: arguments passed on to methods.}
\item{...}{For using on a \link{data.frame}: selection of columns to apply \code{as.sir()} to. Supports \link[tidyselect:starts_with]{tidyselect language} such as \code{where(is.mic)}, \code{starts_with(...)}, or \code{column1:column4}, and can thus also be \link[=amr_selector]{antimicrobial selectors} such as \code{as.sir(df, penicillins())}.
Otherwise: arguments passed on to methods.}
\item{threshold}{Maximum fraction of invalid antimicrobial interpretations of \code{x}, see \emph{Examples}.}
@@ -247,7 +249,7 @@ To determine which isolates are multi-drug resistant, be sure to run \code{\link
The function \code{\link[=is.sir]{is.sir()}} detects if the input contains class \code{sir}. If the input is a \link{data.frame} or \link{list}, it iterates over all columns/items and returns a \link{logical} vector.
The base R function \code{\link[=as.double]{as.double()}} can be used to retrieve quantitative values from a \code{sir} object: \code{"S"} = 1, \code{"I"}/\code{"SDD"} = 2, \code{"R"} = 3. All other values are rendered \code{NA} . \strong{Note:} Do not use \code{as.integer()}, since that (because of how R works internally) will return the factor level indices, and not these aforementioned quantitative values.
The base R function \code{\link[=as.double]{as.double()}} can be used to retrieve quantitative values from a \code{sir} object: \code{"S"} = 1, \code{"I"}/\code{"SDD"} = 2, \code{"R"} = 3. All other values are rendered \code{NA}. \strong{Note:} Do not use \code{as.integer()}, since that (because of how R works internally) will return the factor level indices, and not these aforementioned quantitative values.
The function \code{\link[=is_sir_eligible]{is_sir_eligible()}} returns \code{TRUE} when a column contains at most 5\% potentially invalid antimicrobial interpretations, and \code{FALSE} otherwise. The threshold of 5\% can be set with the \code{threshold} argument. If the input is a \link{data.frame}, it iterates over all columns and returns a \link{logical} vector.
}
@@ -314,9 +316,12 @@ if (require("dplyr")) {
df_wide \%>\% mutate_if(is.mic, as.sir)
df_wide \%>\% mutate_if(function(x) is.mic(x) | is.disk(x), as.sir)
df_wide \%>\% mutate(across(where(is.mic), as.sir))
df_wide \%>\% mutate_at(vars(amoxicillin:tobra), as.sir)
df_wide \%>\% mutate(across(amoxicillin:tobra, as.sir))
df_wide \%>\% mutate(across(aminopenicillins(), as.sir))
# approaches that all work with additional arguments:
df_long \%>\%
# given a certain data type, e.g. MIC values

View File

@@ -103,7 +103,7 @@ These 35 antimicrobial groups are allowed in the rules (case-insensitive) and ca
\item aminoglycosides\cr(amikacin, amikacin/fosfomycin, apramycin, arbekacin, astromicin, bekanamycin, dibekacin, framycetin, gentamicin, gentamicin-high, habekacin, hygromycin, isepamicin, kanamycin, kanamycin-high, kanamycin/cephalexin, micronomicin, neomycin, netilmicin, pentisomicin, plazomicin, propikacin, ribostamycin, sisomicin, streptoduocin, streptomycin, streptomycin-high, tobramycin, and tobramycin-high)
\item aminopenicillins\cr(amoxicillin and ampicillin)
\item antifungals\cr(amorolfine, amphotericin B, amphotericin B-high, anidulafungin, butoconazole, caspofungin, ciclopirox, clotrimazole, econazole, fluconazole, flucytosine, fosfluconazole, griseofulvin, hachimycin, ibrexafungerp, isavuconazole, isoconazole, itraconazole, ketoconazole, manogepix, micafungin, miconazole, nystatin, oteseconazole, pimaricin, posaconazole, rezafungin, ribociclib, sulconazole, terbinafine, terconazole, and voriconazole)
\item antimycobacterials\cr(4-aminosalicylic acid, calcium aminosalicylate, capreomycin, clofazimine, delamanid, enviomycin, ethambutol, ethambutol/isoniazid, ethionamide, isoniazid, isoniazid/sulfamethoxazole/trimethoprim/pyridoxine, morinamide, p-aminosalicylic acid, pretomanid, protionamide, pyrazinamide, rifabutin, rifampicin, rifampicin/ethambutol/isoniazid, rifampicin/isoniazid, rifampicin/pyrazinamide/ethambutol/isoniazid, rifampicin/pyrazinamide/isoniazid, rifamycin, rifapentine, simvastatin/fenofibrate, sodium aminosalicylate, streptomycin/isoniazid, terizidone, thioacetazone, thioacetazone/isoniazid, tiocarlide, and viomycin)
\item antimycobacterials\cr(4-aminosalicylic acid, calcium aminosalicylate, capreomycin, clofazimine, delamanid, enviomycin, ethambutol, ethambutol/isoniazid, ethionamide, isoniazid, isoniazid/sulfamethoxazole/trimethoprim/pyridoxine, morinamide, p-aminosalicylic acid, pretomanid, protionamide, pyrazinamide, rifabutin, rifampicin, rifampicin/ethambutol/isoniazid, rifampicin/isoniazid, rifampicin/pyrazinamide/ethambutol/isoniazid, rifampicin/pyrazinamide/isoniazid, rifamycin, rifapentine, sodium aminosalicylate, streptomycin/isoniazid, terizidone, thioacetazone, thioacetazone/isoniazid, tiocarlide, and viomycin)
\item betalactams\cr(amoxicillin, amoxicillin/clavulanic acid, amoxicillin/sulbactam, ampicillin, ampicillin/sulbactam, apalcillin, aspoxicillin, azidocillin, azlocillin, aztreonam, aztreonam/avibactam, aztreonam/nacubactam, bacampicillin, benzathine benzylpenicillin, benzathine phenoxymethylpenicillin, benzylpenicillin, benzylpenicillin screening test, biapenem, carbenicillin, carindacillin, carumonam, cefacetrile, cefaclor, cefadroxil, cefalexin, cefaloridine, cefalotin, cefamandole, cefapirin, cefatrizine, cefazedone, cefazolin, cefcapene, cefcapene pivoxil, cefdinir, cefditoren, cefditoren pivoxil, cefepime, cefepime/amikacin, cefepime/clavulanic acid, cefepime/enmetazobactam, cefepime/nacubactam, cefepime/tazobactam, cefepime/zidebactam, cefetamet, cefetamet pivoxil, cefetecol, cefetrizole, cefiderocol, cefixime, cefmenoxime, cefmetazole, cefodizime, cefonicid, cefoperazone, cefoperazone/sulbactam, ceforanide, cefoselis, cefotaxime, cefotaxime screening test, cefotaxime/clavulanic acid, cefotaxime/sulbactam, cefotetan, cefotiam, cefotiam hexetil, cefovecin, cefoxitin, cefoxitin screening test, cefozopran, cefpimizole, cefpiramide, cefpirome, cefpodoxime, cefpodoxime proxetil, cefpodoxime/clavulanic acid, cefprozil, cefquinome, cefroxadine, cefsulodin, cefsumide, ceftaroline, ceftaroline/avibactam, ceftazidime, ceftazidime/avibactam, ceftazidime/clavulanic acid, cefteram, cefteram pivoxil, ceftezole, ceftibuten, ceftiofur, ceftizoxime, ceftizoxime alapivoxil, ceftobiprole, ceftobiprole medocaril, ceftolozane/tazobactam, ceftriaxone, ceftriaxone/beta-lactamase inhibitor, cefuroxime, cefuroxime axetil, cephradine, ciclacillin, clometocillin, cloxacillin, dicloxacillin, doripenem, epicillin, ertapenem, flucloxacillin, hetacillin, imipenem, imipenem/EDTA, imipenem/relebactam, latamoxef, lenampicillin, loracarbef, mecillinam, meropenem, meropenem/nacubactam, meropenem/vaborbactam, metampicillin, meticillin, mezlocillin, mezlocillin/sulbactam, nafcillin, oxacillin, oxacillin screening test, panipenem, penamecillin, penicillin/novobiocin, penicillin/sulbactam, pheneticillin, phenoxymethylpenicillin, piperacillin, piperacillin/sulbactam, piperacillin/tazobactam, piridicillin, pivampicillin, pivmecillinam, procaine benzylpenicillin, propicillin, razupenem, ritipenem, ritipenem acoxil, sarmoxicillin, sulbenicillin, sultamicillin, talampicillin, tebipenem, temocillin, ticarcillin, ticarcillin/clavulanic acid, and tigemonam)
\item betalactams_with_inhibitor\cr(amoxicillin/clavulanic acid, amoxicillin/sulbactam, ampicillin/sulbactam, aztreonam/avibactam, aztreonam/nacubactam, cefepime/amikacin, cefepime/clavulanic acid, cefepime/enmetazobactam, cefepime/nacubactam, cefepime/tazobactam, cefepime/zidebactam, cefoperazone/sulbactam, cefotaxime/clavulanic acid, cefotaxime/sulbactam, cefpodoxime/clavulanic acid, ceftaroline/avibactam, ceftazidime/avibactam, ceftazidime/clavulanic acid, ceftolozane/tazobactam, ceftriaxone/beta-lactamase inhibitor, imipenem/relebactam, meropenem/nacubactam, meropenem/vaborbactam, mezlocillin/sulbactam, penicillin/novobiocin, penicillin/sulbactam, piperacillin/sulbactam, piperacillin/tazobactam, and ticarcillin/clavulanic acid)
\item carbapenems\cr(biapenem, doripenem, ertapenem, imipenem, imipenem/EDTA, imipenem/relebactam, meropenem, meropenem/nacubactam, meropenem/vaborbactam, panipenem, razupenem, ritipenem, ritipenem acoxil, and tebipenem)

View File

@@ -99,7 +99,7 @@ All 35 antimicrobial selectors are supported for use in the rules:
\item \code{\link[=aminoglycosides]{aminoglycosides()}} can select: \cr amikacin, amikacin/fosfomycin, apramycin, arbekacin, astromicin, bekanamycin, dibekacin, framycetin, gentamicin, gentamicin-high, habekacin, hygromycin, isepamicin, kanamycin, kanamycin-high, kanamycin/cephalexin, micronomicin, neomycin, netilmicin, pentisomicin, plazomicin, propikacin, ribostamycin, sisomicin, streptoduocin, streptomycin, streptomycin-high, tobramycin, and tobramycin-high
\item \code{\link[=aminopenicillins]{aminopenicillins()}} can select: \cr amoxicillin and ampicillin
\item \code{\link[=antifungals]{antifungals()}} can select: \cr amorolfine, amphotericin B, amphotericin B-high, anidulafungin, butoconazole, caspofungin, ciclopirox, clotrimazole, econazole, fluconazole, flucytosine, fosfluconazole, griseofulvin, hachimycin, ibrexafungerp, isavuconazole, isoconazole, itraconazole, ketoconazole, manogepix, micafungin, miconazole, nystatin, oteseconazole, pimaricin, posaconazole, rezafungin, ribociclib, sulconazole, terbinafine, terconazole, and voriconazole
\item \code{\link[=antimycobacterials]{antimycobacterials()}} can select: \cr 4-aminosalicylic acid, calcium aminosalicylate, capreomycin, clofazimine, delamanid, enviomycin, ethambutol, ethambutol/isoniazid, ethionamide, isoniazid, isoniazid/sulfamethoxazole/trimethoprim/pyridoxine, morinamide, p-aminosalicylic acid, pretomanid, protionamide, pyrazinamide, rifabutin, rifampicin, rifampicin/ethambutol/isoniazid, rifampicin/isoniazid, rifampicin/pyrazinamide/ethambutol/isoniazid, rifampicin/pyrazinamide/isoniazid, rifamycin, rifapentine, simvastatin/fenofibrate, sodium aminosalicylate, streptomycin/isoniazid, terizidone, thioacetazone, thioacetazone/isoniazid, tiocarlide, and viomycin
\item \code{\link[=antimycobacterials]{antimycobacterials()}} can select: \cr 4-aminosalicylic acid, calcium aminosalicylate, capreomycin, clofazimine, delamanid, enviomycin, ethambutol, ethambutol/isoniazid, ethionamide, isoniazid, isoniazid/sulfamethoxazole/trimethoprim/pyridoxine, morinamide, p-aminosalicylic acid, pretomanid, protionamide, pyrazinamide, rifabutin, rifampicin, rifampicin/ethambutol/isoniazid, rifampicin/isoniazid, rifampicin/pyrazinamide/ethambutol/isoniazid, rifampicin/pyrazinamide/isoniazid, rifamycin, rifapentine, sodium aminosalicylate, streptomycin/isoniazid, terizidone, thioacetazone, thioacetazone/isoniazid, tiocarlide, and viomycin
\item \code{\link[=betalactams]{betalactams()}} can select: \cr amoxicillin, amoxicillin/clavulanic acid, amoxicillin/sulbactam, ampicillin, ampicillin/sulbactam, apalcillin, aspoxicillin, azidocillin, azlocillin, aztreonam, aztreonam/avibactam, aztreonam/nacubactam, bacampicillin, benzathine benzylpenicillin, benzathine phenoxymethylpenicillin, benzylpenicillin, benzylpenicillin screening test, biapenem, carbenicillin, carindacillin, carumonam, cefacetrile, cefaclor, cefadroxil, cefalexin, cefaloridine, cefalotin, cefamandole, cefapirin, cefatrizine, cefazedone, cefazolin, cefcapene, cefcapene pivoxil, cefdinir, cefditoren, cefditoren pivoxil, cefepime, cefepime/amikacin, cefepime/clavulanic acid, cefepime/enmetazobactam, cefepime/nacubactam, cefepime/tazobactam, cefepime/zidebactam, cefetamet, cefetamet pivoxil, cefetecol, cefetrizole, cefiderocol, cefixime, cefmenoxime, cefmetazole, cefodizime, cefonicid, cefoperazone, cefoperazone/sulbactam, ceforanide, cefoselis, cefotaxime, cefotaxime screening test, cefotaxime/clavulanic acid, cefotaxime/sulbactam, cefotetan, cefotiam, cefotiam hexetil, cefovecin, cefoxitin, cefoxitin screening test, cefozopran, cefpimizole, cefpiramide, cefpirome, cefpodoxime, cefpodoxime proxetil, cefpodoxime/clavulanic acid, cefprozil, cefquinome, cefroxadine, cefsulodin, cefsumide, ceftaroline, ceftaroline/avibactam, ceftazidime, ceftazidime/avibactam, ceftazidime/clavulanic acid, cefteram, cefteram pivoxil, ceftezole, ceftibuten, ceftiofur, ceftizoxime, ceftizoxime alapivoxil, ceftobiprole, ceftobiprole medocaril, ceftolozane/tazobactam, ceftriaxone, ceftriaxone/beta-lactamase inhibitor, cefuroxime, cefuroxime axetil, cephradine, ciclacillin, clometocillin, cloxacillin, dicloxacillin, doripenem, epicillin, ertapenem, flucloxacillin, hetacillin, imipenem, imipenem/EDTA, imipenem/relebactam, latamoxef, lenampicillin, loracarbef, mecillinam, meropenem, meropenem/nacubactam, meropenem/vaborbactam, metampicillin, meticillin, mezlocillin, mezlocillin/sulbactam, nafcillin, oxacillin, oxacillin screening test, panipenem, penamecillin, penicillin/novobiocin, penicillin/sulbactam, pheneticillin, phenoxymethylpenicillin, piperacillin, piperacillin/sulbactam, piperacillin/tazobactam, piridicillin, pivampicillin, pivmecillinam, procaine benzylpenicillin, propicillin, razupenem, ritipenem, ritipenem acoxil, sarmoxicillin, sulbenicillin, sultamicillin, talampicillin, tebipenem, temocillin, ticarcillin, ticarcillin/clavulanic acid, and tigemonam
\item \code{\link[=betalactams_with_inhibitor]{betalactams_with_inhibitor()}} can select: \cr amoxicillin/clavulanic acid, amoxicillin/sulbactam, ampicillin/sulbactam, aztreonam/avibactam, aztreonam/nacubactam, cefepime/amikacin, cefepime/clavulanic acid, cefepime/enmetazobactam, cefepime/nacubactam, cefepime/tazobactam, cefepime/zidebactam, cefoperazone/sulbactam, cefotaxime/clavulanic acid, cefotaxime/sulbactam, cefpodoxime/clavulanic acid, ceftaroline/avibactam, ceftazidime/avibactam, ceftazidime/clavulanic acid, ceftolozane/tazobactam, ceftriaxone/beta-lactamase inhibitor, imipenem/relebactam, meropenem/nacubactam, meropenem/vaborbactam, mezlocillin/sulbactam, penicillin/novobiocin, penicillin/sulbactam, piperacillin/sulbactam, piperacillin/tazobactam, and ticarcillin/clavulanic acid
\item \code{\link[=carbapenems]{carbapenems()}} can select: \cr biapenem, doripenem, ertapenem, imipenem, imipenem/EDTA, imipenem/relebactam, meropenem, meropenem/nacubactam, meropenem/vaborbactam, panipenem, razupenem, ritipenem, ritipenem acoxil, and tebipenem

View File

@@ -108,26 +108,30 @@ All mentioned methods are covered in the \code{\link[=first_isolate]{first_isola
- Any difference in key antimicrobial results \tab - \code{first_isolate(x, type = "keyantimicrobials")} \cr
}
}
\subsection{Isolate-based}{
\strong{Isolate-based}
\emph{Minimum variables required: Microorganism identifier}
This method does not require any selection, as all isolates should be included. It does, however, respect all arguments set in the \code{\link[=first_isolate]{first_isolate()}} function. For example, the default setting for \code{include_unknown} (\code{FALSE}) will omit selection of rows without a microbial ID.
}
\subsection{Patient-based}{
\strong{Patient-based}
To include every genus-species combination per patient once, set the \code{episode_days} to \code{Inf}. This method makes sure that no duplicate isolates are selected from the same patient. This method is preferred to e.g. identify the first MRSA finding of each patient to determine the incidence. Conversely, in a large longitudinal data set, this could mean that isolates are \emph{excluded} that were found years after the initial isolate.
}
\emph{Minimum variables required: Microorganism identifier, Patient identifier}
\subsection{Episode-based}{
This method includes every genus-species combination per patient once. This method makes sure that no duplicate isolates are selected from the same patient. This method is preferred to e.g. identify the first MRSA finding of each patient to determine the incidence. Conversely, in a large longitudinal data set, this could mean that isolates are \emph{excluded} that were found years after the initial isolate.
To include every genus-species combination per patient episode once, set the \code{episode_days} to a sensible number of days. Depending on the type of analysis, this could be 14, 30, 60 or 365. Short episodes are common for analysing specific hospital or ward data or ICU cases, long episodes are common for analysing regional and national data.
\strong{Episode-based}
\emph{Minimum variables required: Microorganism identifier, Patient identifier, Date}
To include every genus-species combination per patient episode once, set the \code{episode_days} to a sensible number of days. Depending on the type of analysis, this could be e.g., 14, 30, 60 or 365. Short episodes are common for analysing specific hospital or ward data or ICU cases, long episodes are common for analysing regional and national data.
This is the most common method to correct for duplicate isolates. Patients are categorised into episodes based on their ID and dates (e.g., the date of specimen receipt or laboratory result). While this is a common method, it does not take into account antimicrobial test results. This means that e.g. a methicillin-resistant \emph{Staphylococcus aureus} (MRSA) isolate cannot be differentiated from a wildtype \emph{Staphylococcus aureus} isolate.
}
\subsection{Phenotype-based}{
\strong{Phenotype-based}
\emph{Minimum variables required: Microorganism identifier, Patient identifier, Date, Antimicrobial test results}
This is a more reliable method, since it also \emph{weighs} the antibiogram (antimicrobial test results) yielding so-called 'first weighted isolates'. There are two different methods to weigh the antibiogram:
\enumerate{

View File

@@ -9,10 +9,10 @@ ggplot_sir(data, position = NULL, x = "antibiotic",
fill = "interpretation", facet = NULL, breaks = seq(0, 1, 0.1),
limits = NULL, translate_ab = "name", combine_SI = TRUE,
minimum = 30, language = get_AMR_locale(), nrow = NULL, colours = c(S
= "#3CAEA3", SI = "#3CAEA3", I = "#F6D55C", IR = "#ED553B", R = "#ED553B"),
datalabels = TRUE, datalabels.size = 2.5, datalabels.colour = "grey15",
title = NULL, subtitle = NULL, caption = NULL,
x.title = "Antimicrobial", y.title = "Proportion", ...)
= "#3CAEA3", SDD = "#8FD6C4", SI = "#3CAEA3", I = "#F6D55C", IR = "#ED553B",
R = "#ED553B"), datalabels = TRUE, datalabels.size = 2.5,
datalabels.colour = "grey15", title = NULL, subtitle = NULL,
caption = NULL, x.title = "Antimicrobial", y.title = "Proportion", ...)
geom_sir(position = NULL, x = c("antibiotic", "interpretation"),
fill = "interpretation", translate_ab = "name", minimum = 30,

View File

@@ -57,7 +57,7 @@ eucast_exceptional_phenotypes(x = NULL, only_sir_columns = any(is.sir(x)),
\item{combine_SI}{A \link{logical} to indicate whether all values of S and I must be merged into one, so resistance is only considered when isolates are R, not I. As this is the default behaviour of the \code{\link[=mdro]{mdro()}} function, it follows the redefinition by EUCAST about the interpretation of I (increased exposure) in 2019, see section 'Interpretation of S, I and R' below. When using \code{combine_SI = FALSE}, resistance is considered when isolates are R or I.}
\item{verbose}{A \link{logical} to turn Verbose mode on and off (default is off). In Verbose mode, the function does not return the MDRO results, but instead returns a data set in logbook form with extensive info about which isolates would be MDRO-positive, or why they are not.}
\item{verbose}{A \link{logical} to turn Verbose mode on and off (default is off). In Verbose mode, the function returns a data set with the MDRO results in logbook form with extensive info about which isolates would be MDRO-positive, or why they are not.}
\item{only_sir_columns}{A \link{logical} to indicate whether only antimicrobial columns must be included that were transformed to class \link[=as.sir]{sir} on beforehand. Defaults to \code{FALSE} if no columns of \code{x} have a class \link[=as.sir]{sir}.}

View File

@@ -18,7 +18,7 @@ amr_distance_from_row(amr_distance, row)
\arguments{
\item{x}{A vector of class \link[=as.sir]{sir}, \link[=as.mic]{mic} or \link[=as.disk]{disk}, or a \link{data.frame} containing columns of any of these classes.}
\item{...}{Variables to select. Supports \link[tidyselect:language]{tidyselect language} (such as \code{column1:column4} and \code{where(is.mic)}), and can thus also be \link[=amr_selector]{antimicrobial selectors}.}
\item{...}{Variables to select. Supports \link[tidyselect:starts_with]{tidyselect language} such as \code{where(is.mic)}, \code{starts_with(...)}, or \code{column1:column4}, and can thus also be \link[=amr_selector]{antimicrobial selectors}.}
\item{combine_SI}{A \link{logical} to indicate whether all values of S, SDD, and I must be merged into one, so the input only consists of S+I vs. R (susceptible vs. resistant) - the default is \code{TRUE}.}

View File

@@ -18,7 +18,7 @@ A \link[tibble:tibble]{tibble} with 78 679 observations and 26 variables:
\item \code{lpsn}\cr Identifier ('Record number') of List of Prokaryotic names with Standing in Nomenclature (LPSN). This will be the first/highest LPSN identifier to keep one identifier per row. For example, \emph{Acetobacter ascendens} has LPSN Record number 7864 and 11011. Only the first is available in the \code{microorganisms} data set. \emph{\strong{This is a unique identifier}}, though available for only ~33 000 records.
\item \code{lpsn_parent}\cr LPSN identifier of the parent taxon
\item \code{lpsn_renamed_to}\cr LPSN identifier of the currently valid taxon
\item \code{mycobank}\cr Identifier ('MycoBank #') of MycoBank. \emph{\strong{This is a unique identifier}}, though available for only ~18 000 records.
\item \code{mycobank}\cr Identifier ('MycoBank #') of MycoBank. \emph{\strong{This is a unique identifier}}, though available for only ~19 000 records.
\item \code{mycobank_parent}\cr MycoBank identifier of the parent taxon
\item \code{mycobank_renamed_to}\cr MycoBank identifier of the currently valid taxon
\item \code{gbif}\cr Identifier ('taxonID') of Global Biodiversity Information Facility (GBIF). \emph{\strong{This is a unique identifier}}, though available for only ~49 000 records.
@@ -70,7 +70,7 @@ Included taxonomic data from \href{https://lpsn.dsmz.de}{LPSN}, \href{https://ww
\item ~28 000 species from the kingdom of Fungi. The kingdom of Fungi is a very large taxon with almost 300,000 different (sub)species, of which most are not microbial (but rather macroscopic, like mushrooms). Because of this, not all fungi fit the scope of this package. Only relevant fungi are covered (such as all species of \emph{Aspergillus}, \emph{Candida}, \emph{Cryptococcus}, \emph{Histoplasma}, \emph{Pneumocystis}, \emph{Saccharomyces} and \emph{Trichophyton}).
\item ~8 100 (sub)species from the kingdom of Protozoa
\item ~1 600 (sub)species from 39 other relevant genera from the kingdom of Animalia (such as \emph{Strongyloides} and \emph{Taenia})
\item All ~22 000 previously accepted names of all included (sub)species (these were taxonomically renamed)
\item All ~26 000 previously accepted names of all included (sub)species (these were taxonomically renamed)
\item The complete taxonomic tree of all included (sub)species: from kingdom to subspecies
\item The identifier of the parent taxons
\item The year and first author of the related scientific publication

View File

@@ -33,25 +33,25 @@ scale_colour_mic(keep_operators = "edges", mic_range = NULL, ...)
scale_fill_mic(keep_operators = "edges", mic_range = NULL, ...)
scale_x_sir(colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
language = get_AMR_locale(), eucast_I = getOption("AMR_guideline",
"EUCAST") == "EUCAST", ...)
scale_x_sir(colours_SIR = c(S = "#3CAEA3", SDD = "#8FD6C4", I = "#F6D55C", R
= "#ED553B"), language = get_AMR_locale(),
eucast_I = getOption("AMR_guideline", "EUCAST") == "EUCAST", ...)
scale_colour_sir(colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
language = get_AMR_locale(), eucast_I = getOption("AMR_guideline",
"EUCAST") == "EUCAST", ...)
scale_colour_sir(colours_SIR = c(S = "#3CAEA3", SDD = "#8FD6C4", I =
"#F6D55C", R = "#ED553B"), language = get_AMR_locale(),
eucast_I = getOption("AMR_guideline", "EUCAST") == "EUCAST", ...)
scale_fill_sir(colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
language = get_AMR_locale(), eucast_I = getOption("AMR_guideline",
"EUCAST") == "EUCAST", ...)
scale_fill_sir(colours_SIR = c(S = "#3CAEA3", SDD = "#8FD6C4", I = "#F6D55C",
R = "#ED553B"), language = get_AMR_locale(),
eucast_I = getOption("AMR_guideline", "EUCAST") == "EUCAST", ...)
\method{plot}{mic}(x, mo = NULL, ab = NULL,
guideline = getOption("AMR_guideline", "EUCAST"),
main = deparse(substitute(x)), ylab = translate_AMR("Frequency", language
= language),
xlab = translate_AMR("Minimum Inhibitory Concentration (mg/L)", language =
language), colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
language = get_AMR_locale(), expand = TRUE,
language), colours_SIR = c(S = "#3CAEA3", SDD = "#8FD6C4", I = "#F6D55C", R
= "#ED553B"), language = get_AMR_locale(), expand = TRUE,
include_PKPD = getOption("AMR_include_PKPD", TRUE),
breakpoint_type = getOption("AMR_breakpoint_type", "human"), ...)
@@ -60,8 +60,8 @@ scale_fill_sir(colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
title = deparse(substitute(object)), ylab = translate_AMR("Frequency",
language = language),
xlab = translate_AMR("Minimum Inhibitory Concentration (mg/L)", language =
language), colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
language = get_AMR_locale(), expand = TRUE,
language), colours_SIR = c(S = "#3CAEA3", SDD = "#8FD6C4", I = "#F6D55C", R
= "#ED553B"), language = get_AMR_locale(), expand = TRUE,
include_PKPD = getOption("AMR_include_PKPD", TRUE),
breakpoint_type = getOption("AMR_breakpoint_type", "human"), ...)
@@ -69,8 +69,8 @@ scale_fill_sir(colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
ylab = translate_AMR("Frequency", language = language),
xlab = translate_AMR("Disk diffusion diameter (mm)", language = language),
mo = NULL, ab = NULL, guideline = getOption("AMR_guideline", "EUCAST"),
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
language = get_AMR_locale(), expand = TRUE,
colours_SIR = c(S = "#3CAEA3", SDD = "#8FD6C4", I = "#F6D55C", R =
"#ED553B"), language = get_AMR_locale(), expand = TRUE,
include_PKPD = getOption("AMR_include_PKPD", TRUE),
breakpoint_type = getOption("AMR_breakpoint_type", "human"), ...)
@@ -78,8 +78,8 @@ scale_fill_sir(colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
title = deparse(substitute(object)), ylab = translate_AMR("Frequency",
language = language), xlab = translate_AMR("Disk diffusion diameter (mm)",
language = language), guideline = getOption("AMR_guideline", "EUCAST"),
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
language = get_AMR_locale(), expand = TRUE,
colours_SIR = c(S = "#3CAEA3", SDD = "#8FD6C4", I = "#F6D55C", R =
"#ED553B"), language = get_AMR_locale(), expand = TRUE,
include_PKPD = getOption("AMR_include_PKPD", TRUE),
breakpoint_type = getOption("AMR_breakpoint_type", "human"), ...)
@@ -90,8 +90,8 @@ scale_fill_sir(colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
\method{autoplot}{sir}(object, title = deparse(substitute(object)),
xlab = translate_AMR("Antimicrobial Interpretation", language = language),
ylab = translate_AMR("Frequency", language = language),
colours_SIR = c("#3CAEA3", "#F6D55C", "#ED553B"),
ylab = translate_AMR("Frequency", language = language), colours_SIR = c(S
= "#3CAEA3", SDD = "#8FD6C4", I = "#F6D55C", R = "#ED553B"),
language = get_AMR_locale(), ...)
facet_sir(facet = c("interpretation", "antibiotic"), nrow = NULL)
@@ -99,8 +99,8 @@ facet_sir(facet = c("interpretation", "antibiotic"), nrow = NULL)
scale_y_percent(breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.1),
limits = c(0, NA))
scale_sir_colours(..., aesthetics, colours_SIR = c("#3CAEA3", "#F6D55C",
"#ED553B"))
scale_sir_colours(..., aesthetics, colours_SIR = c(S = "#3CAEA3", SDD =
"#8FD6C4", I = "#F6D55C", R = "#ED553B"))
theme_sir()
@@ -172,12 +172,20 @@ Especially the \verb{scale_*_mic()} functions are relevant wrappers to plot MIC
\details{
\subsection{The \verb{scale_*_mic()} Functions}{
The functions \code{\link[=scale_x_mic]{scale_x_mic()}}, \code{\link[=scale_y_mic]{scale_y_mic()}}, \code{\link[=scale_colour_mic]{scale_colour_mic()}}, and \code{\link[=scale_fill_mic]{scale_fill_mic()}} functions allow to plot the \link[=as.mic]{mic} class (MIC values) on a continuous, logarithmic scale. They also allow to rescale the MIC range with an 'inside' or 'outside' range if required, and retain the operators in MIC values (such as \code{>=}) if desired. Missing intermediate log2 levels will be plotted too.
The functions \code{\link[=scale_x_mic]{scale_x_mic()}}, \code{\link[=scale_y_mic]{scale_y_mic()}}, \code{\link[=scale_colour_mic]{scale_colour_mic()}}, and \code{\link[=scale_fill_mic]{scale_fill_mic()}} functions allow to plot the \link[=as.mic]{mic} class (MIC values) on a continuous, logarithmic scale.
There is normally no need to add these scale functions to your plot, as they are applied automatically when plotting values of class \link[=as.mic]{mic}.
When manually added though, they allow to rescale the MIC range with an 'inside' or 'outside' range if required, and provide the option to retain the operators in MIC values (such as \code{>=}). Missing intermediate log2 levels will always be plotted too.
}
\subsection{The \verb{scale_*_sir()} Functions}{
The functions \code{\link[=scale_x_sir]{scale_x_sir()}}, \code{\link[=scale_colour_sir]{scale_colour_sir()}}, and \code{\link[=scale_fill_sir]{scale_fill_sir()}} functions allow to plot the \link[=as.sir]{sir} class in the right order (S < SDD < I < R < NI). At default, they translate the S/I/R values to an interpretative text ("Susceptible", "Resistant", etc.) in any of the 28 supported languages (use \code{language = NULL} to keep S/I/R). Also, except for \code{\link[=scale_x_sir]{scale_x_sir()}}, they set colour-blind friendly colours to the \code{colour} and \code{fill} aesthetics.
The functions \code{\link[=scale_x_sir]{scale_x_sir()}}, \code{\link[=scale_colour_sir]{scale_colour_sir()}}, and \code{\link[=scale_fill_sir]{scale_fill_sir()}} functions allow to plot the \link[=as.sir]{sir} class in the right order (S < SDD < I < R < NI).
There is normally no need to add these scale functions to your plot, as they are applied automatically when plotting values of class \link[=as.sir]{sir}.
At default, they translate the S/I/R values to an interpretative text ("Susceptible", "Resistant", etc.) in any of the 28 supported languages (use \code{language = NULL} to keep S/I/R). Also, except for \code{\link[=scale_x_sir]{scale_x_sir()}}, they set colour-blind friendly colours to the \code{colour} and \code{fill} aesthetics.
}
\subsection{Additional \code{ggplot2} Functions}{
@@ -210,6 +218,10 @@ if (require("ggplot2")) {
# when providing the microorganism and antibiotic, colours will show interpretations:
autoplot(some_mic_values, mo = "Escherichia coli", ab = "cipro")
}
if (require("ggplot2")) {
autoplot(some_mic_values, mo = "Staph aureus", ab = "Ceftaroline", guideline = "CLSI")
}
if (require("ggplot2")) {
# support for 27 languages, various guidelines, and many options
autoplot(some_disk_values,
@@ -231,17 +243,12 @@ if (require("ggplot2")) {
) +
geom_col()
mic_plot +
labs(title = "without scale_x_mic()")
labs(title = "scale_x_mic() automatically applied")
}
if (require("ggplot2")) {
mic_plot +
scale_x_mic() +
labs(title = "with scale_x_mic()")
}
if (require("ggplot2")) {
mic_plot +
scale_x_mic(keep_operators = "all") +
labs(title = "with scale_x_mic() keeping all operators")
scale_x_mic(keep_operators = "none") +
labs(title = "with scale_x_mic() keeping no operators")
}
if (require("ggplot2")) {
mic_plot +
@@ -267,8 +274,8 @@ if (require("ggplot2")) {
aes(group, mic)
) +
geom_boxplot() +
geom_violin(linetype = 2, colour = "grey", fill = NA) +
scale_y_mic()
geom_violin(linetype = 2, colour = "grey30", fill = NA) +
labs(title = "scale_y_mic() automatically applied")
}
if (require("ggplot2")) {
ggplot(
@@ -279,7 +286,7 @@ if (require("ggplot2")) {
aes(group, mic)
) +
geom_boxplot() +
geom_violin(linetype = 2, colour = "grey", fill = NA) +
geom_violin(linetype = 2, colour = "grey30", fill = NA) +
scale_y_mic(mic_range = c(NA, 0.25))
}
@@ -300,7 +307,7 @@ if (require("ggplot2")) {
# Plotting using scale_y_mic() and scale_colour_sir() ------------------
if (require("ggplot2")) {
plain <- ggplot(
mic_sir_plot <- ggplot(
data.frame(
mic = some_mic_values,
group = some_groups,
@@ -312,23 +319,18 @@ if (require("ggplot2")) {
aes(x = group, y = mic, colour = sir)
) +
theme_minimal() +
geom_boxplot(fill = NA, colour = "grey") +
geom_boxplot(fill = NA, colour = "grey30") +
geom_jitter(width = 0.25)
plain
labs(title = "scale_y_mic()/scale_colour_sir() automatically applied")
mic_sir_plot
}
if (require("ggplot2")) {
# and now with our MIC and SIR scale functions:
plain +
scale_y_mic() +
scale_colour_sir()
}
if (require("ggplot2")) {
plain +
mic_sir_plot +
scale_y_mic(mic_range = c(0.005, 32), name = "Our MICs!") +
scale_colour_sir(
language = "pt",
name = "Support in 27 languages"
language = "pt", # Portuguese
name = "Support in 28 languages"
)
}
}

View File

@@ -7,19 +7,25 @@
\alias{random_sir}
\title{Random MIC Values/Disk Zones/SIR Generation}
\usage{
random_mic(size = NULL, mo = NULL, ab = NULL, ...)
random_mic(size = NULL, mo = NULL, ab = NULL, skew = "right",
severity = 1, ...)
random_disk(size = NULL, mo = NULL, ab = NULL, ...)
random_disk(size = NULL, mo = NULL, ab = NULL, skew = "left",
severity = 1, ...)
random_sir(size = NULL, prob_SIR = c(0.33, 0.33, 0.33), ...)
}
\arguments{
\item{size}{Desired size of the returned vector. If used in a \link{data.frame} call or \code{dplyr} verb, will get the current (group) size if left blank.}
\item{mo}{Any \link{character} that can be coerced to a valid microorganism code with \code{\link[=as.mo]{as.mo()}}.}
\item{mo}{Any \link{character} that can be coerced to a valid microorganism code with \code{\link[=as.mo]{as.mo()}}. Can be the same length as \code{size}.}
\item{ab}{Any \link{character} that can be coerced to a valid antimicrobial drug code with \code{\link[=as.ab]{as.ab()}}.}
\item{skew}{Direction of skew for MIC or disk values, either \code{"right"} or \code{"left"}. A left-skewed distribution has the majority of the data on the right.}
\item{severity}{Skew severity; higher values will increase the skewedness. Default is \code{2}; use \code{0} to prevent skewedness.}
\item{...}{Ignored, only in place to allow future extensions.}
\item{prob_SIR}{A vector of length 3: the probabilities for "S" (1st value), "I" (2nd value) and "R" (3rd value).}
@@ -31,17 +37,25 @@ class \code{mic} for \code{\link[=random_mic]{random_mic()}} (see \code{\link[=a
These functions can be used for generating random MIC values and disk diffusion diameters, for AMR data analysis practice. By providing a microorganism and antimicrobial drug, the generated results will reflect reality as much as possible.
}
\details{
The base \R function \code{\link[=sample]{sample()}} is used for generating values.
Generated values are based on the EUCAST 2025 guideline as implemented in the \link{clinical_breakpoints} data set. To create specific generated values per bug or drug, set the \code{mo} and/or \code{ab} argument.
Internally, MIC and disk zone values are sampled based on clinical breakpoints defined in the \link{clinical_breakpoints} data set. To create specific generated values per bug or drug, set the \code{mo} and/or \code{ab} argument. The MICs are sampled on a log2 scale and disks linearly, using weighted probabilities. The weights are based on the \code{skew} and \code{severity} arguments:
\itemize{
\item \code{skew = "right"} places more emphasis on lower MIC or higher disk values.
\item \code{skew = "left"} places more emphasis on higher MIC or lower disk values.
\item \code{severity} controls the exponential bias applied.
}
}
\examples{
random_mic(25)
random_disk(25)
random_sir(25)
# add more skewedness, make more realistic by setting a bug and/or drug:
disks <- random_disk(100, severity = 2, mo = "Escherichia coli", ab = "CIP")
plot(disks)
# `plot()` and `ggplot2::autoplot()` allow for coloured bars if `mo` and `ab` are set
plot(disks, mo = "Escherichia coli", ab = "CIP", guideline = "CLSI 2025")
\donttest{
# make the random generation more realistic by setting a bug and/or drug:
random_mic(25, "Klebsiella pneumoniae") # range 0.0625-64
random_mic(25, "Klebsiella pneumoniae", "meropenem") # range 0.0625-16
random_mic(25, "Streptococcus pneumoniae", "meropenem") # range 0.0625-4

3907
pkgdown/assets/logo_umcg.svg Normal file → Executable file

File diff suppressed because it is too large Load Diff

Before

Width:  |  Height:  |  Size: 343 KiB

After

Width:  |  Height:  |  Size: 3.6 KiB

View File

@@ -41,7 +41,7 @@
--bs-success: var(--amr-green-dark) !important;
--bs-light: var(--amr-green-light) !important;
/* --bs-light was this: #128f76a6; that's success with 60% alpha */
/* --bs-light was this: #128f76a6; that's bs-success with 60% alpha */
--bs-info: var(--amr-green-middle) !important;
--bs-link-color: var(--amr-green-dark) !important;
--bs-link-color-rgb: var(--amr-green-dark-rgb) !important;
@@ -104,6 +104,16 @@ body.amr-for-python * {
.navbar .algolia-autocomplete .aa-dropdown-menu {
background-color: var(--amr-green-dark) !important;
}
.version-main {
font-weight: bold;
color: var(--bs-navbar-brand-color);
}
.version-build {
font-weight: normal;
opacity: 0.75;
font-size: 0.85em;
}
input[type="search"] {
color: var(--bs-tertiary-bg) !important;
background-color: var(--amr-green-light) !important;
@@ -149,6 +159,7 @@ this shows on top of every sidebar to the right
margin-top: 10px;
border: 2px dashed var(--amr-green-dark);
text-align: center;
background: var(--bs-body-bg);
}
.amr-gpt-assistant * {
width: 90%;
@@ -179,6 +190,15 @@ this shows on top of every sidebar to the right
}
}
.template-reference-topic h3,
.template-reference-topic h3 code {
color: var(--amr-green-dark) !important;
}
.template-reference-topic h3 {
font-weight: normal;
margin-top: 2rem;
}
/* replace 'Developers' with 'Maintainers' */
.developers h2 {
display: none;

View File

@@ -29,10 +29,22 @@
# ==================================================================== #
*/
$(document).ready(function() {
$(function () {
// add GPT assistant info
$('aside').prepend('<div class="amr-gpt-assistant"><a target="_blank" href="https://chat.amr-for-r.org"><img src="https://amr-for-r.org/AMRforRGPT.svg"></a></div>');
// split version number in navbar into main version and build number
$('.nav-text').each(function () {
const $el = $(this);
const text = $.trim($el.text());
const lastDotIndex = text.lastIndexOf('.');
if (lastDotIndex > -1) {
const main = text.substring(0, lastDotIndex);
const build = text.substring(lastDotIndex);
$el.html(`<span class="version-main">${main}</span><span class="version-build">${build}</span>`);
}
});
// replace 'Developers' with 'Maintainers' on the main page, and "Contributors" on the Authors page
$(".developers h2").text("Maintainers");
$(".template-citation-authors h1:nth(0)").text("Contributors and Citation");

View File

@@ -70,14 +70,14 @@ test_that("test-misc.R", {
}
df <- example_isolates[, check_df("x")]
expect_true(is_right, info = "the environmental data cannot be found for base/x (1)")
expect_true(is_right, info = "the environmental data cannot be found for base `x`")
if (getRversion() < "4.0.0") {
# should work on R >=3.6.3 or so
df <- example_isolates[c(1:3), check_df("x")]
if (!is_right) {
# otherwise, this is needed for older versions
df <- example_isolates[c(1:3), check_df("xx")]
expect_true(is_right, info = "the environmental data cannot be found for base/xx")
} else {
df <- example_isolates[c(1:3), check_df("x")]
expect_true(is_right, info = "the environmental data cannot be found for base/x (2)")
expect_true(is_right, info = "the environmental data cannot be found for base `x` or `xx`")
}
if (AMR:::pkg_is_available("dplyr", min_version = "1.0.0", also_load = TRUE)) {

View File

@@ -96,6 +96,14 @@ test_that("test-ab.R", {
rep("GEH", 8)
)
# skimr
if (AMR:::pkg_is_available("skimr", min_version = "2.0.0", also_load = TRUE)) {
expect_named(
skim(clinical_breakpoints$ab),
c("skim_type", "skim_variable", "n_missing", "complete_rate", "ab.n_unique", "ab.top_ab", "ab.top_ab_name", "ab.top_group")
)
}
# assigning and subsetting
x <- AMR::antimicrobials$ab
expect_inherits(x[1], "ab")

View File

@@ -60,4 +60,12 @@ test_that("test-disk.R", {
if (AMR:::pkg_is_available("tibble")) {
expect_output(print(tibble::tibble(d = as.disk(12))))
}
# skimr
if (AMR:::pkg_is_available("skimr", min_version = "2.0.0", also_load = TRUE)) {
expect_named(
skim(random_disk(100)),
c("skim_type", "skim_variable", "n_missing", "complete_rate", "disk.p0", "disk.p25", "disk.p50", "disk.p75", "disk.p100", "disk.hist")
)
}
})

View File

@@ -81,6 +81,14 @@ test_that("test-mic.R", {
expect_output(print(tibble::tibble(m = as.mic(2:4))))
}
# skimr
if (AMR:::pkg_is_available("skimr", min_version = "2.0.0", also_load = TRUE)) {
expect_named(
skim(random_mic(100)),
c("skim_type", "skim_variable", "n_missing", "complete_rate", "mic.p0", "mic.p25", "mic.p50", "mic.p75", "mic.p100", "mic.hist")
)
}
# all mathematical operations
x <- random_mic(50)
x_double <- as.double(gsub("[<=>]+", "", as.character(x)))

View File

@@ -321,4 +321,12 @@ test_that("test-mo.R", {
if (AMR:::pkg_is_available("cleaner")) {
expect_inherits(cleaner::freq(example_isolates$mo), "freq")
}
# skimr
if (AMR:::pkg_is_available("skimr", min_version = "2.0.0", also_load = TRUE)) {
expect_named(
skim(example_isolates$mo),
c("skim_type", "skim_variable", "n_missing", "complete_rate", "mo.n_unique", "mo.gram_negative", "mo.gram_positive", "mo.yeast", "mo.top_genus", "mo.top_species")
)
}
})

Some files were not shown because too many files have changed in this diff Show More