asd
This commit is contained in:
parent
b7b74a5bb8
commit
10e80be68f
@ -184,7 +184,7 @@ University of Groningen\\[0.5cm]
|
||||
|
||||
\onslide<3-> And a corrector field $\vec{w}$ which satisfies:
|
||||
\onslide<4-> \begin{align}
|
||||
\vec{u} & \approx \vec{u}_{meas} + \vec{w} \quad \text{in} \quad \Omega \label{eq:corrector} \\
|
||||
\vec{u} & = \vec{u}_{meas} + \vec{w} \quad \text{in} \quad \Omega \label{eq:corrector} \\
|
||||
\nabla \cdot \vec w & = 0 \quad \text{in} \quad \Omega \label{eq:correctorDiv} \\
|
||||
\vec w & = \vec 0 \quad \text{on} \quad \partial \Omega \label{eq:correctorBC}
|
||||
\end{align}
|
||||
@ -198,7 +198,8 @@ University of Groningen\\[0.5cm]
|
||||
\frametitle{The corrector field: Continuum problem}
|
||||
\footnotesize
|
||||
|
||||
\onslide<1-> Applying the decomposition $\vec{u} \approx \vec{u}_{meas} + \vec{w}$ into the original equation and writing a variational problem for $\vec w$ we have the following: Find $(\vec w(t) ,p(t)) \in H^1_0(\Omega)\times L^2(\Omega)$ such that
|
||||
\onslide<1-> Applying the decomposition $\vec{u} = \vec{u}_{meas} + \vec{w}$ into the original equation and writing a variational problem for $\vec w$ we have the following:\\
|
||||
Find $(\vec w(t) ,p(t)) \in H^1_0(\Omega)\times L^2(\Omega)$ such that
|
||||
\onslide<2-> \begin{equation*}
|
||||
\int_{\Omega} \rho \frac{\partial \vec{w}}{\partial t} \cdot \vec{v} + \rho \big ( ( \vec{u}_{meas} + \vec w) \cdot \nabla \big) \vec{w} \cdot \vec{v} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas} \cdot \vec{v} + \mu \nabla \vec{w} : \nabla \vec{v} - p \nabla \cdot \vec{v} + q \nabla \cdot \vec{w} \notag
|
||||
\end{equation*}
|
||||
@ -256,12 +257,12 @@ $
|
||||
\footnotesize
|
||||
\onslide<1->
|
||||
\begin{theorem}
|
||||
There exists a unique solution of Problem \ref{eq:Corrector_discrete} under condition: $$\rho/\tau + C_\Omega^{-2} \mu/2 - \rho 3 \| \nabla\vec u_{meas}^k\|_\infty > 0$$ for all $k>0$.
|
||||
There exists a unique solution of Problem (\ref{eq:Corrector_discrete}) under the condition: $$\rho/\tau + C_\Omega^{-2} \mu/2 - \rho 3 \| \nabla\vec u_{meas}^k\|_\infty > 0$$ for all $k>0$.
|
||||
\end{theorem}
|
||||
\onslide<2->
|
||||
We can furthermore prove the following energy balance:
|
||||
\onslide<3->
|
||||
\begin{theorem} For $(\vec w^k ,p^k)$ solution of Problem \ref{eq:Corrector_discrete}, with $\ell_j(\vec v,q)=0$ it holds
|
||||
\begin{theorem} For $(\vec w^k ,p^k)$ solution of Problem (\ref{eq:Corrector_discrete}), with $\ell_j(\vec v,q)=0$ it holds
|
||||
\begin{equation*}\label{eq:energy}
|
||||
\| \vec w^k \|^2_{L_2(\Omega)} \leq \| \vec w^{k-1} \|^2_{L_2(\Omega)}
|
||||
\end{equation*}
|
||||
@ -359,7 +360,7 @@ Also perturbations were added into the measurements:
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=0.5\textwidth]{images/perturbation_pres.png}
|
||||
\caption{Different perturbation scenarios}
|
||||
\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ }
|
||||
\end{center}
|
||||
\end{figure}
|
||||
|
||||
@ -557,6 +558,13 @@ Experiments using real 4D flow data
|
||||
|
||||
\section{Conclusions}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Experiments}
|
||||
\begin{center}
|
||||
Conclusions
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Conclusions and future work}
|
||||
|
Loading…
Reference in New Issue
Block a user