new version
This commit is contained in:
parent
197e4dcbdc
commit
b7b74a5bb8
Binary file not shown.
After Width: | Height: | Size: 818 KiB |
Binary file not shown.
After Width: | Height: | Size: 753 KiB |
Binary file not shown.
After Width: | Height: | Size: 200 KiB |
Binary file not shown.
After Width: | Height: | Size: 188 KiB |
Binary file not shown.
After Width: | Height: | Size: 2.8 MiB |
|
@ -1,4 +1,5 @@
|
|||
\documentclass[xcolor=dvipsnames]{beamer}
|
||||
\documentclass[xcolor=dvipsnames,notheorem,mathserifs]{beamer}
|
||||
\usepackage{amsmath}
|
||||
%\documentclass{beamer}
|
||||
\usepackage[english]{babel}
|
||||
%\usepackage[latin1]{inputenc}
|
||||
|
@ -13,11 +14,20 @@
|
|||
%\usepackage{graphicx}
|
||||
%\usepackage{movie15}
|
||||
%\usepackage{media9}[2013/11/04]
|
||||
\usepackage{xcolor}
|
||||
|
||||
|
||||
\usepackage{graphicx}
|
||||
\usepackage{multimedia}
|
||||
\usepackage{media9}
|
||||
\usepackage{listings,xcolor,caption, mathtools, wrapfig}
|
||||
\usepackage{amsfonts}
|
||||
\usepackage{amssymb,graphicx,enumerate}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\usepackage[normalem]{ulem} % for strike out command \sout
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -97,7 +107,7 @@ Faculty of Sciences and Engineering\\
|
|||
University of Groningen\\[0.5cm]
|
||||
%\includegraphics[height=1.5cm]{Imagenes/escudoU2014.pdf}
|
||||
% \includegraphics[height=1cm]{Imagenes/fcfm.png} \\[0.5cm]
|
||||
\texttt{Jeremías Garay Labra \\ \ j.e.garay.labra@rug.nl}
|
||||
\texttt{Jeremías Garay Labra join with Hernan Mella, Julio Sotelo, Sergio Uribe, Cristobal Bertoglio and Joaquin Mura.}
|
||||
}
|
||||
\date{\today}
|
||||
|
||||
|
@ -124,13 +134,12 @@ University of Groningen\\[0.5cm]
|
|||
\column{.55\textwidth} % Left column and width
|
||||
\footnotesize
|
||||
|
||||
4D flow MRI has been shown potential in the assesment of blood flow dynamics in the heart and also large arteries, allowing wide variety of options for visualization and quantification.
|
||||
|
||||
Some advantages respect others techniques:
|
||||
\onslide<1-> 4D flow MRI has been shown potential in the assesment of blood flow dynamics in the heart and also large arteries.\\[0.2cm]
|
||||
\onslide<2-> Some advantages:
|
||||
\begin{itemize}
|
||||
\item Full 3D coverage of the region of interest
|
||||
\item Retrospective plane positioning
|
||||
\item Rich post-proccesing: derived parameters
|
||||
\item<3-> Full 3D coverage of the region of interest
|
||||
\item<4-> Retrospective plane positioning
|
||||
\item<5-> Rich post-proccesing: derived parameters
|
||||
\end{itemize}
|
||||
|
||||
\column{.5\textwidth} % Right column and width
|
||||
|
@ -142,16 +151,22 @@ Some advantages respect others techniques:
|
|||
\begin{frame}
|
||||
\frametitle{4D flow MRI}
|
||||
\footnotesize
|
||||
Main limitation for its clinical applicability is the long scan times involved. Therefore, multiple strategies emerged in order to make acquisition faster, such as:
|
||||
\onslide<1-> Main limitation $\longrightarrow$ long scan times involved.\\
|
||||
\vspace{0.2cm}
|
||||
\onslide<2-> In order to mitigate:
|
||||
\begin{itemize}
|
||||
\item Navigator gating
|
||||
\item modest spatial resolutions $ \sim (2.5 \times 2.5 \times 2.5 \ mm^3)$
|
||||
\item partial data coverage
|
||||
\item<3-> Navigator gating
|
||||
\item<4-> modest spatial resolutions $ \sim (2.5 \times 2.5 \times 2.5 \ mm^3)$
|
||||
\item<5-> partial data coverage
|
||||
\end{itemize}
|
||||
|
||||
Typical quality estimators: SNR, VNR, peak flows/velocities, mass conservation (zero divergence)
|
||||
\vspace{0.5cm}
|
||||
|
||||
We want to introduce a novel measure for quantify the quality of the 4D flow measurements, using the conservation of momentum of the flow (Navier-Stokes compatibility).
|
||||
\onslide<6-> Typical quality estimators: SNR, VNR, peak flows/velocities, mass conservation (zero divergence)
|
||||
|
||||
\vspace{0.5cm}
|
||||
|
||||
\onslide<7-> This work $\longrightarrow$ conservation of linear momentum (Navier-Stokes compatibility).
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
@ -162,19 +177,19 @@ We want to introduce a novel measure for quantify the quality of the 4D flow mea
|
|||
\frametitle{The corrector field}
|
||||
\footnotesize
|
||||
|
||||
We assume a perfect physical velocity field $\vec{u}$
|
||||
\begin{eqnarray*}
|
||||
\onslide<1-> We assume a perfect physical velocity field $\vec{u}$
|
||||
\onslide<2-> \begin{eqnarray*}
|
||||
\rho \frac{\partial \vec{u}}{\partial t} + \rho \big ( \vec{u} \cdot \nabla \big) \vec{u} - \mu \Delta \vec{u} + \nabla p = 0 \quad \text{in} \quad \Omega \label{eq:NSmom}
|
||||
\end{eqnarray*}
|
||||
|
||||
And a corrector field $\vec{w}$ which satisfies:
|
||||
\begin{align}
|
||||
\onslide<3-> And a corrector field $\vec{w}$ which satisfies:
|
||||
\onslide<4-> \begin{align}
|
||||
\vec{u} & \approx \vec{u}_{meas} + \vec{w} \quad \text{in} \quad \Omega \label{eq:corrector} \\
|
||||
\nabla \cdot \vec w & = 0 \quad \text{in} \quad \Omega \label{eq:correctorDiv} \\
|
||||
\vec w & = \vec 0 \quad \text{on} \quad \partial \Omega \label{eq:correctorBC}
|
||||
\end{align}
|
||||
|
||||
The corrector field $\vec{w}$ measures the level of agreedment of the 4D flow measures respect to the Navier-Stokes equations.
|
||||
\onslide<5-> The corrector field $\vec{w}$ measures the level of agreedment of the 4D flow measures respect to the Navier-Stokes equations.
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
@ -183,16 +198,18 @@ The corrector field $\vec{w}$ measures the level of agreedment of the 4D flow me
|
|||
\frametitle{The corrector field: Continuum problem}
|
||||
\footnotesize
|
||||
|
||||
Applying the decomposition $\vec{u} \approx \vec{u}_{meas} + \vec{w}$ into the original equation and writing a variational problem for $\vec w$ we have the following: Find $(\vec w(t) ,p(t)) \in H^1_0(\Omega)\times L^2(\Omega)$ such that
|
||||
\begin{equation*}
|
||||
\onslide<1-> Applying the decomposition $\vec{u} \approx \vec{u}_{meas} + \vec{w}$ into the original equation and writing a variational problem for $\vec w$ we have the following: Find $(\vec w(t) ,p(t)) \in H^1_0(\Omega)\times L^2(\Omega)$ such that
|
||||
\onslide<2-> \begin{equation*}
|
||||
\int_{\Omega} \rho \frac{\partial \vec{w}}{\partial t} \cdot \vec{v} + \rho \big ( ( \vec{u}_{meas} + \vec w) \cdot \nabla \big) \vec{w} \cdot \vec{v} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas} \cdot \vec{v} + \mu \nabla \vec{w} : \nabla \vec{v} - p \nabla \cdot \vec{v} + q \nabla \cdot \vec{w} \notag
|
||||
\end{equation*}
|
||||
\begin{equation*}
|
||||
= - \int_{\Omega} \rho \frac{\partial \vec{u}_{meas}}{\partial t} \cdot \vec{v} + \rho \big ( \vec{u}_{meas} \cdot \nabla \big) \vec{u}_{meas} \cdot \vec{v} + \mu \nabla \vec{u}_{meas} : \nabla \vec{v} + q \nabla \cdot \vec{u}_{meas}
|
||||
\end{equation*}
|
||||
|
||||
or in simple terms:
|
||||
\begin{equation*}
|
||||
\vspace{0.2cm}
|
||||
|
||||
\onslide<3-> or in simple terms:
|
||||
\onslide<4-> \begin{equation*}
|
||||
A(\vec w,p;\vec v ,q ) = \mathcal{L} (\vec v)
|
||||
\end{equation*}
|
||||
|
||||
|
@ -207,27 +224,26 @@ for all $(\vec v,q) \in H^1_0(\Omega) \times L^2(\Omega)$.
|
|||
\frametitle{The corrector field: Discrete problem}
|
||||
\footnotesize
|
||||
|
||||
In the Discrete, we can write the problem as follows:
|
||||
\onslide<1-> In the Discrete, we can write the problem as follows:
|
||||
|
||||
\begin{equation}
|
||||
A_{k}(\vec w,p;\vec v ,q ) + S^{conv}_{k}(\vec w;\vec v) + S^{press}_{k}(\vec w,p;\vec v ,q) = \mathcal{L}_j (\vec v)
|
||||
\onslide<2-> \begin{equation}
|
||||
A_{k}(\vec w,p;\vec v ,q ) + \color{red}{S^{conv}_{k}(\vec w;\vec v)} + \color{blue}{S^{press}_{k}(\vec w,p;\vec v ,q)} \color{black}{ = \mathcal{L}_j (\vec v)}
|
||||
\label{eq:Corrector_discrete}
|
||||
\end{equation}
|
||||
|
||||
With $ S^{conv}_{k}(\vec w;\vec v)$ and $ S^{press}_{k}(\vec w,p;\vec v ,q)$ terms for the stabilization of the convection and pressure respectively.
|
||||
|
||||
|
||||
\begin{itemize}
|
||||
\small
|
||||
\item $
|
||||
\item<3-> $
|
||||
A_{k}(\vec w,p;\vec v ,q ) := \int_{\Omega} \frac{\rho}{\tau} \vec{w} \cdot \vec{v} + \rho \big ( ( \vec{u}_{meas}^k + \vec{w}^{k-1} ) \cdot \nabla \big) \vec{w} \cdot \vec{v} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas}^k \cdot \vec{v} + \mu \nabla \vec{w} : \nabla \vec{v} - p \nabla \cdot \vec{v} + q \nabla \cdot \vec{w}
|
||||
$ \vspace{0.2cm}
|
||||
\item $
|
||||
\item<3-> $ \mathcal{L}_j (\vec v) := \int_{\Omega} \frac{\rho}{\tau} \vec{w}^{k-1} \cdot \vec{v} + \mathcal{\ell}_j (\vec v,q) $
|
||||
\vspace{0.2cm}
|
||||
\item<4-> \color{red}$
|
||||
S^{conv}_{k}(\vec w;\vec v) := \int_{\Omega} \frac{\rho}{2} \ \big( \nabla \cdot (\vec u^k_{meas} + \vec w^{k-1}) \big) \ \vec{w} \cdot \vec{v}
|
||||
$ \vspace{0.2cm}
|
||||
\item $
|
||||
\item<5-> \color{blue}$
|
||||
S^{press}_{k}(\vec w,p;\vec v ,q) := \delta \sum_{K \in \Omega}\int_{K} \frac{h_j^2}{\mu} \bigg ( \rho \big ( (\vec u^k_{meas} + \vec w^{k-1}) \cdot \nabla \big) \vec{w} + \rho \big ( \vec{w} \cdot \nabla \big) \vec{u}_{meas}^k + \nabla p \bigg) \cdot \notag \bigg ( \rho \big ( (\vec u^k_{meas} + \vec w^{k-1}) \cdot \nabla \big) \vec{v} + \rho \big ( \vec{v} \cdot \nabla \big) \vec{u}_{meas}^k + \nabla q \bigg )
|
||||
$ \vspace{0.2cm}
|
||||
\item $ \mathcal{L}_j (\vec v) := \int_{\Omega} \frac{\rho}{\tau} \vec{w}^{k-1} \cdot \vec{v} + \mathcal{\ell}_j (\vec v,q) $
|
||||
$
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
@ -235,6 +251,37 @@ $ \vspace{0.2cm}
|
|||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{The corrector field: Well-posedness}
|
||||
\footnotesize
|
||||
\onslide<1->
|
||||
\begin{theorem}
|
||||
There exists a unique solution of Problem \ref{eq:Corrector_discrete} under condition: $$\rho/\tau + C_\Omega^{-2} \mu/2 - \rho 3 \| \nabla\vec u_{meas}^k\|_\infty > 0$$ for all $k>0$.
|
||||
\end{theorem}
|
||||
\onslide<2->
|
||||
We can furthermore prove the following energy balance:
|
||||
\onslide<3->
|
||||
\begin{theorem} For $(\vec w^k ,p^k)$ solution of Problem \ref{eq:Corrector_discrete}, with $\ell_j(\vec v,q)=0$ it holds
|
||||
\begin{equation*}\label{eq:energy}
|
||||
\| \vec w^k \|^2_{L_2(\Omega)} \leq \| \vec w^{k-1} \|^2_{L_2(\Omega)}
|
||||
\end{equation*}
|
||||
under the condition
|
||||
\begin{equation*}\label{eq:condstab}
|
||||
\mu \geq C_\Omega^2 \rho \| \nabla \vec u_{meas}^k\|_\infty
|
||||
\end{equation*}
|
||||
\end{theorem}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\section[Synthetic data]{Experiments using synthetic data }
|
||||
|
||||
\begin{frame}
|
||||
|
@ -253,27 +300,29 @@ Experiments using synthetic data
|
|||
\frametitle{Numerical tests}
|
||||
|
||||
\footnotesize
|
||||
We tested the corrector using CFD simulations as a measurements, in the following testcases:
|
||||
|
||||
\onslide<1-> We tested the corrector using CFD simulations as a measurements, in the following testcases:
|
||||
\onslide<2->
|
||||
\begin{itemize}
|
||||
\item Womersley flow in a cilinder
|
||||
\item Navier-Stokes simulations in an aortic mesh
|
||||
\end{itemize}
|
||||
|
||||
\onslide<3->
|
||||
Also perturbations were added into the measurements:
|
||||
\begin{itemize}
|
||||
\item velocity aliasing (varying the $venc$ parameter)
|
||||
\item additive noise (setting SNR in decibels)
|
||||
\item simulated k-space undersampling (compressed sensing for the reconstruction)
|
||||
\item<4-> velocity aliasing (varying the $venc$ parameter)
|
||||
\item<5-> additive noise (setting SNR in decibels)
|
||||
\item<6-> simulated k-space undersampling (compressed sensing for the reconstruction)
|
||||
\end{itemize}
|
||||
|
||||
All simulations were done using a stabilized finite element method implemented in FEniCS. Afterwards, all numerical simulations were interpolated into a voxel-type structured mesh
|
||||
%\onslide<7-> All simulations were done using a stabilized finite element method implemented in FEniCS. Afterwards, all numerical simulations were interpolated into a voxel-type structured mesh
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Numerical tests: details}
|
||||
\frametitle{Numerical tests: channel}
|
||||
\begin{columns}[c]
|
||||
\column{.6\textwidth} % Left column and width
|
||||
\footnotesize
|
||||
|
@ -284,16 +333,75 @@ All simulations were done using a stabilized finite element method implemented i
|
|||
\item Oscilatory pressure at $\Gamma_{inlet}$
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\column{.5\textwidth} % Right column and width
|
||||
\footnotesize
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=0.3\textwidth]{images/cilinder_2.png}
|
||||
\includegraphics[height=1.0\textwidth]{images/cilinder.png}
|
||||
\caption{3D channel mesh}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results for channel: aliasing and noise}
|
||||
\footnotesize
|
||||
|
||||
\onslide<1-> For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$
|
||||
|
||||
\onslide<2->
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=0.5\textwidth]{images/perturbation_pres.png}
|
||||
\caption{Different perturbation scenarios}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results for channel: undersampling}
|
||||
\footnotesize
|
||||
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=0.6\textwidth]{images/histo_channel.png}
|
||||
\caption{ \footnotesize Histograms of different undersampling rates for the channel}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results for channel: undersampling}
|
||||
\footnotesize
|
||||
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=0.6\textwidth]{images/undersampling_press.png}
|
||||
\caption{ \footnotesize Different undersampling rates for the channel}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Numerical tests: aorta}
|
||||
|
||||
\begin{columns}[c]
|
||||
\column{.6\textwidth} % Left column and width
|
||||
|
@ -311,8 +419,8 @@ All simulations were done using a stabilized finite element method implemented i
|
|||
\footnotesize
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=0.7\textwidth]{images/aorta_blender.png}
|
||||
\caption{\tiny{Channel mesh}}
|
||||
\includegraphics[height=1.0\textwidth]{images/aorta_blender.png}
|
||||
\caption{Aortic mesh}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
\end{columns}
|
||||
|
@ -321,43 +429,10 @@ All simulations were done using a stabilized finite element method implemented i
|
|||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results for channel: aliasing and noise}
|
||||
\footnotesize
|
||||
|
||||
For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$
|
||||
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=0.5\textwidth]{images/perturbation_pres.png}
|
||||
\caption{Different perturbation scenarios}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results for channel: undersampling}
|
||||
\footnotesize
|
||||
|
||||
\begin{columns}[c]
|
||||
\column{.6\textwidth} % Left column and width
|
||||
|
||||
other results concerning undersampling....
|
||||
|
||||
\column{.5\textwidth} % Right column and width
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=1.2\textwidth]{images/undersampling_final.png}
|
||||
\caption{ \footnotesize Different undersampling rates for the channel}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
|
@ -374,6 +449,23 @@ other results concerning undersampling....
|
|||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results for aorta: undersampling}
|
||||
\footnotesize
|
||||
|
||||
\begin{figure}[!hbtp]
|
||||
\begin{center}
|
||||
\includegraphics[height=0.6\textwidth]{images/histo_blender.png}
|
||||
\caption{ \footnotesize Histograms of different undersampling rates for the aortic mesh}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Results for aorta: undersampling}
|
||||
\footnotesize
|
||||
|
@ -413,10 +505,10 @@ Experiments using real 4D flow data
|
|||
\column{.6\textwidth} % Left column and width
|
||||
|
||||
\begin{itemize}
|
||||
\item 4D flow measurements were taken from a silicon thoracic aortic phantom made of silicon.
|
||||
\item A controled pump injects to the system a blood mimicking fluid and allows the control of: heart rate, peak flow, stroke volume and flow waveform
|
||||
\item A stenosis of $11 \ mm$ of diameter was added in the descending aorta
|
||||
\item The phantom was scanned using a clinical $1.5 \ T$ MR scanner (Philips Achieva, Best, The Netherlands)
|
||||
\item<1-> 4D flow measurements were taken from a silicon thoracic aortic phantom made of silicon.
|
||||
\item<2-> A controled pump injects to the system a blood mimicking fluid and allows the control of: heart rate, peak flow, stroke volume and flow waveform
|
||||
\item<3-> A stenosis of $11 \ mm$ of diameter was added in the descending aorta
|
||||
\item<4-> The phantom was scanned using a clinical $1.5 \ T$ MR scanner (Philips Achieva, Best, The Netherlands)
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
@ -426,7 +518,7 @@ Experiments using real 4D flow data
|
|||
\begin{center}
|
||||
\footnotesize
|
||||
\includegraphics[height=\textwidth]{images/phantom.jpg}
|
||||
\caption{\footnotesize Experiment done at the Centre of Biomedical Images (CIB) of the Catholic Unversity of Chili (PUC)}
|
||||
\caption{\footnotesize{Experiment done at the Centre of Biomedical Images (CIB) of the Catholic Unversity of Chili (PUC)}}
|
||||
\end{center}
|
||||
\end{figure}
|
||||
|
||||
|
@ -467,14 +559,15 @@ Experiments using real 4D flow data
|
|||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Conclusions and future}
|
||||
\frametitle{Conclusions and future work}
|
||||
\footnotesize
|
||||
|
||||
potential of the new quality parameter:
|
||||
\onslide<1-> Potential of the new quality parameter:
|
||||
|
||||
\begin{itemize}
|
||||
\item analize real data
|
||||
\item use the specificity for label zones with strong disagreedment
|
||||
\item Use the field for create new inverse problems which can be used for further accelerations
|
||||
\item<2-> The detect zones with strong disagreedment
|
||||
\item<3-> To better recognize common acquisition artifacts
|
||||
\item<4-> The use of the field for create new inverse problems which can be used for further accelerations
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
|
Loading…
Reference in New Issue