delete all
This commit is contained in:
parent
b7d7695faf
commit
5d6198ee9c
|
@ -1,15 +0,0 @@
|
|||
{
|
||||
// Use IntelliSense to learn about possible attributes.
|
||||
// Hover to view descriptions of existing attributes.
|
||||
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Python: Current File",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "${file}",
|
||||
"console": "integratedTerminal"
|
||||
}
|
||||
]
|
||||
}
|
|
@ -1,12 +0,0 @@
|
|||
{
|
||||
// See https://go.microsoft.com/fwlink/?LinkId=733558
|
||||
// for the documentation about the tasks.json format
|
||||
"version": "2.0.0",
|
||||
"tasks": [
|
||||
{
|
||||
"label": "echo",
|
||||
"type": "shell",
|
||||
"command": "echo Hello"
|
||||
}
|
||||
]
|
||||
}
|
597
codes/CS.py
597
codes/CS.py
|
@ -1,597 +0,0 @@
|
|||
import numpy as np
|
||||
from numpy import linalg as LA
|
||||
import sys
|
||||
from mpi4py import MPI
|
||||
comm = MPI.COMM_WORLD
|
||||
size = comm.Get_size()
|
||||
rank = comm.Get_rank()
|
||||
|
||||
|
||||
# COMPRESSED SENSING: LINEAR BREGMAN METHOD
|
||||
# Translated and adapted into python from tinycs
|
||||
#
|
||||
# *tinycs* is a minimal compressed sensing (CS) toolkit designed
|
||||
# to allow MR imaging scientists to design undersampled
|
||||
# acquisitions and reconstruct the resulting data with CS without
|
||||
# needing to be a CS expert.
|
||||
#
|
||||
# The Cartesian reconstruction is based on the split Bregman
|
||||
# code written by Tom Goldstein, originally available here:
|
||||
# <http://tag7.web.rice.edu/Split_Bregman.html>
|
||||
|
||||
|
||||
def pdf(k, kw, klo, q):
|
||||
|
||||
p = (np.abs(k)/kw)**(-q)
|
||||
p[np.where(k == 0)] = 0
|
||||
p[np.where(np.abs(k) <= kw)] = 1
|
||||
p[np.where(k < klo)] = 0
|
||||
|
||||
return p
|
||||
|
||||
def mask_pdf_1d(n, norm, q, pf):
|
||||
|
||||
ks = np.arange(0, n) - np.ceil(n/2) - 1
|
||||
kmax = np.floor(n/2)
|
||||
npf = np.round(pf*n)
|
||||
klo = ks[n-npf]
|
||||
|
||||
for k in range(int(kmax)):
|
||||
P = pdf(ks, k+1, klo, q)
|
||||
if np.sum(P) >= norm:
|
||||
break
|
||||
|
||||
P = np.fft.fftshift(P)
|
||||
|
||||
return P
|
||||
|
||||
def mask_pdf_2d(dims, norm, q, pf):
|
||||
|
||||
nz = dims[1]
|
||||
ny = dims[0]
|
||||
yc = round(ny/2)
|
||||
zc = round(nz/2)
|
||||
rmax = np.sqrt((ny-yc)**2 + (nz-zc)**2)
|
||||
[Z, Y] = np.meshgrid(np.arange(0, nz), np.arange(0, ny))
|
||||
RR = np.sqrt((Y-yc)**2 + (Z-zc)**2)
|
||||
Z = np.abs(Z - nz/2 - 0.5)
|
||||
Y = np.abs(Y - ny/2 - 0.5)
|
||||
|
||||
for rw in range(1, int(rmax)+1):
|
||||
P = np.ones([ny, nz])/pf
|
||||
C = np.logical_and(Z <= rw, Y <= rw)
|
||||
W = np.logical_or(Z > rw, Y > rw)
|
||||
P[W] = (RR[W]/rw)**(-q)
|
||||
if np.sum(P) >= norm:
|
||||
break
|
||||
|
||||
return [P, C]
|
||||
|
||||
def GeneratePattern(dim, R):
|
||||
|
||||
# 3D CASE
|
||||
if np.size(dim) == 3:
|
||||
|
||||
nro = dim[0]
|
||||
npe = dim[1]
|
||||
nacq = round(npe/R)
|
||||
q = 1
|
||||
pf = 1
|
||||
P = mask_pdf_1d(npe, nacq, q, pf)
|
||||
while True:
|
||||
M = np.random.rand(npe)
|
||||
M = 1*(M <= P)
|
||||
if np.sum(M) == nacq:
|
||||
break
|
||||
# remove partial Fourier plane and compensate sampling density
|
||||
M = M != 0
|
||||
M = np.tile(M, [nro, 1])
|
||||
#M = M.T
|
||||
|
||||
# 4D CASE
|
||||
if np.size(dim) == 4:
|
||||
|
||||
nro = dim[0]
|
||||
npe1 = dim[1]
|
||||
npe2 = dim[2]
|
||||
nacq = round(npe1*npe2/R)
|
||||
q = 1
|
||||
pf = 1
|
||||
[P, C] = mask_pdf_2d([npe1, npe2], nacq, q, pf)
|
||||
RR = np.random.rand(npe1, npe2)
|
||||
M = (RR <= P)
|
||||
nchosen = np.sum(M)
|
||||
if nchosen > nacq: # Correct for inexact number chosen
|
||||
#outerOn = np.logical_and( M , P!=1 )
|
||||
outerOn = np.where((M)*(P != 1))
|
||||
numToFlip = nchosen-nacq
|
||||
idxs = np.random.permutation(outerOn[0].size)
|
||||
idxx = outerOn[0][idxs[0:numToFlip]]
|
||||
idxy = outerOn[1][idxs[0:numToFlip]]
|
||||
M[idxx, idxy] = False
|
||||
|
||||
elif nchosen < nacq:
|
||||
outerOff = np.where(~M)
|
||||
idxs = np.random.permutation(outerOff[0].size)
|
||||
numToFlip = nacq - nchosen
|
||||
idxx = outerOff[0][idxs[0:numToFlip]]
|
||||
idxy = outerOff[1][idxs[0:numToFlip]]
|
||||
M[idxx, idxy] = True
|
||||
|
||||
M = np.rollaxis(np.tile(np.rollaxis(M, 1), [nro, 1, 1]), 2)
|
||||
M = np.fft.ifftshift(M)
|
||||
M = M.transpose((1, 0, 2))
|
||||
|
||||
return M
|
||||
|
||||
def get_norm_factor(MASK, uu):
|
||||
UM = MASK == 1
|
||||
return UM.shape[0]/LA.norm(uu)
|
||||
|
||||
def Dxyzt(X):
|
||||
|
||||
if np.ndim(X) == 3:
|
||||
dd0 = X[:, :, 0]
|
||||
dd1 = X[:, :, 1]
|
||||
DA = dd0 - np.vstack((dd0[1::, :], dd0[0, :]))
|
||||
DB = dd1 - np.hstack((dd1[:, 1::], dd1[:, 0:1]))
|
||||
|
||||
return DA + DB
|
||||
|
||||
if np.ndim(X) == 4:
|
||||
dd0 = X[:, :, :, 0]
|
||||
dd1 = X[:, :, :, 1]
|
||||
dd2 = X[:, :, :, 2]
|
||||
|
||||
DA = dd0 - np.vstack((dd0[1::, :, :], dd0[0, :, :][np.newaxis, :, :]))
|
||||
DB = dd1 - np.hstack((dd1[:, 1::, :], dd1[:, 0, :][:, np.newaxis, :]))
|
||||
DC = dd2 - np.dstack((dd2[:, :, 1::], dd2[:, :, 0][:, :, np.newaxis]))
|
||||
|
||||
return DA + DB + DC
|
||||
|
||||
def Dxyz(u):
|
||||
|
||||
if np.ndim(u) == 2:
|
||||
|
||||
dx = u[:, :] - np.vstack((u[-1, :], u[0:-1, :]))
|
||||
dy = u[:, :] - np.hstack((u[:, -1:], u[:, 0:-1]))
|
||||
D = np.zeros([dx.shape[0], dx.shape[1], 2], dtype=complex)
|
||||
D[:, :, 0] = dx
|
||||
D[:, :, 1] = dy
|
||||
|
||||
return D
|
||||
|
||||
if np.ndim(u) == 3:
|
||||
|
||||
dx = u[:, :, :] - \
|
||||
np.vstack((u[-1, :, :][np.newaxis, :, :], u[0:-1, :, :]))
|
||||
dy = u[:, :, :] - \
|
||||
np.hstack((u[:, -1, :][:, np.newaxis, :], u[:, 0:-1, :]))
|
||||
dz = u[:, :, :] - \
|
||||
np.dstack((u[:, :, -1][:, :, np.newaxis], u[:, :, 0:-1]))
|
||||
|
||||
D = np.zeros([dx.shape[0], dx.shape[1], dx.shape[2], 3], dtype=complex)
|
||||
|
||||
D[:, :, :, 0] = dx
|
||||
D[:, :, :, 1] = dy
|
||||
D[:, :, :, 2] = dz
|
||||
|
||||
return D
|
||||
|
||||
def shrink(X, pgam):
|
||||
p = 1
|
||||
s = np.abs(X)
|
||||
tt = pgam/(s)**(1-p)
|
||||
# t = pgam/np.sqrt(s)
|
||||
ss = s-tt
|
||||
ss = ss*(ss > 0)
|
||||
s = s + 1*(s < tt)
|
||||
ss = ss/s
|
||||
return ss*X
|
||||
|
||||
def CSMETHOD(ITOT, R):
|
||||
''' Compressed Sensing Function.
|
||||
|
||||
Args:
|
||||
ITOT: a numpy matrix with the full sampled (3D or 4D) dynamical data
|
||||
R: the acceleration factor
|
||||
'''
|
||||
# Method parameters
|
||||
ninner = 5
|
||||
nbreg = 10
|
||||
lmbda = 4
|
||||
mu = 20
|
||||
gam = 1
|
||||
|
||||
if np.ndim(ITOT) == 3:
|
||||
[row, col, numt2] = ITOT.shape
|
||||
elif np.ndim(ITOT) == 4:
|
||||
[row, col, dep, numt2] = ITOT.shape
|
||||
else:
|
||||
raise Exception('Dynamical data is requested')
|
||||
|
||||
MASK = GeneratePattern(ITOT.shape, R)
|
||||
CS1 = np.zeros(ITOT.shape, dtype=complex)
|
||||
|
||||
nit = 0
|
||||
nit_tot = (numt2-1)/20
|
||||
|
||||
if np.ndim(ITOT) == 3:
|
||||
|
||||
for t in range(numt2):
|
||||
|
||||
if rank == 0:
|
||||
print('{3D COMPRESSED SENSING} t = ', t)
|
||||
|
||||
Kdata = np.fft.fft2(ITOT[:, :, t])*MASK
|
||||
|
||||
data_ndims = Kdata.ndim
|
||||
mask = Kdata != 0 # not perfect, but good enough
|
||||
# normalize the data so that standard parameter values work
|
||||
norm_factor = get_norm_factor(mask, Kdata)
|
||||
Kdata = Kdata*norm_factor
|
||||
# Reserve memory for the auxillary variables
|
||||
Kdata0 = Kdata
|
||||
img = np.zeros([row, col], dtype=complex)
|
||||
X = np.zeros([row, col, data_ndims])
|
||||
B = np.zeros([row, col, data_ndims])
|
||||
# Build Kernels
|
||||
scale = np.sqrt(row*col)
|
||||
murf = np.fft.ifft2(mu*mask*Kdata)*scale
|
||||
uker = np.zeros([row, col])
|
||||
uker[0, 0] = 4
|
||||
uker[0, 1] = -1
|
||||
uker[1, 0] = -1
|
||||
uker[-1, 0] = -1
|
||||
uker[0, -1] = -1
|
||||
|
||||
uker = 1/(mu*mask + lmbda*np.fft.fftn(uker) + gam)
|
||||
|
||||
# Do the reconstruction
|
||||
for outer in range(nbreg):
|
||||
for inner in range(ninner):
|
||||
# update u
|
||||
rhs = murf + lmbda*Dxyzt(X-B) + gam*img
|
||||
img = np.fft.ifft2(np.fft.fft2(rhs)*uker)
|
||||
# update x and y
|
||||
A = Dxyz(img) + B
|
||||
X = shrink(A, 1/lmbda)
|
||||
# update bregman parameters
|
||||
B = A - X
|
||||
Kdata = Kdata + Kdata0 - mask*np.fft.fftn(img)/scale
|
||||
murf = np.fft.ifftn(mu*mask*Kdata)*scale
|
||||
|
||||
# undo the normalization so that results are scaled properly
|
||||
img = img / norm_factor / scale
|
||||
|
||||
CS1[:, :, t] = img
|
||||
|
||||
if np.ndim(ITOT) == 4:
|
||||
|
||||
for t in range(numt2):
|
||||
|
||||
if rank == 0:
|
||||
print(
|
||||
'[4D CS] R = {re} t = {te}/{tef}'.format(re=R, te=t, tef=numt2))
|
||||
|
||||
Kdata_0 = np.fft.fftn(ITOT[:, :, :, t])
|
||||
Kdata = Kdata_0*MASK
|
||||
data_ndims = Kdata.ndim
|
||||
mask = Kdata != 0 # not perfect, but good enough
|
||||
# normalize the data so that standard parameter values work
|
||||
norm_factor = get_norm_factor(mask, Kdata)
|
||||
Kdata = Kdata*norm_factor
|
||||
# Reserve memory for the auxillary variables
|
||||
Kdata0 = Kdata
|
||||
img = np.zeros([row, col, dep], dtype=complex)
|
||||
X = np.zeros([row, col, dep, data_ndims])
|
||||
B = np.zeros([row, col, dep, data_ndims])
|
||||
# Build Kernels
|
||||
scale = np.sqrt(row*col*dep)
|
||||
murf = np.fft.ifftn(mu*mask*Kdata)*scale
|
||||
uker = np.zeros([row, col, dep])
|
||||
uker[0, 0, 0] = 8
|
||||
uker[1, 0, 0] = -1
|
||||
uker[0, 1, 0] = -1
|
||||
uker[0, 0, 1] = -1
|
||||
uker[-1, 0, 0] = -1
|
||||
uker[0, -1, 0] = -1
|
||||
uker[0, 0, -1] = -1
|
||||
uker = 1/(mu*mask + lmbda*np.fft.fftn(uker) + gam)
|
||||
|
||||
# Do the reconstruction
|
||||
for outer in range(nbreg):
|
||||
for inner in range(ninner):
|
||||
# update u
|
||||
rhs = murf + lmbda*Dxyzt(X-B) + gam*img
|
||||
img = np.fft.ifft2(np.fft.fft2(rhs)*uker)
|
||||
# update x and y
|
||||
A = Dxyz(img) + B
|
||||
X = shrink(A, 1/lmbda)
|
||||
# update bregman parameters
|
||||
B = A - X
|
||||
Kdata = Kdata + Kdata0 - mask*np.fft.fftn(img)/scale
|
||||
murf = np.fft.ifftn(mu*mask*Kdata)*scale
|
||||
|
||||
# undo the normalization so that results are scaled properly
|
||||
img = img / norm_factor / scale
|
||||
|
||||
CS1[:, :, :, t] = img
|
||||
|
||||
return CS1
|
||||
|
||||
def CSMETHOD_SENSE(ITOT, R, R_SENSE):
|
||||
''' Compressed sense algorith with SENSE... in contruction!.
|
||||
|
||||
Args:
|
||||
ITOT: a numpy matrix with the full sampled (3D or 4D) dynamical data
|
||||
R: the acceleration factor
|
||||
'''
|
||||
# Method parameters
|
||||
ninner = 5
|
||||
nbreg = 10
|
||||
lmbda = 4
|
||||
mu = 20
|
||||
gam = 1
|
||||
|
||||
[row, col, dep, numt2] = ITOT.shape
|
||||
MASK = {}
|
||||
ITOTCS = {}
|
||||
MASK[0] = GeneratePattern([row, int(np.ceil(col/2)), dep, numt2], R)
|
||||
MASK[1] = GeneratePattern([row, int(np.ceil(col/2)), dep, numt2], R)
|
||||
SenseMAP = {}
|
||||
[SenseMAP[0], SenseMAP[1]] = Sensitivity_Map([row, col, dep])
|
||||
|
||||
col = int(np.ceil(col/2))
|
||||
ITOTCS[0] = np.zeros([row, col, dep, numt2], dtype=complex)
|
||||
ITOTCS[1] = np.zeros([row, col, dep, numt2], dtype=complex)
|
||||
|
||||
for rs in range(R_SENSE):
|
||||
for t in range(numt2):
|
||||
if rank == 0:
|
||||
print(
|
||||
'[4D CS] R = {re} t = {te}/{tef}'.format(re=R, te=t, tef=numt2))
|
||||
|
||||
Kdata_0 = np.fft.fftn(ITOT[:, :, :, t])
|
||||
Kdata_0 = Kdata_0*SenseMAP[rs]
|
||||
Kdata_0 = Kdata_0[:, 0::R_SENSE, :]
|
||||
|
||||
Kdata = Kdata_0*MASK[rs]
|
||||
data_ndims = Kdata.ndim
|
||||
mask = Kdata != 0 # not perfect, but good enough
|
||||
# normalize the data so that standard parameter values work
|
||||
norm_factor = get_norm_factor(mask, Kdata)
|
||||
Kdata = Kdata*norm_factor
|
||||
# Reserve memory for the auxillary variables
|
||||
Kdata0 = Kdata
|
||||
img = np.zeros([row, col, dep], dtype=complex)
|
||||
X = np.zeros([row, col, dep, data_ndims])
|
||||
B = np.zeros([row, col, dep, data_ndims])
|
||||
# Build Kernels
|
||||
scale = np.sqrt(row*col*dep)
|
||||
murf = np.fft.ifftn(mu*mask*Kdata)*scale
|
||||
uker = np.zeros([row, col, dep])
|
||||
uker[0, 0, 0] = 8
|
||||
uker[1, 0, 0] = -1
|
||||
uker[0, 1, 0] = -1
|
||||
uker[0, 0, 1] = -1
|
||||
uker[-1, 0, 0] = -1
|
||||
uker[0, -1, 0] = -1
|
||||
uker[0, 0, -1] = -1
|
||||
uker = 1/(mu*mask + lmbda*np.fft.fftn(uker) + gam)
|
||||
|
||||
# Do the reconstruction
|
||||
for outer in range(nbreg):
|
||||
for inner in range(ninner):
|
||||
# update u
|
||||
rhs = murf + lmbda*Dxyzt(X-B) + gam*img
|
||||
img = np.fft.ifft2(np.fft.fft2(rhs)*uker)
|
||||
# update x and y
|
||||
A = Dxyz(img) + B
|
||||
X = shrink(A, 1/lmbda)
|
||||
# update bregman parameters
|
||||
B = A - X
|
||||
Kdata = Kdata + Kdata0 - mask*np.fft.fftn(img)/scale
|
||||
murf = np.fft.ifftn(mu*mask*Kdata)*scale
|
||||
|
||||
# undo the normalization so that results are scaled properly
|
||||
img = img / norm_factor / scale
|
||||
|
||||
ITOTCS[rs][:, :, :, t] = img
|
||||
|
||||
return [ITOTCS[0], ITOTCS[1]]
|
||||
|
||||
def phase_contrast(M1, M0, VENC, scantype='0G'):
|
||||
param = 1
|
||||
if scantype == '-G+G':
|
||||
param = 0.5
|
||||
return VENC*param*(np.angle(M1) - np.angle(M0))/np.pi
|
||||
|
||||
def GenerateMagnetization(Sq, VENC, noise, scantype='0G'):
|
||||
''' Simulation of a typical magnetization. A x-dependent plane is added into the
|
||||
reference phase.
|
||||
'''
|
||||
# MRI PARAMETERS
|
||||
gamma = 267.513e6 # rad/Tesla/sec Gyromagnetic ratio for H nuclei
|
||||
B0 = 1.5 # Tesla Magnetic Field Strenght
|
||||
TE = 5e-3 # Echo-time
|
||||
PHASE0 = np.zeros(Sq.shape)
|
||||
PHASE1 = np.zeros(Sq.shape)
|
||||
RHO0 = np.zeros(Sq.shape, dtype=complex)
|
||||
RHO1 = np.zeros(Sq.shape, dtype=complex)
|
||||
|
||||
if np.ndim(Sq) == 3:
|
||||
[row, col, numt2] = Sq.shape
|
||||
[X, Y] = np.meshgrid(np.linspace(0, col, col),
|
||||
np.linspace(0, row, row))
|
||||
for k in range(numt2):
|
||||
if noise:
|
||||
Drho = np.random.normal(0, 0.2, [row, col])
|
||||
Drho2 = np.random.normal(0, 0.2, [row, col])
|
||||
else:
|
||||
Drho = np.zeros([row, col])
|
||||
Drho2 = np.zeros([row, col])
|
||||
|
||||
varPHASE0 = np.random.randint(-10, 11, size=(row, col))*np.pi/180*(
|
||||
np.abs(Sq[:, :, k]) < 0.001) # Hugo's observation
|
||||
modulus = 0.5 + 0.5*(np.abs(Sq[:, :, k]) > 0.001)
|
||||
|
||||
if scantype == '0G':
|
||||
PHASE0[:, :, k] = (gamma*B0*TE+0.01*X) * \
|
||||
(np.abs(Sq[:, :, k]) > 0.001) + 10*varPHASE0
|
||||
PHASE1[:, :, k] = (gamma*B0*TE+0.01*X)*(np.abs(Sq[:, :, k])
|
||||
> 0.001) + 10*varPHASE0 + np.pi*Sq[:, :, k]/VENC
|
||||
|
||||
if scantype == '-G+G':
|
||||
PHASE0[:, :, k] = gamma*B0*TE * \
|
||||
np.ones([row, col]) + 10*varPHASE0 - np.pi*Sq[:, :, k]/VENC
|
||||
PHASE1[:, :, k] = gamma*B0*TE * \
|
||||
np.ones([row, col]) + 10*varPHASE0 + np.pi*Sq[:, :, k]/VENC
|
||||
|
||||
RHO0[:, :, k] = modulus*np.cos(PHASE0[:, :, k]) + \
|
||||
Drho + 1j*modulus*np.sin(PHASE0[:, :, k]) + 1j*Drho2
|
||||
RHO1[:, :, k] = modulus*np.cos(PHASE1[:, :, k]) + \
|
||||
Drho + 1j*modulus*np.sin(PHASE1[:, :, k]) + 1j*Drho2
|
||||
|
||||
if np.ndim(Sq) == 4:
|
||||
[row, col, dep, numt2] = Sq.shape
|
||||
[X, Y, Z] = np.meshgrid(np.linspace(0, col, col), np.linspace(
|
||||
0, row, row), np.linspace(0, dep, dep))
|
||||
|
||||
for k in range(numt2):
|
||||
|
||||
if noise:
|
||||
Drho = np.random.normal(0, 0.2, [row, col, dep])
|
||||
Drho2 = np.random.normal(0, 0.2, [row, col, dep])
|
||||
else:
|
||||
Drho = np.zeros([row, col, dep])
|
||||
Drho2 = np.zeros([row, col, dep])
|
||||
|
||||
varPHASE0 = np.random.randint(-10, 11, size=(row, col, dep)) * \
|
||||
np.pi/180*(np.abs(Sq[:, :, :, k]) < 0.001)
|
||||
modulus = 0.5 + 0.5*(np.abs(Sq[:, :, :, k]) > 0.001)
|
||||
|
||||
if scantype == '0G':
|
||||
PHASE0[:, :, :, k] = (gamma*B0*TE+0.01*X) * \
|
||||
(np.abs(Sq[:, :, :, k]) > 0.001) + 10*varPHASE0
|
||||
PHASE1[:, :, :, k] = (gamma*B0*TE+0.01*X)*(np.abs(Sq[:, :, :, k])
|
||||
> 0.001) + 10*varPHASE0 + np.pi*Sq[:, :, :, k]/VENC
|
||||
|
||||
if scantype == '-G+G':
|
||||
PHASE0[:, :, :, k] = gamma*B0*TE * \
|
||||
np.ones([row, col, dep]) + varPHASE0 - \
|
||||
np.pi*Sq[:, :, :, k]/VENC
|
||||
PHASE1[:, :, :, k] = gamma*B0*TE * \
|
||||
np.ones([row, col, dep]) + varPHASE0 + \
|
||||
np.pi*Sq[:, :, :, k]/VENC
|
||||
|
||||
RHO0[:, :, :, k] = modulus*np.cos(PHASE0[:, :, :, k]) + \
|
||||
Drho + 1j*modulus*np.sin(PHASE0[:, :, :, k]) + 1j*Drho2
|
||||
RHO1[:, :, :, k] = modulus*np.cos(PHASE1[:, :, :, k]) + \
|
||||
Drho + 1j*modulus*np.sin(PHASE1[:, :, :, k]) + 1j*Drho2
|
||||
|
||||
return [RHO0, RHO1]
|
||||
|
||||
def undersampling(Sqx, Sqy, Sqz, options, savepath):
|
||||
|
||||
R = options['cs']['R']
|
||||
|
||||
for r in R:
|
||||
|
||||
if rank == 0:
|
||||
print('Using Acceleration Factor R = ' + str(r))
|
||||
print('Component x of M0')
|
||||
|
||||
[M0, M1] = GenerateMagnetization(
|
||||
Sqx, options['cs']['VENC'], options['cs']['noise'])
|
||||
|
||||
print('\n Component x of M0')
|
||||
M0_cs = CSMETHOD(M0, r)
|
||||
print('\n Component x of M1')
|
||||
M1_cs = CSMETHOD(M1, r)
|
||||
|
||||
Sqx_cs = phase_contrast(M1_cs, M0_cs, options['cs']['VENC'])
|
||||
del M0, M1
|
||||
del M0_cs, M1_cs
|
||||
|
||||
[M0, M1] = GenerateMagnetization(
|
||||
Sqy, options['cs']['VENC'], options['cs']['noise'])
|
||||
|
||||
print('\n Component y of M0')
|
||||
M0_cs = CSMETHOD(M0, r)
|
||||
print('\n Component y of M1')
|
||||
M1_cs = CSMETHOD(M1, r)
|
||||
|
||||
Sqy_cs = phase_contrast(M1_cs, M0_cs, options['cs']['VENC'])
|
||||
|
||||
del M0, M1
|
||||
del M0_cs, M1_cs
|
||||
|
||||
[M0, M1] = GenerateMagnetization(
|
||||
Sqz, options['cs']['VENC'], options['cs']['noise'])
|
||||
|
||||
if rank == 0:
|
||||
print('\n Component z of M0')
|
||||
M0_cs = CSMETHOD(M0, r)
|
||||
if rank == 0:
|
||||
print('\n Component z of M1')
|
||||
M1_cs = CSMETHOD(M1, r)
|
||||
if rank == 0:
|
||||
print(' ')
|
||||
|
||||
Sqz_cs = phase_contrast(M1_cs, M0_cs, options['cs']['VENC'])
|
||||
|
||||
if rank == 0:
|
||||
print('saving the sequences in ' + savepath)
|
||||
seqname = options['cs']['name'] + '_R' + str(r) + '.npz'
|
||||
print('sequence name: ' + seqname)
|
||||
np.savez_compressed(savepath + seqname,
|
||||
x=Sqx_cs, y=Sqy_cs, z=Sqz_cs)
|
||||
|
||||
del Sqx_cs, Sqy_cs, Sqz_cs
|
||||
|
||||
def undersampling_short(Mx, My, Mz, options):
|
||||
|
||||
R = options['cs']['R']
|
||||
savepath = options['cs']['savepath']
|
||||
|
||||
R_SENSE = 1
|
||||
if 'R_SENSE' in options['cs']:
|
||||
R_SENSE = options['cs']['R_SENSE'][0]
|
||||
|
||||
for r in R:
|
||||
if rank == 0:
|
||||
print('Using Acceleration Factor R = ' + str(r))
|
||||
|
||||
if R_SENSE == 2:
|
||||
[MxS0_cs, MxS1_cs] = CSMETHOD_SENSE(Mx, r, 2)
|
||||
[MyS0_cs, MyS1_cs] = CSMETHOD_SENSE(My, r, 2)
|
||||
[MzS0_cs, MzS1_cs] = CSMETHOD_SENSE(Mz, r, 2)
|
||||
if rank == 0:
|
||||
print('saving the sequences in ' + savepath)
|
||||
seqname_s0 = options['cs']['name'] + 'S0_R' + str(r) + '.npz'
|
||||
seqname_s1 = options['cs']['name'] + 'S1_R' + str(r) + '.npz'
|
||||
print('sequence name: ' + seqname_s0)
|
||||
np.savez_compressed(savepath + seqname_s0,
|
||||
x=MxS0_cs, y=MyS0_cs, z=MzS0_cs)
|
||||
print('sequence name: ' + seqname_s1)
|
||||
np.savez_compressed(savepath + seqname_s1,
|
||||
x=MxS1_cs, y=MyS1_cs, z=MzS1_cs)
|
||||
del MxS0_cs, MyS0_cs, MzS0_cs
|
||||
del MxS1_cs, MyS1_cs, MzS1_cs
|
||||
elif R_SENSE == 1:
|
||||
Mx_cs = CSMETHOD(Mx, r)
|
||||
My_cs = CSMETHOD(My, r)
|
||||
Mz_cs = CSMETHOD(Mz, r)
|
||||
if rank == 0:
|
||||
print('saving the sequences in ' + savepath)
|
||||
seqname = options['cs']['name'] + '_R' + str(r) + '.npz'
|
||||
print('sequence name: ' + seqname)
|
||||
np.savez_compressed(savepath + seqname,
|
||||
x=Mx_cs, y=My_cs, z=Mz_cs)
|
||||
del Mx_cs, My_cs, Mz_cs
|
||||
else:
|
||||
raise Exception('Only implemented for 2-fold SENSE!!')
|
||||
|
||||
|
||||
# THE END
|
1412
codes/Graphics.py
1412
codes/Graphics.py
File diff suppressed because it is too large
Load Diff
|
@ -1,57 +0,0 @@
|
|||
clear all; close all
|
||||
|
||||
folder_name = uigetdir([],'Load Folder...');
|
||||
|
||||
data = load(strcat(folder_name,'/data.mat'));
|
||||
SEG = load(strcat(folder_name,'/SEG.mat'));
|
||||
|
||||
data = data.data;
|
||||
SEG = SEG.SEG;
|
||||
|
||||
|
||||
VENC = data.VENC;
|
||||
VoxelSize = data.voxel_MR;
|
||||
|
||||
vel_AP = data.MR_PCA_AP;
|
||||
vel_RL = data.MR_PCA_RL;
|
||||
vel_FH = data.MR_PCA_FH;
|
||||
|
||||
SEG2 = permute(SEG,[2,3,1]);
|
||||
SEG2 = SEG2(:,:,:);
|
||||
|
||||
|
||||
vel_AP_seg = vel_AP.*SEG2(2:end-1,2:end-1,2:end-1);
|
||||
vel_RL_seg = vel_RL.*SEG2(2:end-1,2:end-1,2:end-1);
|
||||
vel_FH_seg = vel_FH.*SEG2(2:end-1,2:end-1,2:end-1);
|
||||
|
||||
|
||||
|
||||
|
||||
u_R1 = [] ;
|
||||
u_R1.x = vel_FH_seg;
|
||||
u_R1.y = vel_AP_seg;
|
||||
u_R1.z = vel_RL_seg;
|
||||
u_R1.VoxelSize = VoxelSize;
|
||||
save('/home/yeye/Desktop/u_R1.mat','u_R1');
|
||||
disp('data saved')
|
||||
%%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% FIGURES
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
figure
|
||||
size_vel = size(vel_FH);
|
||||
for n=1:size_vel(3)
|
||||
imshow(squeeze(vel_FH_seg(:,:,n,8)),[-100,100],'InitialMagnification',300);
|
||||
colormap(gca);
|
||||
pause(0.1)
|
||||
end
|
||||
%%
|
||||
size_seg2 = size(SEG2);
|
||||
for n=1:size_seg2(3)
|
||||
imshow(squeeze(SEG2(:,:,n)),'InitialMagnification',300);
|
||||
colormap(gca);
|
||||
pause(0.1)
|
||||
end
|
||||
|
||||
|
|
@ -1,14 +0,0 @@
|
|||
% Program to create a structured mesh using the codes of Leo Sok
|
||||
clear all; close all
|
||||
|
||||
nodes = load('LEO_files/nodes.txt');
|
||||
ux = load('LEO_files/ux.txt') ;
|
||||
uy = load('LEO_files/uy.txt') ;
|
||||
uz = load('LEO_files/uz.txt') ;
|
||||
u = sqrt(ux.^2 + uy.^2 + uz.^2);
|
||||
resol = load('LEO_files/resol.txt') ;
|
||||
dx = resol(1); dy = resol(2) ; dz = resol(3);
|
||||
|
||||
nodes_masked = maskFEM(nodes,u);
|
||||
[N,tets,faces] = meshStructTess(nodes_masked,dx,dy,dz,0,0);
|
||||
writemesh('/home/yeye/Desktop/leomesh',N,tets,faces)
|
|
@ -1,19 +0,0 @@
|
|||
function nodes2 = maskFEM(nodes,vel)
|
||||
|
||||
a = [];
|
||||
b = [];
|
||||
c = [];
|
||||
ind = 1;
|
||||
|
||||
for i=1:length(nodes)
|
||||
if vel(i)>0
|
||||
a(ind) = nodes(i,1);
|
||||
b(ind) = nodes(i,2);
|
||||
c(ind) = nodes(i,3);
|
||||
ind = ind +1;
|
||||
end
|
||||
end
|
||||
|
||||
nodes2 = [a', b', c'];
|
||||
|
||||
|
|
@ -1,169 +0,0 @@
|
|||
function [nodes, tets, faces, P] = meshStructTess(nodes, dx, dy, dz, check_mesh, plot_mesh)
|
||||
%% [nodes, tets, faces] = meshStructTess(nodes, dx, dy, dz, check_mesh, plot_mesh)
|
||||
% Generate a tessalation from a list of structured nodes.
|
||||
% input: nodes: n times 3 matrix with on the rows the coordinates of
|
||||
% the n points in the mesh
|
||||
% dx, dy, dz: the mesh-size in the directions x, y and z
|
||||
% check_mesh: if true, then it solves a Poisson problem
|
||||
% plot_mesh: if true, then it plots the mesh
|
||||
% output: nodes: m times 3 matrix with on the rows the coordinates of
|
||||
% the m <= n points in the triangulationedi
|
||||
% tets: l times 4 matrix with on the rows the tetrahedra
|
||||
% faces: k times 3 matrix with on the rows the triangles of the
|
||||
% boundary of the mesh
|
||||
% P: Transformation matrix from input nodes to output nodes.
|
||||
% Useful also for transforming node-valued functions on
|
||||
% the input nodes to node-valued functions on the output
|
||||
% nodes
|
||||
%
|
||||
% The triangulation can be plotted using tetramesh(tets,nodes)
|
||||
|
||||
|
||||
% compute the minimum and number of points in each direction
|
||||
if size(nodes,1) < 4
|
||||
error('Triangulation needs at least 4 points')
|
||||
end
|
||||
mn = min(nodes);
|
||||
xmin = mn(1);
|
||||
ymin = mn(2);
|
||||
zmin = mn(3);
|
||||
|
||||
mn = max(nodes);
|
||||
xmax = mn(1);
|
||||
ymax = mn(2);
|
||||
zmax = mn(3);
|
||||
|
||||
nx = round((xmax-xmin)/dx +1);
|
||||
ny = round((ymax-ymin)/dy +1);
|
||||
nz = round((zmax-zmin)/dz +1);
|
||||
|
||||
Nnodes = size(nodes,1);
|
||||
|
||||
|
||||
% Define tensor which consist of nodes indices, used for the creation of
|
||||
% the tetrahedra
|
||||
|
||||
nodes3d = zeros(nx,ny,nz); % preallocate
|
||||
for i=1:Nnodes
|
||||
nodes3d(round((nodes(i,1)-xmin)/dx)+1,round((nodes(i,2)-ymin)/dy)+1,round((nodes(i,3)-zmin)/dz)+1)=i;
|
||||
end
|
||||
|
||||
|
||||
disp('Creating Tetrahedra')
|
||||
|
||||
% create tetrahedral mesh in cube, which we will reuse.
|
||||
ii = 1;
|
||||
X = zeros(8,3);
|
||||
for i=0:1
|
||||
for j=0:1
|
||||
for k=0:1
|
||||
X(ii,:) = [i,j,k];
|
||||
ii = ii+1;
|
||||
end
|
||||
end
|
||||
end
|
||||
cubetet = delaunay(X);
|
||||
|
||||
% Run through the mesh
|
||||
el = 1;
|
||||
Tetrahedra = zeros(6*(nnz(nodes3d)),4); % preallocate
|
||||
|
||||
for i=1:nx-1
|
||||
for j=1:ny-1
|
||||
for k=1:nz-1
|
||||
% take [i:i+1,j:j+1,k:k+1] as cube
|
||||
nod = zeros(1,8); % perallocate
|
||||
|
||||
for l = 1:8
|
||||
% nod is vector with node indices of cube
|
||||
nod(l) = nodes3d(i + X(l,1), j + X(l,2), k + X(l,3));
|
||||
end
|
||||
|
||||
if nnz(nod) == 8 % then the cube is inside the mesh
|
||||
tet = nod(cubetet);
|
||||
else % then there is at least one point of the cube outside the mesh
|
||||
Xs = X(logical(nod),:); % take only nodes inside the mesh
|
||||
nodx = nod(logical(nod));
|
||||
if nnz(nod) == 4 % 4 nodes, check if points are coplanar
|
||||
C = cross(Xs(2,:)-Xs(1,:), Xs(3,:)-Xs(1,:));
|
||||
cop = logical(dot(C,Xs(4,:)-Xs(1,:)));
|
||||
% if cop = 0, then points are coplanar end thus no
|
||||
% tetrahedra exists.
|
||||
end
|
||||
if (nnz(nod)>4) || (nnz(nod) == 4 && cop)
|
||||
% create tetrahedra
|
||||
tet1 = delaunay(Xs);
|
||||
tet = nodx(tet1);
|
||||
else % no tetrahedra exists
|
||||
tet = [];
|
||||
end
|
||||
end
|
||||
|
||||
% add new tetrahedra to list
|
||||
Tetrahedra(el:el+size(tet,1)-1,:) = tet;
|
||||
el = el+size(tet,1);
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
tets = Tetrahedra(1:el-1,:); % Delete extra preallocated rows.
|
||||
clear Tetrahedra
|
||||
|
||||
disp([num2str(size(tets,1)), ' tetrahedra created'])
|
||||
|
||||
% Delete nodes which are not in any tetrahedra.
|
||||
disp('Update mesh')
|
||||
contr = zeros(size(nodes,1),1);
|
||||
for i=1:size(tets,1)
|
||||
for j=1:4
|
||||
contr(tets(i,j))=1;
|
||||
end
|
||||
end
|
||||
|
||||
nodes = nodes(logical(contr),:);
|
||||
|
||||
% compute P
|
||||
P = speye(Nnodes);
|
||||
P = P(logical(contr),:);
|
||||
|
||||
disp([num2str(nnz(~contr)), ' unused nodes in triangulation deleted.'])
|
||||
|
||||
disp('Update tetrahedra')
|
||||
|
||||
% make tetrahedra compatible with new node indices
|
||||
cumcon = cumsum(~contr)';
|
||||
tets = tets - cumcon(tets);
|
||||
|
||||
% create triangles
|
||||
if size(tets,1) == 0
|
||||
warning('No tetrahedra created')
|
||||
faces = zeros(0,3);
|
||||
else
|
||||
disp('Create Triangles')
|
||||
faces = freeBoundary(triangulation(tets,nodes));
|
||||
disp([num2str(size(faces,1)), ' triangles created'])
|
||||
end
|
||||
|
||||
% checking the mesh by solving a Poisson problem
|
||||
if check_mesh
|
||||
% Builds the P1 stiffness matrix from tets and nodes
|
||||
[A,volumes]=stifness_matrixP1_3D(tets,nodes);
|
||||
% Check if element volumes may be negative
|
||||
if any(volumes<=0)
|
||||
warning('Some elements have zero or negative volume')
|
||||
end
|
||||
% solve the Poisson problem with Dirichlet BC
|
||||
A(2:end,2:end)\ones(size(A(2:end,2:end),1),1);
|
||||
disp('If there are no warnings, it probably means that the mesh is fine')
|
||||
end
|
||||
|
||||
% Plots mesh
|
||||
if plot_mesh
|
||||
tetramesh(tets,nodes)
|
||||
xlabel('x')
|
||||
ylabel('y')
|
||||
zlabel('z')
|
||||
end
|
||||
|
||||
end
|
||||
|
|
@ -1,97 +0,0 @@
|
|||
function writemesh(varargin)
|
||||
%% writemesh(path, mesh)
|
||||
% Save triangulation as path.xml and path.msh
|
||||
% mesh is a struct with fields Pts, Tet, Tri
|
||||
% alernatively one can use writemesh(path, Pts, Tet, Tri)
|
||||
% Pts should by a n times 3 matrix consisting points of the mesh
|
||||
% Tet is the m times 4 matrix consisting the tetrahedra
|
||||
% Tri is the l times 3 matrix consisting the triangles at the boundary
|
||||
|
||||
if nargin > 3
|
||||
mesh.Pts=varargin{2};
|
||||
mesh.Tet=varargin{3};
|
||||
mesh.Tri=varargin{4};
|
||||
writemesh(varargin{1},mesh,varargin(nargin));
|
||||
|
||||
elseif isstruct(varargin{2})
|
||||
rootMeshFile = varargin{1};
|
||||
|
||||
% NEW FILE
|
||||
obj = [rootMeshFile,'.msh'];
|
||||
meshfile = fopen(obj,'w');
|
||||
|
||||
obj2 = [rootMeshFile,'.xml'];
|
||||
xmlfile = fopen(obj2,'w');
|
||||
|
||||
% MESH
|
||||
fprintf(meshfile,['$MeshFormat','\n']);
|
||||
fprintf(meshfile,['2.2 0 8','\n']);
|
||||
fprintf(meshfile,['$EndMeshFormat','\n']);
|
||||
|
||||
fprintf(xmlfile,['<?xml version="1.0" encoding="UTF-8"?>','\n']);
|
||||
fprintf(xmlfile,'\n');
|
||||
fprintf(xmlfile,['<dolfin xmlns:dolfin="http://www.fenicsproject.org">','\n']);
|
||||
|
||||
mesh = varargin{2};
|
||||
|
||||
Nodes = mesh.('Pts');
|
||||
mesh = rmfield(mesh,'Pts');
|
||||
|
||||
Nodes = [(1:size(Nodes,1))' Nodes(:,1:3)];
|
||||
|
||||
% POINTS
|
||||
if ~strcmp(varargin{nargin},'mute')
|
||||
disp('Write Points')
|
||||
end
|
||||
fprintf(meshfile,['$Nodes','\n']);
|
||||
fprintf(meshfile,['%i','\n'],size(Nodes,1));
|
||||
fprintf(xmlfile,[' <mesh celltype="tetrahedron" dim="3">','\n']);
|
||||
fprintf(xmlfile,[' <vertices size="%i">','\n'],size(Nodes,1));
|
||||
|
||||
|
||||
fprintf(meshfile,'%i %13.6f %13.6f %13.6f\n',Nodes');
|
||||
|
||||
Nodes(:,1) = Nodes(:,1) - 1;
|
||||
|
||||
fprintf(xmlfile,' <vertex index="%i" x="%0.16e" y="%0.16e" z="%0.16e"/>\n',Nodes');
|
||||
|
||||
fprintf(meshfile,['$EndNodes','\n']);
|
||||
fprintf(meshfile,['$Elements','\n']);
|
||||
fprintf(meshfile,['%i','\n'],size(mesh.Tet,1)+size(mesh.Tri,1));
|
||||
fprintf(xmlfile,[' </vertices>','\n']);
|
||||
fprintf(xmlfile,[' <cells size="%i">','\n'],size(mesh.Tet,1));
|
||||
|
||||
% Triangles
|
||||
|
||||
if ~strcmp(varargin{nargin},'mute')
|
||||
disp('Write Triangles')
|
||||
end
|
||||
|
||||
tri = mesh.('Tri');
|
||||
tri = [(1:size(tri,1))' 2*ones(size(tri,1),1) 2*ones(size(tri,1),1) zeros(size(tri,1),1) 2*ones(size(tri,1),1) tri(:,1:3)];
|
||||
fprintf(meshfile,'%i %i %i %i %i %i %i %i\n',tri');
|
||||
|
||||
|
||||
|
||||
% Tetrahedra
|
||||
if ~strcmp(varargin{nargin},'mute')
|
||||
disp('Write Tetrahedra')
|
||||
end
|
||||
|
||||
tet = mesh.('Tet');
|
||||
tet = [(size(tri,1)+1:size(tri,1)+size(tet,1))' 4*ones(size(tet,1),1) 2*ones(size(tet,1),1) zeros(size(tet,1),1) ones(size(tet,1),1) tet(:,1:4)];
|
||||
fprintf(meshfile,'%i %i %i %i %i %i %i %i %i\n',tet');
|
||||
|
||||
tet = mesh.('Tet');
|
||||
tet = [(0:size(tet,1)-1)' (tet(:,1:4)-1)];
|
||||
fprintf(xmlfile,' <tetrahedron index="%i" v0="%i" v1="%i" v2="%i" v3="%i"/>\n',tet');
|
||||
|
||||
|
||||
|
||||
fprintf(meshfile,['$EndElements','\n']);
|
||||
fprintf(xmlfile,' </cells>\n </mesh>\n</dolfin>\n');
|
||||
|
||||
fclose('all');
|
||||
end
|
||||
|
||||
|
|
@ -1,126 +0,0 @@
|
|||
clear all ; close all
|
||||
% Load dicom
|
||||
|
||||
|
||||
name = 'Ronald' ;
|
||||
|
||||
if strcmp(name, 'Ronald')
|
||||
path_all = [
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Ronald/FH/DICOM/IM_0001',
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Ronald/AP/DICOM/IM_0001',
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Ronald/RL/DICOM/IM_0001'
|
||||
] ;
|
||||
end
|
||||
|
||||
if strcmp(name, 'Jeremias')
|
||||
path_all = [
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Jeremias/FH/DICOM/IM_0001',
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Jeremias/AP/DICOM/IM_0001',
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190909_Jeremias/RL/DICOM/IM_0001'
|
||||
] ;
|
||||
end
|
||||
|
||||
if strcmp(name, 'Hugo')
|
||||
path_all = [
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Hugo/Dicom/DICOM/IM_0013',
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Hugo/Dicom/DICOM/IM_0009',
|
||||
'/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Hugo/Dicom/DICOM/IM_0005'
|
||||
] ;
|
||||
end
|
||||
|
||||
for i=1:3
|
||||
|
||||
if i==1
|
||||
%path = '/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Paloma/Dicom/DICOM/IM_0013'
|
||||
disp('Reading the FH component from ...')
|
||||
path = path_all(1,:)
|
||||
end
|
||||
|
||||
if i==2
|
||||
%path = '/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Paloma/Dicom/DICOM/IM_0009' ;
|
||||
disp('Reading the AP component from ...')
|
||||
path = path_all(2,:)
|
||||
end
|
||||
|
||||
if i==3
|
||||
%path = '/home/yeye/Desktop/PhD/MEDICAL_DATA/DatosSEPT2019/20190924_Paloma/Dicom/DICOM/IM_0005' ;
|
||||
disp('Reading the RL component from ...')
|
||||
path = path_all(3,:)
|
||||
end
|
||||
|
||||
|
||||
I_info = dicominfo(path);
|
||||
I = double(dicomread(path));
|
||||
VENC = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_1.MRVelocityEncodingSequence.Item_1.VelocityEncodingMaximumValue']) ;
|
||||
heart_rate = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_1.Private_2005_140f.Item_1.HeartRate']);
|
||||
|
||||
|
||||
MAG = zeros(size(I,1),size(I,2),I_info.Private_2001_1018,I_info.Private_2001_1017);
|
||||
PHASE = zeros(size(I,1),size(I,2),I_info.Private_2001_1018,I_info.Private_2001_1017);
|
||||
|
||||
for n=1:size(I,4)
|
||||
|
||||
RI = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_',num2str(n),'.Private_2005_140f.Item_1.RescaleIntercept']); % intercept
|
||||
RS = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_',num2str(n),'.Private_2005_140f.Item_1.RescaleSlope']); % slope
|
||||
cp = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_',num2str(n),'.Private_2005_140f.Item_1.Private_2001_1008']); %cp
|
||||
slc = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_',num2str(n),'.Private_2005_140f.Item_1.Private_2001_100a']); %scl
|
||||
id = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_',num2str(n),'.Private_2005_140f.Item_1.Private_2005_106e']); % PCA o FFE
|
||||
|
||||
if strcmp(id,'FFE')==1
|
||||
MAG(:,:,slc,cp) = I(:,:,1,n)*RS + RI;
|
||||
else
|
||||
PHASE(:,:,slc,cp) = I(:,:,1,n)*RS + RI;
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
|
||||
MASK = double(abs((PHASE==PHASE(1,1,1,1))-1));
|
||||
PHASE = PHASE.*MASK;
|
||||
|
||||
|
||||
if i==1
|
||||
MR_FFE_FH = MAG;
|
||||
MR_PCA_FH = VENC*PHASE/pi/100;
|
||||
end
|
||||
|
||||
if i==2
|
||||
MR_FFE_AP = MAG;
|
||||
MR_PCA_AP = VENC*PHASE/pi/100;
|
||||
end
|
||||
if i==3
|
||||
MR_FFE_RL = MAG;
|
||||
MR_PCA_RL = VENC*PHASE/pi/100;
|
||||
end
|
||||
|
||||
|
||||
end
|
||||
|
||||
|
||||
disp('Saving the data ...')
|
||||
|
||||
spaceslices = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_1.PixelMeasuresSequence.Item_1.SpacingBetweenSlices']);
|
||||
pixelspacing = eval(['I_info.PerFrameFunctionalGroupsSequence.Item_1.PixelMeasuresSequence.Item_1.PixelSpacing']);
|
||||
|
||||
disp('voxel-size recognized:')
|
||||
voxel_MR = [pixelspacing(1),pixelspacing(1),spaceslices]
|
||||
|
||||
|
||||
data = [];
|
||||
data.MR_FFE_AP = MR_FFE_AP;
|
||||
data.MR_FFE_RL = MR_FFE_RL;
|
||||
data.MR_FFE_FH = MR_FFE_FH;
|
||||
data.MR_PCA_AP = MR_PCA_AP;
|
||||
data.MR_PCA_RL = MR_PCA_RL;
|
||||
data.MR_PCA_FH = MR_PCA_FH;
|
||||
data.type = 'DAT';
|
||||
data.VENC = VENC ;
|
||||
data.voxel_MR = voxel_MR;
|
||||
data.heart_rate = heart_rate;
|
||||
|
||||
save('/home/yeye/Desktop/data.mat','data','-v7.3');
|
||||
disp('data saved')
|
||||
|
||||
|
||||
|
||||
|
1755
codes/MRI.py
1755
codes/MRI.py
File diff suppressed because it is too large
Load Diff
1452
codes/PostCheck.py
1452
codes/PostCheck.py
File diff suppressed because it is too large
Load Diff
115
codes/SENSE.py
115
codes/SENSE.py
|
@ -1,115 +0,0 @@
|
|||
import numpy as np
|
||||
from numpy import linalg as LA
|
||||
import sys
|
||||
from mpi4py import MPI
|
||||
comm = MPI.COMM_WORLD
|
||||
size = comm.Get_size()
|
||||
rank = comm.Get_rank()
|
||||
|
||||
# SENSE: Simulation of SENSitive Encoding algorithm proposed by K. Pruessmann, et. al. in:
|
||||
# "SENSE: Sensitivity Enconding for Fast MRI" Mag. Res. in Medicine 42. (1999)
|
||||
# written by Jeremias Garay (j.e.garay.labra@rug.nl)
|
||||
|
||||
def Sensitivity_Map(shape):
|
||||
|
||||
[Nx,Ny,Nz] = shape
|
||||
[X,Y,Z] = np.meshgrid(np.linspace(0,Ny,Ny),np.linspace(0,Nx,Nx),np.linspace(0,Nz,Nz))
|
||||
Xsense1 = (X/(Nx*2)-1)**2
|
||||
Xsense2 = ((Nx-X)/(Nx*2)-1)**2
|
||||
S_MAPS = [np.fft.fftshift(Xsense1),np.fft.fftshift(Xsense2)]
|
||||
|
||||
return S_MAPS
|
||||
|
||||
def SENSE_recon(S1,M1,S2,M2):
|
||||
|
||||
[Nx,Ny,Nz,Nt] = M1.shape
|
||||
M = np.zeros([Nx,int(2*Ny),Nz,Nt],dtype=complex)
|
||||
sm1 = np.fft.fftshift(S1)[:,:,0]
|
||||
sm2 = np.fft.fftshift(S2)[:,:,0]
|
||||
|
||||
for j in range(Ny):
|
||||
for k in range(Nx):
|
||||
l1 = M1[k,j,:,:]; a1 = sm1[k,j]; a2 = sm1[k,j+Ny]
|
||||
l2 = M2[k,j,:,:]; b1 = sm2[k,j]; b2 = sm2[k,j+Ny]
|
||||
B = (l1*b1 - l2*a1)/(a2*b1 - b2*a1)
|
||||
A = (l1*b2 - l2*a2)/(a1*b2 - a2*b1)
|
||||
M[k,j,:,:] = A
|
||||
M[k,j+Ny,:,:] = B
|
||||
|
||||
|
||||
return M
|
||||
|
||||
def SENSE_recon2(S1,M1,S2,M2):
|
||||
# With matrices as in the original paper!
|
||||
|
||||
[Nx,Ny,Nz,Nt] = M1.shape
|
||||
M = np.zeros([Nx,int(2*Ny),Nz,Nt],dtype=complex)
|
||||
sm1 = np.fft.fftshift(S1)[:,:,0]
|
||||
sm2 = np.fft.fftshift(S2)[:,:,0]
|
||||
sigma2 = 0.049**2
|
||||
sigma2 = 1
|
||||
Psi = np.diagflat(np.array([sigma2,sigma2])) # Error matrix Psi
|
||||
Psi_inv = np.linalg.inv(Psi)
|
||||
|
||||
for j in range(Ny):
|
||||
for k in range(Nx):
|
||||
l1 = M1[k,j,:,:]; a1 = sm1[k,j]; a2 = sm1[k,j+Ny]
|
||||
l2 = M2[k,j,:,:]; b1 = sm2[k,j]; b2 = sm2[k,j+Ny]
|
||||
S = np.array([[a1,a2],[b1,b2]])
|
||||
U = np.linalg.inv((np.transpose(S)*Psi_inv*S))*np.transpose(S)*Psi_inv
|
||||
a = np.array([l1,l2])
|
||||
a_resized = np.resize(a,(2,Nz*Nt))
|
||||
v_resized = np.dot(U,a_resized)
|
||||
v = np.resize(v_resized,(2,Nz,Nt))
|
||||
M[k,j,:,:] = v[0,:,:]
|
||||
M[k,j+Ny,:,:] = v[1,:,:]
|
||||
|
||||
|
||||
return M
|
||||
|
||||
def SENSE_METHOD(Seq,R):
|
||||
'''
|
||||
Args:
|
||||
ITOT: a numpy matrix with the full sampled (3D or 4D) dynamical data
|
||||
R: the acceleration factor
|
||||
'''
|
||||
|
||||
[row,col,dep,numt2] = Seq.shape
|
||||
Seq_red = {}
|
||||
SenseMAP = {}
|
||||
[SenseMAP[0],SenseMAP[1]] = Sensitivity_Map([row,col,dep])
|
||||
|
||||
col2 = int(np.ceil(col/2))
|
||||
|
||||
for rs in range(R):
|
||||
Seq_red[rs] = np.zeros([row,col2,dep,numt2],dtype=complex)
|
||||
for t in range(numt2):
|
||||
Kdata_0 = np.fft.fftn(Seq[:,:,:,t])
|
||||
Kdata_0 = Kdata_0*SenseMAP[rs]
|
||||
Kdata_0 = Kdata_0[:,0::R,:]
|
||||
Seq_red[rs][:,:,:,t] = np.fft.ifftn(Kdata_0)
|
||||
|
||||
Seq_recon = SENSE_recon2(SenseMAP[0],Seq_red[0],SenseMAP[1],Seq_red[1])
|
||||
|
||||
return Seq_recon
|
||||
|
||||
def undersampling(Mx,My,Mz,options):
|
||||
|
||||
R = options['SENSE']['R']
|
||||
|
||||
for r in R:
|
||||
if rank==0:
|
||||
print('Using Acceleration Factor R = ' + str(r))
|
||||
print('applying into x component')
|
||||
Mx_s = SENSE_METHOD(Mx,r)
|
||||
if rank==0:
|
||||
print('applying into y component')
|
||||
My_s = SENSE_METHOD(My,r)
|
||||
if rank==0:
|
||||
print('applying into z component')
|
||||
Mz_s = SENSE_METHOD(Mz,r)
|
||||
|
||||
return [Mx_s,My_s,Mz_s]
|
||||
|
||||
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
870
codes/ktBLAST.py
870
codes/ktBLAST.py
|
@ -1,870 +0,0 @@
|
|||
import numpy as np
|
||||
import scipy as sc
|
||||
from scipy import signal
|
||||
from mpi4py import MPI
|
||||
comm = MPI.COMM_WORLD
|
||||
size = comm.Get_size()
|
||||
rank = comm.Get_rank()
|
||||
|
||||
|
||||
|
||||
# kt-BLAST (NO DC TERM) method for reconstruction of undersampled MRI image based on
|
||||
# l2 minimization.
|
||||
|
||||
def EveryAliased3D2(i,j,k,PP,Nx,Ny,Nz,BB,R):
|
||||
|
||||
ivec = [i,j,k]
|
||||
Nvec = [Nx,Ny,Nz]
|
||||
[ktot,ltot] = PP.shape
|
||||
Ptot |