This commit is contained in:
J.E. Garay Labra 2020-06-29 12:38:24 +02:00
parent 2d3873605d
commit b7d7695faf
11 changed files with 1297 additions and 1438 deletions

File diff suppressed because it is too large Load Diff

View File

@ -586,25 +586,15 @@ def CenterComparison(A,B,C,R,center):
def VelocityChannel(M,repeat,recorder):
[row,col,numt2] = M.shape
[X,Y] = np.meshgrid(np.linspace(0,col,col),np.linspace(0,row,row))
plt.ion()
rown = row*6/row
coln = col*6/row
fig = plt.figure()#figsize=(4, 6) , dpi=200)
ax = fig.add_subplot(111, projection='3d')
for rr in range(-1,repeat):
for t in range(numt2):
V = M[:,:,t]
#ax.plot_surface(X, Y, V, cmap=plt.cm.magma, vmin=-30, vmax=50, linewidth=0, antialiased=False)
#ax.plot_wireframe(X, Y, V,rcount=20,ccount=20,linewidth=0.5)
ax.plot_surface(X, Y, V,cmap='magma',vmin=-30, vmax=100, linewidth=0, antialiased=False)
@ -615,7 +605,6 @@ def VelocityChannel(M,repeat,recorder):
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
ax.set_zlabel('$v(r)$')
ax.set_title('phase ' + str(t))
plt.pause(0.001)
plt.draw()
@ -634,116 +623,7 @@ def PlotTri(tri,pos,p):
#ax.plot_trisurf(pos[:,0], pos[:,1], pos[:,2], triangles=tri.simplices, cmap=plt.cm.Spectral,linewidth=0.1,edgecolors='k')
#ax.tripcolor(pos[:,0], pos[:,1], pos[:,2], triangles=tri.simplices, facecolors=p2.T, edgecolor='black')
plt.show()
def PlotPressureDrop(mode):
barye2mmHg = 1/1333.22387415
CT = np.loadtxt('Pressure/DROPS/pd_NS_coarse.txt')
CT2 = np.loadtxt('Pressure/DROPS/pd_NS_coarse2.txt')
ref_ao = np.loadtxt('Pressure/DROPS2/refPPE1_coarse.txt')
ref = np.loadtxt('Pressure/DROPS2/refPPE1_coarse_leo1.txt')
CS2 = np.loadtxt('Pressure/DROPS2/CSPPE2_coarse_leo1.txt')
PPE_CT = np.loadtxt('Pressure/DROPS/pd_PPE_NS_coarse.txt')
PPE_CT_leo = np.loadtxt('Pressure/DROPS/pd_PPE_NS_coarse_leo1.txt')
STE_CT = np.loadtxt('Pressure/DROPS/test_STE_R1_coarse.txt')
test_STE_CT = np.loadtxt('Pressure/DROPS/test2_STE_R1_coarse_leo1.txt')
STEint_CT = np.loadtxt('Pressure/DROPS/test_STEint_R1_coarse.txt')
test_STEint_CT = np.loadtxt('Pressure/DROPS/test2_STEint_R1_coarse_leo1.txt')
# UNDERSAMPLING
PPE_R1_leo1 = np.loadtxt('Pressure/DROPS/test_PPE_R1_coarse_leo1.txt')
PPE_KT_R2_leo1 = np.loadtxt('Pressure/DROPS/KT_PPE_R2_coarse_leo1.txt')
PPE_KT_R4_leo1 = np.loadtxt('Pressure/DROPS/KT_PPE_R4_coarse_leo1.txt')
PPE_KT_R8_leo1 = np.loadtxt('Pressure/DROPS/KT_PPE_R8_coarse_leo1.txt')
PPE_KT_R12_leo1 = np.loadtxt('Pressure/DROPS/KT_PPE_R12_coarse_leo1.txt')
PPE_KT_R20_leo1 = np.loadtxt('Pressure/DROPS/KT_PPE_R20_coarse_leo1.txt')
PPE_CS_R2_leo1 = np.loadtxt('Pressure/DROPS/CS_PPE_R2_coarse_leo1.txt')
PPE_CS_R4_leo1 = np.loadtxt('Pressure/DROPS/CS_PPE_R4_coarse_leo1.txt')
PPE_CS_R8_leo1 = np.loadtxt('Pressure/DROPS/CS_PPE_R8_coarse_leo1.txt')
PPE_CS_R12_leo1 = np.loadtxt('Pressure/DROPS/CS_PPE_R12_coarse_leo1.txt')
PPE_CS_R20_leo1 = np.loadtxt('Pressure/DROPS/CS_PPE_R20_coarse_leo1.txt')
#CT_fine = np.loadtxt('Pressure/DROPS/pd_NS_fine.txt')
#CT_fine_T = np.loadtxt('Pressure/DROPS/pd_NS_fine_T.txt')
#PPE_CT_fine = np.loadtxt('Pressure/DROPS/pd_PPE_NS_fine.txt')
#PPE_CT_fine_leo3 = np.loadtxt('Pressure/DROPS/pd_PPE_NS_fine_leo3.txt')
tvec2 = np.linspace(0, 2.5 ,PPE_CT_leo.size)
tvec = np.linspace(tvec2[1]*0.5 ,2.5+tvec2[1]*0.5 , CT.size)
#tvec_T = np.linspace(0,2.5,CT_fine_T.size)
fig = plt.figure()
if mode=='KT':
plt.plot(tvec,CT,'-k',linewidth=2,label='$ref$')
plt.plot(tvec2,PPE_R1_leo1,'xkcd:red',linewidth=2,linestyle='-' , label='$R = 1$')
plt.plot(tvec2,PPE_KT_R2_leo1,'xkcd:blue',linewidth=2,linestyle='-' ,label='$R = 2$')
plt.plot(tvec2,PPE_KT_R4_leo1,'xkcd:green',linewidth=2,linestyle='-',label='$R = 4$')
plt.plot(tvec2,PPE_KT_R8_leo1,'xkcd:orange',linewidth=2,linestyle='-',label='$R = 8$')
plt.plot(tvec2,PPE_KT_R20_leo1,'xkcd:magenta',linewidth=2,linestyle='-', label='$R = 20$')
plt.title('$kt-BLAST$',fontsize=20)
if mode=='CS':
plt.plot(tvec,CT,'-k',linewidth=2,label='$ref$')
plt.plot(tvec2,ref_ao,'xkcd:red',linewidth=2,linestyle='--' , label='$aorta$')
plt.plot(tvec2,ref,'xkcd:red',linewidth=2,linestyle='-' , label='$leo$')
plt.plot(tvec2,CS2,'xkcd:blue',linewidth=2,linestyle='-' ,label='$R = 2$')
#plt.plot(tvec2,PPE_R1_leo1,'xkcd:red',linewidth=2,linestyle='-' , label='$R = 1$')
#plt.plot(tvec2,PPE_CS_R2_leo1,'xkcd:blue',linewidth=2,linestyle='-' ,label='$R = 2$')
#plt.plot(tvec2,PPE_CS_R4_leo1,'xkcd:green',linewidth=2,linestyle='-',label='$R = 4$')
#plt.plot(tvec2,PPE_CS_R8_leo1,'xkcd:orange',linewidth=2,linestyle='-',label='$R = 8$')
#plt.plot(tvec2,PPE_CS_R20_leo1,'xkcd:magenta',linewidth=2,linestyle='-', label='$R = 20$')
plt.title('$Compressed \ \ Sensing$',fontsize=20)
if mode=='STE':
plt.plot(tvec,CT,'-k',linewidth=2,label='$ref$')
plt.plot(tvec2,STE_CT , 'xkcd:purple' , label='STE-CT aorta')
plt.plot(tvec2,test_STE_CT , 'xkcd:purple' , linestyle='--', marker='o', label='STE-CT leo')
if mode=='STEint':
plt.plot(tvec,CT,'-k',linewidth=2,label='$ref$')
plt.plot(tvec2,STEint_CT, 'xkcd:aquamarine', label='STEint-CT aorta')
plt.plot(tvec2,test_STEint_CT, 'xkcd:aquamarine', linestyle='--', marker='o',label='STEint-CT aorta')
plt.ylim([-2,7])
plt.xlabel(r'$time \ \ \ (s)$',fontsize=20)
plt.ylabel(r'$\delta p \ \ \ (mmHg) $',fontsize=20)
plt.legend(fontsize=16)
##############################################################################################################################
#fig = plt.figure()
#plt.plot(tvec2,CT_fine,'-ok',label='CT')
##plt.plot(tvec_T,CT_fine_T,'--k',label='CT T')
#plt.plot(tvec2 ,PPE_CT_fine ,'-om',label='PPE-CT aorta')
#plt.plot(tvec2 ,PPE_CT_fine_leo3,'-oc',label='PPE-CT leo3')
#plt.title('aorta fine')
#plt.xlabel(r'$time \ \ (s) $',fontsize=20)
#plt.ylabel(r'$\delta p \ \ \ (mmHg) $',fontsize=20)
#plt.legend(fontsize=14)
plt.show()
def Plot_flux(masterpath,meshpath,options,mode,R):
mesh = Mesh()
@ -1090,8 +970,7 @@ def Plot_dP(masterpath,options,mode,R):
tcat[l-2] = float(row[0])
tcat = tcat+shift_t
ax.plot(tcat[cstar[0]:tcat.size-cstar[1]],catheter[cstar[0]:tcat.size-cstar[1]],'white',linewidth=linesize,linestyle='--',label='$catheter$')
tm = np.linspace(0,Dt*tend,tend)
ax.set_xlim([-0.05,0.81])
@ -1131,226 +1010,7 @@ def Plot_dP(masterpath,options,mode,R):
plt.show()
def Plot_peaksystole(datapath,options,meshes,dt,R):
import pickle
barye2mmHg = 1/1333.22387415
for mesh_size in meshes:
t_star = 6
PPE_MEAN = np.zeros([len(R)])
PPE_STD = np.zeros([len(R)])
STE_MEAN = np.zeros([len(R)])
STE_STD = np.zeros([len(R)])
V_MEAN = np.zeros([len(R)])
V_STD = np.zeros([len(R)])
ref_P = 0
ref_V = 0
if mesh_size=='Ucoarse':
ref_V = 326.95828118309191
if mesh_size=='Ufine':
ref_V = 232.95021682714497
if mesh_size=='Uffine':
ref_V = 234.66445211879045
for l in range(len(R)):
if R[l]==0:
ref = np.loadtxt('/home/yeye/N_MRI/codes/pressure_drop/'+mesh_size+'/dt' + str(dt) + '/ref_'+mesh_size+'.txt')
PPE0_raw = open('/home/yeye/N_MRI/codes/pressure_drop/'+mesh_size+'/dt' + str(dt) + '/R0/pdrop_PPE_impl_stan.dat','rb')
STE0_raw = open('/home/yeye/N_MRI/codes/pressure_drop/'+mesh_size+'/dt' + str(dt) + '/R0/pdrop_STE_impl_stan.dat','rb')
PPE0 = pickle.load(PPE0_raw)['pdrop']*(-barye2mmHg)
STE0 = pickle.load(STE0_raw)['pdrop']*(-barye2mmHg)
curpath = datapath + 'sequences/aorta_'+mesh_size+'.npz'
p = np.load(curpath)
px = p['x']
py = p['y']
pz = p['z']
v = np.sqrt(px[:,:,:,t_star]**2 + py[:,:,:,t_star]**2 + pz[:,:,:,t_star]**2)
max0 = np.where(v==np.max(v))
ref_P = ref[6]
V_MEAN[l] = ref_V
V_STD[l] = 0
PPE_MEAN[l] = PPE0[6]
PPE_STD[l] = 0
STE_MEAN[l] = STE0[6]
STE_STD[l] = 0
else:
PPE_MEAN[l] = np.loadtxt(datapath + 'maxpv/'+mesh_size + '/ppemean_R'+ str(R[l]) +'.txt')
PPE_STD[l] = np.loadtxt(datapath + 'maxpv/'+mesh_size + '/ppestd_R'+ str(R[l]) +'.txt')
STE_MEAN[l] = np.loadtxt(datapath + 'maxpv/'+mesh_size + '/stemean_R'+ str(R[l]) +'.txt')
STE_STD[l] = np.loadtxt(datapath + 'maxpv/'+mesh_size + '/stestd_R'+ str(R[l]) +'.txt')
V_MEAN[l] = np.loadtxt(datapath + 'maxpv/'+mesh_size + '/vmean_R'+ str(R[l]) +'.txt')
V_STD[l] = np.loadtxt(datapath + 'maxpv/'+mesh_size + '/vstd_R'+ str(R[l]) +'.txt')
plt.figure(figsize=(10, 6), dpi=100)
Rvec = np.linspace(-10,R[-1]+5,100)
hline = Rvec*0+ref_P
plt.subplot(1,2,1)
plt.plot([0],[ref_P],color='k',marker='o',label= '$ref$')
plt.plot(Rvec,hline,color='k',linestyle='--')
plt.errorbar(R,PPE_MEAN, yerr=PPE_STD,color=options['ppecol'],marker='o',label= '$PPE$')
plt.errorbar(R,STE_MEAN, yerr=STE_STD,color=options['stecol'],marker='o',label= '$STE$')
plt.xlim([-2,R[-1]+5])
plt.ylim([-7,18])
plt.xlabel(r'$R$',fontsize=20)
plt.title('$Peak \ Systole \ pressure$',fontsize=18)
plt.ylabel(r'$ max \ \big ( \delta P \big ) \ \ mmHg$',fontsize=16)
plt.subplot(1,2,2)
#plt.plot([0],[ref_V],color='k',marker='o',label= '$ref$')
Rvec = np.linspace(-10,R[-1]+5,100)
hline = Rvec*0+ref_V
plt.plot(Rvec,hline,color='k',linestyle='--')
plt.errorbar(R,V_MEAN, yerr=V_STD,color='royalblue',marker='o',label= '$' + mesh_size + '$')
plt.xlim([-2,R[-1]+5])
plt.ylim([0,350])
plt.xlabel(r'$R$',fontsize=20)
plt.ylabel(r'$ max \ \big ( v \big ) \ \ cm/s$',fontsize=16)
plt.title('$Peak \ Systole \ velocity$',fontsize=18)
#plt.legend(fontsize=15)
plt.annotate('$'+mesh_size+'$', xy=(-0.2, 1.1), xycoords='axes fraction',fontsize=15)
plt.show()
def Plot_peaksystole_flux(datapath,options,meshes,dt,R):
import pickle
barye2mmHg = 1/1333.22387415
for mesh_size in meshes:
t_star = 6
PPE_MEAN = np.zeros([len(R)])
PPE_STD = np.zeros([len(R)])
STE_MEAN = np.zeros([len(R)])
STE_STD = np.zeros([len(R)])
V_MEAN = np.zeros([len(R)])
V_STD = np.zeros([len(R)])
Q_MEAN = np.zeros([len(R)])
Q_STD = np.zeros([len(R)])
ref_V = 0
if mesh_size=='Ucoarse':
ref_V = 326.95828118309191
if mesh_size=='Ufine':
ref_V = 232.95021682714497
if 'Uffine' in mesh_size:
ref_V = 226.93523675462458
maxv1 = 184.05091675316763
ref_Q = 454.77517472437495
maxq1 = 429.01393994253556
for l in range(len(R)):
if R[l]==0:
ref = np.loadtxt('/home/yeye/N_MRI/codes/pressure_drop/'+mesh_size+'/dt' + str(dt) + '/ref_'+mesh_size+'.txt')
PPE0_raw = open('/home/yeye/N_MRI/codes/pressure_drop/'+mesh_size+'/dt' + str(dt) + '/R0/pdrop_PPE_impl_stan.dat','rb')
STE0_raw = open('/home/yeye/N_MRI/codes/pressure_drop/'+mesh_size+'/dt' + str(dt) + '/R0/pdrop_STE_impl_stan.dat','rb')
PPE0 = pickle.load(PPE0_raw)['pdrop']*(-barye2mmHg)
STE0 = pickle.load(STE0_raw)['pdrop']*(-barye2mmHg)
curpath = datapath + 'sequences/aorta_'+mesh_size+'.npz'
p = np.load(curpath)
px = p['x']
py = p['y']
pz = p['z']
v = np.sqrt(px[:,:,:,t_star]**2 + py[:,:,:,t_star]**2 + pz[:,:,:,t_star]**2)
max0 = np.where(v==np.max(v))
V_MEAN[l] = ref_V
V_STD[l] = 0
PPE_MEAN[l] = PPE0[6]
PPE_STD[l] = 0
STE_MEAN[l] = STE0[6]
STE_STD[l] = 0
elif R[l]==1:
PPE_MEAN[l] = 0
PPE_STD[l] = 0
STE_MEAN[l] = 0
STE_STD[l] = 0
V_MEAN[l] = maxv1
V_STD[l] = 0
Q_MEAN[l] = maxq1
Q_STD[l] = 0
else:
PPE_MEAN[l] = np.loadtxt(datapath + 'maxpv/'+mesh_size + '/ppemean_R'+ str(R[l]) +'.txt')
PPE_STD[l] = np.loadtxt(datapath + 'maxpv/'+mesh_size + '/ppestd_R'+ str(R[l]) +'.txt')
STE_MEAN[l] = np.loadtxt(datapath + 'maxpv/'+mesh_size + '/stemean_R'+ str(R[l]) +'.txt')
STE_STD[l] = np.loadtxt(datapath + 'maxpv/'+mesh_size + '/stestd_R'+ str(R[l]) +'.txt')
V_MEAN[l] = np.loadtxt(datapath + 'maxpv/'+mesh_size + '/vmean_R'+ str(R[l]) +'.txt')
V_STD[l] = np.loadtxt(datapath + 'maxpv/'+mesh_size + '/vstd_R'+ str(R[l]) +'.txt')
Q_MEAN[l] = -np.loadtxt(datapath + 'maxpv/'+mesh_size + '/Q2_R'+ str(R[l]) +'.txt')
Q_STD[l] = -np.loadtxt(datapath + 'maxpv/'+mesh_size + '/Qstd2_R'+ str(R[l]) +'.txt')
plt.figure(figsize=(15, 5), dpi=100)
plt.annotate('$'+mesh_size+'$', xy=(-0.2, 1.1), xycoords='axes fraction',fontsize=15)
Rvec = np.linspace(-10,R[-1]+5,100)
plt.subplot(1,3,1)
#plt.plot(Rvec,hline,color='k',linestyle='--')
plt.errorbar(R,PPE_MEAN, yerr=PPE_STD,color=options['ppecol'],marker='o',label= '$PPE$')
plt.errorbar(R,STE_MEAN, yerr=STE_STD,color=options['stecol'],marker='o',label= '$STE$')
plt.xlim([-2,R[-1]+5])
plt.ylim([-0.1,2.0])
plt.xlabel(r'$R$',fontsize=20)
plt.legend(fontsize=12,loc=2)
plt.title('$ l_2 \ error \ in \ Peak \ pressure$',fontsize=16)
plt.xticks(R)
plt.ylabel(r'$ || p - p^{ref} ||/|| p^{ref} ||_{l2} $',fontsize=16)
plt.subplot(1,3,2)
#plt.plot([0],[ref_V],color='k',marker='o',label= '$ref$')
Rvec = np.linspace(-10,R[-1]+7,100)
hline = Rvec*0+ref_V
plt.plot(Rvec,hline,color='royalblue',linestyle='--')
plt.errorbar(R,V_MEAN, yerr=V_STD,color='royalblue',marker='o',label= '$' + mesh_size + '$')
plt.xlim([-2,R[-1]+5])
plt.ylim([0,350])
plt.xlabel(r'$R$',fontsize=20)
plt.ylabel(r'$ v \ \ cm/s$',fontsize=16)
plt.xticks(R)
plt.title('$Peak \ velocity$',fontsize=16)
#plt.legend(fontsize=15)
plt.subplot(1,3,3)
Rvec = np.linspace(-10,R[-1]+7,100)
hline = Rvec*0+ref_Q
plt.plot(Rvec,hline,color='mediumvioletred',linestyle='--')
plt.errorbar(R,Q_MEAN, yerr=Q_STD,color='mediumvioletred',marker='o',label= '$' + mesh_size + '$')
plt.xlim([-2,R[-1]+5])
plt.xlabel(r'$R$',fontsize=20)
plt.ylabel(r'$ Q \ \ ml/s$',fontsize=16)
plt.xticks(R)
plt.ylim([150,550])
plt.title('$Peak \ Flux $',fontsize=16)
plt.show()
def CLOCK(t1, t2):
tot_time = np.round(t2 - t1, 2)
if tot_time < 60:
@ -1411,6 +1071,9 @@ def ROUTINE(options):
if options['Error-curves']['apply']:
print('--- Error-curves analysis ---')
ratio = False
fac=1
if '11mm' in options['Error-curves']['subfolders']:
fac=100
for types in options['Error-curves']['type']:
if types=='mean_ratio':
types = 'mean'
@ -1418,6 +1081,9 @@ def ROUTINE(options):
if types=='max_ratio':
types = 'max'
ratio = True
if types=='norm2_m':
types='norm2'
meas=True
nc = 0
if len(options['Error-curves']['subfolders'])==0:
ucomp = []
@ -1445,46 +1111,262 @@ def ROUTINE(options):
for subf in options['Error-curves']['subfolders']:
ucomp = []
wcomp = []
colorset = options['Error-curves']['colors']
if 'colors' in options['Error-curves']:
print('colors setted...')
colorset = options['Error-curves']['colors']
colorsetted = True
else:
colorsetted = False
styles = options['Error-curves']['styles']
labelset = options['Error-curves']['labels']
path = options['Error-curves']['folder'] + subf + '/'
try:
ucomp = np.loadtxt(path + '/u'+types+'.txt')
wcomp = np.loadtxt(path + '/w'+types+'.txt')
times = np.loadtxt(path + '/times.txt')
except IOError:
print('no cError-curves for ' + subf)
wcomp = np.loadtxt(path + 'w'+types+'.txt')
times = np.loadtxt(path + 'times.txt')
if types != 'grad':
ucomp = np.loadtxt(path + 'u'+types+'.txt')
if not ratio:
plt.plot(
times, ucomp, color=colorset[nc], linestyle='-', label= '$u'+ subf +'$' )
plt.plot(
times, wcomp, color=colorset[nc], linestyle='--', label='$w'+subf+'$')
if colorsetted:
if not ratio:
if types not in ['grad']:
if meas:
plt.plot(times, fac*ucomp, color=colorset[nc], linestyle='--', label= '$ u \ '+ labelset[nc] +'$',linewidth=2.5 )
plt.plot(times, fac*wcomp, color=colorset[nc], linestyle=styles[nc], label= '$ w \ '+ labelset[nc] +'$',linewidth=2.5)
else:
wu = wcomp/ucomp
plt.plot(
times, wu, color=colorset[nc], linestyle=styles[nc], label= '$'+ labelset[nc] +'$' )
nc +=1
else:
wu = wcomp/ucomp
plt.plot(
times, wu, color=colorset[nc], linestyle='-', label= '$'+ labelset[nc] +'$' )
nc +=1
if not ratio:
if types not in ['grad']:
if meas:
plt.plot(times, fac*ucomp, linestyle='--', label= '$'+ labelset[nc] +'$' )
else:
plt.plot(times, fac*ucomp, linestyle='--', label= '$'+ labelset[nc] +'$' )
plt.plot(
times, fac*wcomp, linestyle=styles[nc], label= '$'+ labelset[nc] +'$')
else:
wu = wcomp/ucomp
plt.plot(
times, wu, linestyle=styles[nc], label= '$'+ labelset[nc] +'$' )
nc +=1
#plt.ylim([0, 170])
plt.xlabel('$time \ \ (s)$', fontsize=18)
plt.legend(fontsize=16)
plt.legend(fontsize=14)
if options['Error-curves']['title']:
plt.title(options['Error-curves']['title'], fontsize=18)
if not ratio:
plt.ylabel('$velocity \ \ (cm/s)$', fontsize=18)
if types == 'grad':
plt.ylim([0, 230])
plt.ylabel('$ |grad(w)|_2 \ \ (1/s)$', fontsize=18)
elif types == 'norm2':
plt.ylim([0, 52])
plt.ylabel('$ |w|_2 \ \ (cm/s)$', fontsize=18)
else:
plt.ylabel('$velocity \ \ (cm/s)$', fontsize=18)
plt.savefig(options['Error-curves']['outpath'] + types + '.png', dpi=500, bbox_inches='tight')
else:
plt.ylabel('$w/u$', fontsize=18)
if 'max' in types:
plt.ylim([0, 1.8])
plt.ylabel('$|w/u|$', fontsize=18)
#if 'max' in types:
#plt.ylim([0, 1.8])
plt.savefig(options['Error-curves']['outpath'] + types + '_ratio.png', dpi=500, bbox_inches='tight')
plt.show()
if 'Histograms_checkpoint' in options:
if options['Histograms_checkpoint']['apply']:
print('--- Histograms ---')
path = options['Histograms_checkpoint']['path']
freq = np.loadtxt(path + 'hist_freq.txt')
edges = np.loadtxt(path + 'hist_edges.txt')
fig, ax = plt.subplots()
#ax.bar(edges[:-1], freq, width=np.diff(edges), edgecolor="black", align="edge")
ax.bar(edges[:-1], freq, width=np.diff(edges), align="edge")
plt.title(options['Histograms_checkpoint']['title'], fontsize=18)
plt.xlim([0 , 50])
plt.ylim([0 , 1.8])
plt.savefig(path + 'hist.png', dpi=500, bbox_inches='tight')
plt.show()
if 'Pressure_drops' in options:
if options['Pressure_drops']['apply']:
print('--- Pressure_drops ---')
import pickle
nc = 0
tommhg = options['Pressure_drops']['convertor']
for subf in options['Pressure_drops']['subfolders']:
ucomp = []
wcomp = []
if 'colors' in options['Pressure_drops']:
colorset = options['Pressure_drops']['colors']
colorsetted = True
else:
colorsetted = False
styles = options['Pressure_drops']['styles']
labelset = options['Pressure_drops']['labels']
path = options['Pressure_drops']['folder'] + subf + '/'
dataname = 'pdrop_COR_impl_stan.dat'
if 'STE' in path:
dataname = 'pdrop_STE_impl_stan.dat'
if labelset[nc]=='ref':
dataname = 'pdrop.dat'
data = open(path+dataname, 'rb')
p_drop = pickle.load(data)['pdrop']/tommhg
data = open(path+dataname, 'rb')
times = pickle.load(data)['time']
if labelset[nc] == 'ref':
plt.plot(times, p_drop,color='black', linestyle='-', label= '$ref$' )
else:
if colorsetted:
plt.plot(
times, p_drop, color=colorset[nc], linestyle=styles[nc], label= '$'+ labelset[nc] +'$' )
else:
plt.plot(times, p_drop, linestyle=styles[nc], label= '$'+ labelset[nc] +'$' )
if options['Pressure_drops']['catheter']:
c_path = '/home/yeye/Desktop/PhD/MEDICAL_DATA/Study_David/catheter_data/catheter_'+ labelset[nc]+'_rest_stats.csv'
with open(c_path, 'r') as csvfile:
mylist = [row[0] for row in csv.reader(csvfile, delimiter=';')]
Values = np.array(mylist)
catheter = np.zeros([len(Values)-2])
tcat = np.zeros([len(Values)-2])
for l in range(2,len(Values)):
row = Values[l].split(',')
catheter[l-2] = float(row[5])
tcat[l-2] = float(row[0])
if '11mm' in subf:
tdelay = 0.015
elif '9mm' in subf:
tdelay = -0.12
elif '13mm' in subf:
tdelay = 0.1
elif 'Normal' in subf:
tdelay = -0.01
plt.plot(tcat+tdelay,catheter,color=colorset[nc],linestyle='--')# ,label='$cat' + subf + '$')
nc +=1
#plt.ylim([0, 170])
plt.xlabel('$time \ \ (s)$', fontsize=18)
plt.legend(fontsize=14)
if options['Pressure_drops']['title']:
plt.title(options['Pressure_drops']['title'], fontsize=18)
plt.ylabel('$ \delta P \ \ (mmHg)$', fontsize=18)
plt.savefig(options['Pressure_drops']['outpath'] + 'pressure_drops.png', dpi=500, bbox_inches='tight')
plt.show()
if 'l2_comp' in options:
if options['l2_comp']['apply']:
print('--- L2 component analysis ---')
fig, ax = plt.subplots()
for subf in options['l2_comp']['subfolder']:
path = options['l2_comp']['folder'] + subf + '/'
colors = options['l2_comp']['colors']
mode = options['l2_comp']['mode']['type']
if mode in ['gain','gain_compressed']:
gain = True
path_to_comp = options['l2_comp']['mode']['comp']
wx = np.loadtxt(path_to_comp + '/wx.txt')
wy = np.loadtxt(path_to_comp + '/wy.txt')
wz = np.loadtxt(path_to_comp + '/wz.txt')
else:
gain = False
wx = np.loadtxt(path + '/wx.txt')
wy = np.loadtxt(path + '/wy.txt')
wz = np.loadtxt(path + '/wz.txt')
times = np.loadtxt(path + '/times.txt')
if subf != 'SNRinfV120' and gain:
varux = np.loadtxt(path + '/varux.txt')
varuy = np.loadtxt(path + '/varuy.txt')
varuz = np.loadtxt(path + '/varuz.txt')
if 'SNRinfV120' in subf:
lsty = '--'
labels = ['','','','','']
else:
lsty = '-'
lsty2 = '--'
labels = ['$wx$','$wy$','$wz$','$div$']
labels2 = ['$\delta u_x$','$\delta u_y$','$\delta u_z$']
labels3 = ['$x$','$y$','$z$']
if mode == 'gain':
plt.plot(times, varux, color = colors[0], linestyle=lsty2 , label= labels2[0] )
plt.plot(times, varuy, color = colors[1], linestyle=lsty2 , label= labels2[1] )
plt.plot(times, varuz, color = colors[2], linestyle=lsty2 , label= labels2[2] )
plt.plot(times, wx, color = colors[0], linestyle=lsty, label= labels[0] )
plt.plot(times, wy, color = colors[1], linestyle=lsty, label= labels[1] )
plt.plot(times, wz, color = colors[2], linestyle=lsty, label= labels[2] )
elif mode == 'gain_compressed':
plt.plot(times, varux-wx, color = colors[0], linestyle=lsty, label= labels3[0] )
plt.plot(times, varuy-wy, color = colors[1], linestyle=lsty, label= labels3[1] )
plt.plot(times, varuz-wz, color = colors[2], linestyle=lsty, label= labels3[2] )
else:
plt.plot(times, wx, color = colors[0], linestyle=lsty, label= labels[0] )
plt.plot(times, wy, color = colors[1], linestyle=lsty, label= labels[1] )
plt.plot(times, wz, color = colors[2], linestyle=lsty, label= labels[2] )
plt.xlabel('$time \ \ (s)$', fontsize=18)
if options['l2_comp']['div']:
div = np.loadtxt(path + 'div.txt')
div_rescaled = div*0.01
div_rescaled = div_rescaled + 0.1
plt.plot(times, div_rescaled, color = 'indigo', linestyle=lsty, label= labels[3] )
if 'title' in options['l2_comp']:
if options['l2_comp']['title']:
plt.title(options['l2_comp']['title'], fontsize=18)
if options['l2_comp']['aliasing']:
if 'Poiseuille' in options['l2_comp']['folder']:
print('adding alaising color in Poiseuille')
import matplotlib.transforms as mtransforms
trans = mtransforms.blended_transform_factory(ax.transData, ax.transAxes)
if 'SNR10' in subf:
time_al = [0.15,0.78]
elif 'SNRinf' in subf:
time_al = [0.21,0.78]
pm_al = 0.5*(time_al[1] + time_al[0])
r_al = 0.5*(time_al[1] - time_al[0])
ax.fill_between(times, 0, 1, where=np.abs(times -pm_al)<= r_al ,facecolor='gold', alpha=0.4, transform=trans)
if mode == 'gain_compressed':
ax.text(pm_al/times[-1], 0.55, '$aliasing$', horizontalalignment='center',verticalalignment='center', transform=ax.transAxes,fontsize=17)
else:
ax.text(pm_al/times[-1], 0.82, '$aliasing$', horizontalalignment='center',verticalalignment='center', transform=ax.transAxes,fontsize=17)
leg = plt.legend(fancybox=True,fontsize=16)
leg.get_frame().set_linewidth(0.0)
ax.tick_params(axis='both', which='major', labelsize=14)
#plt.ylim([-0.005 , 0.235])
if mode == 'gain_compressed':
plt.ylim([-0.25 , 1.75])
plt.ylabel('$|| \delta u ||_{L2} - || w ||_{L2}$', fontsize=18)
if not gain:
plt.ylim([-0.005 , 0.5])
plt.ylabel('$ \sqrt{\int w^2 dx /| \Omega|}/ venc$', fontsize=18)
plt.savefig(options['l2_comp']['folder'] + options['l2_comp']['name'] + '.png', dpi=500, bbox_inches='tight')
plt.show()

View File

@ -3,13 +3,10 @@
# Workspace for MRI analysis of the 4Dflow data
#
# written by Jeremias Garay L: j.e.garay.labra@rug.nl
# Fernanda te amo
# for autoreload in ipython3
# %load_ext autoreload
# %autoreload 2
################################################################
import h5py
from dPdirectestim.dPdirectestim import *
from dolfin import *
import dolfin
import numpy as np
@ -999,14 +996,8 @@ def CLOCK(rank,t1,t2):
print('Total time: ' + str(time_hour) + ' hrs, ' + str(time_min) + ' min, ' + str(time_sec) + ' s')
def SCANNER(options):
########################################
#
# Basic Tools
#
########################################
if 'kspace_cib' in options:
if options['kspace_cib']['apply']:
print('--- kspace from CIB data ---')
@ -1416,24 +1407,18 @@ def SCANNER(options):
else:
CIBtoH5(path_to_cib,times,dt,outpath,flip=flip)
########################################
#
# Undersampling
#
########################################
if 'cs' in options:
if options['cs']['apply']:
if rank==0:
print('Applying Compressed Sensing')
[Sqx, Sqy, Sqz] = LOADsequences(options['cs']['seqpath'])
import CS
if options['cs']['short']:
[Mx,My,Mz] = LOADsequences(options['cs']['Mpath'])
CS.undersampling_short(Mx,My,Mz,options)
if 'short' in options['cs']:
if options['cs']['short']:
[Mx,My,Mz] = LOADsequences(options['cs']['Mpath'])
CS.undersampling_short(Mx,My,Mz,options)
else:
CS.undersampling(Sqx,Sqy,Sqz,options,options['cs']['savepath'])
@ -1457,12 +1442,6 @@ def SCANNER(options):
print('saving the sequences' + options['SENSE']['savepath'])
np.savez_compressed(options['SENSE']['savepath'], x=MxS,y=MyS,z=MzS)
########################################
#
# Writing Checkpoint from Sequence
#
########################################
if 'create_checkpoint' in options:
if options['create_checkpoint']['apply']:
print('--- Create Checkpoint ---')
@ -1529,7 +1508,7 @@ def SCANNER(options):
comm = MESH['mesh'].mpi_comm()
dt = options['create_checkpoint']['dt']
if options['create_checkpoint']['xdmf']:
xdmf_u = XDMFFile(options['create_checkpoint']['savepath']+'u.xdmf')
xdmf_u = XDMFFile(options['create_checkpoint']['savepath']+ 'R' + str(r) + '/u.xdmf')
for l in range(len(vel_seq)):
if rank == 0:
@ -1545,11 +1524,6 @@ def SCANNER(options):
inout.write_HDF5_data(
comm, path + '/u.h5', vel_seq[l], '/u', t=l*dt)
########################################
#
# Relative Pressure Estimators
#
########################################
if 'reference' in options:
if options['reference']['apply']:
if rank == 0:
@ -1688,157 +1662,6 @@ def SCANNER(options):
if rank==0:
print(' ')
if 'peak_pv' in options:
if options['peak_pv']['apply']:
import CS
import pickle
import sys
import logging
# DPestim
logging.getLogger().setLevel(logging.INFO)
parameters['form_compiler']['optimize'] = True
parameters['form_compiler']['cpp_optimize'] = True
parameters['form_compiler']['cpp_optimize_flags'] = '-O3 -ffast-math -march=native'
infile_dp = options['peak_pv']['infile_dp']
estimator = DPDirectEstim(infile_dp)
barye2mmHg = 1/1333.22387415
t_star = 0.185
if rank==0:
print('Computing Velocity and Pressure at Peak Systole')
print('The inlet max occurs at ' + str(t_star) + ' sec')
[BOX,AORTA,LEO] = CREATEmeshes(options)
if options['peak_pv']['mesh_into']=='leo':
MESH = LEO
del AORTA
if options['peak_pv']['mesh_into']=='aorta':
MESH = AORTA
del LEO
if options['peak_pv']['p_comp']=='error':
if rank==0:
print('Reading Pressure Reference')
P0_PPE = READcheckpoint(MESH,'p',options,options['checkpoint_path'],'p_PPE_impl_stan')
P0_STE = READcheckpoint(MESH,'p',options,options['checkpoint_path'],'p_STE_impl_stan')
[Sqx,Sqy,Sqz] = LOADsequences(options['peak_pv']['orig_seq'])
Nite = options['peak_pv']['N_CS']
[row,col,dep,numt] = Sqz.shape
frms_num = 3
peakslice = options['peak_pv']['peak_slice']
R = options['peak_pv']['R']
v0 = np.sqrt(Sqx[:,:,:,peakslice]**2 + Sqy[:,:,:,peakslice]**2 + Sqz[:,:,:,peakslice]**2)
max0 = np.where(v0==np.max(v0))
qqvec = {}
for ss in options['peak_pv']['flux_bnd']:
qqvec[ss] = np.zeros([Nite])
ppemax = np.zeros([Nite])
stemax = np.zeros([Nite])
vmax = np.zeros([Nite])
slrdmax = peakslice
# Selecting around the max only
slrdmax = 1
Sqx = Sqx[:,:,:,peakslice-1:peakslice+2]
Sqy = Sqy[:,:,:,peakslice-1:peakslice+2]
Sqz = Sqz[:,:,:,peakslice-1:peakslice+2]
for l in range(len(R)):
if rank==0:
print('Peak Systole velocity and pressure at R = ' + str(R[l]))
sx_cs = np.zeros([row,col,dep,frms_num,Nite])
sy_cs = np.zeros([row,col,dep,frms_num,Nite])
sz_cs = np.zeros([row,col,dep,frms_num,Nite])
for k in range(Nite):
if rank==0:
print('CS iteration number ' + str(k+1))
[xcs,ycs,zcs] = CS.undersampling_peakpv(Sqx,Sqy,Sqz,options,R[l])
sx_cs[:,:,:,:,k] = xcs
sy_cs[:,:,:,:,k] = ycs
sz_cs[:,:,:,:,k] = zcs
vk = np.sqrt(sx_cs[:,:,:,1,k]**2 + sy_cs[:,:,:,1,k]**2 + sz_cs[:,:,:,1,k]**2)
vmax[k] = vk[max0]
if rank==0:
print('\n CS done')
# To write the checkpoints
vel_seq = SqtoH5(BOX,MESH,sx_cs[:,:,:,:,k],sy_cs[:,:,:,:,k],sz_cs[:,:,:,:,k])
comm = MESH['mesh'].mpi_comm()
# Computing the Fluxes
if rank==0:
print('\n Computing the Flux')
QQ = Fluxes(MESH,vel_seq,options,options['peak_pv']['flux_bnd'])
for ss in options['peak_pv']['flux_bnd']:
qqvec[ss][k] = QQ[ss][slrdmax]
if rank==0:
print('\n Writing checkpoints')
for ns in range(len(vel_seq)):
pathss = options['peak_pv']['savepath'] + 'H5/checkpoint/{i}/'.format(i=ns)
if l<10 and l>0:
pathss = options['peak_pv']['savepath'] + 'H5/checkpoint/0{i}/'.format(i=ns)
inout.write_HDF5_data(comm, pathss + '/u.h5', vel_seq[ns], '/u', t=0)
if rank==0:
print('\n The checkpoints were wrote')
# Computing the Pressure Drop
estimator.estimate()
# Reading the results
if options['peak_pv']['p_comp']=='peak':
ppe_raw = open(options['peak_pv']['savepath'] + '/H5/pdrop_PPE_impl_stan.dat','rb')
ste_raw = open(options['peak_pv']['savepath'] + '/H5/pdrop_STE_impl_stan.dat','rb')
ppe = pickle.load(ppe_raw)['pdrop']*(-barye2mmHg)
ste = pickle.load(ste_raw)['pdrop']*(-barye2mmHg)
p1max[k] = ppe[slrdmax]
p2max[k] = ste[slrdmax]
elif options['peak_pv']['p_comp']=='error':
PPE = READcheckpoint(MESH,'p',options,options['peak_pv']['savepath']+'H5/checkpoint/','p_PPE_impl_stan')
STE = READcheckpoint(MESH,'p',options,options['peak_pv']['savepath']+'H5/checkpoint/','p_STE_impl_stan')
ppe_vec_0 = P0_PPE[peakslice].vector().get_local() - P0_PPE[peakslice].vector().get_local()[0]
ppe_vec = PPE[slrdmax].vector().get_local() - PPE[slrdmax].vector().get_local()[0]
ste_vec_0 = P0_STE[peakslice].vector().get_local() - P0_STE[peakslice].vector().get_local()[0]
ste_vec = STE[slrdmax].vector().get_local() - STE[slrdmax].vector().get_local()[0]
ppemax[k] = np.linalg.norm(ppe_vec_0 - ppe_vec)/np.linalg.norm(ppe_vec_0)
stemax[k] = np.linalg.norm(ste_vec_0 - ste_vec)/np.linalg.norm(ste_vec_0)
else:
raise Exception('Pressure computation not recognize!')
# VELOCITIES
vmean = np.mean(vmax)
vstd = np.std(vmax)
# PRESSURES
ppemean = np.mean(ppemax)
stemean = np.mean(stemax)
ppestd = np.std(ppemax)
stestd = np.std(stemax)
if options['peak_pv']['save']:
if rank==0:
print('\n saving the files in ' + options['peak_pv']['savepath'])
for ss in options['peak_pv']['flux_bnd']:
np.savetxt( options['peak_pv']['savepath'] + 'Q'+str(ss) +'_R'+str(R[l])+'.txt', [np.mean(qqvec[ss])])
np.savetxt( options['peak_pv']['savepath'] + 'Qstd'+str(ss) +'_R'+str(R[l])+'.txt', [np.std(qqvec[ss])])
np.savetxt( options['peak_pv']['savepath'] + 'ppemean_R'+str(R[l])+'.txt', [ppemean] )
np.savetxt( options['peak_pv']['savepath'] + 'stemean_R'+str(R[l])+'.txt', [stemean] )
np.savetxt( options['peak_pv']['savepath'] + 'vmean_R'+str(R[l])+'.txt', [vmean] )
np.savetxt( options['peak_pv']['savepath'] + 'ppestd_R'+str(R[l])+'.txt', [ppestd] )
np.savetxt( options['peak_pv']['savepath'] + 'stestd_R'+str(R[l])+'.txt', [stestd] )
np.savetxt( options['peak_pv']['savepath'] + 'vstd_R'+str(R[l])+'.txt', [vstd] )
if 'change_mesh' in options:
if options['change_mesh']['apply']:
if rank == 0:
@ -1861,9 +1684,9 @@ def SCANNER(options):
changed = {}
#W = LEO['FEM'].sub(0).collapse()
comm = MESH_out['mesh'].mpi_comm()
v2 = Function(MESH_out['FEM'])
for k in range(len(list(origin))):
v2 = Function(MESH_out['FEM'])
if rank == 0:
print('CHANGING: index', k)
LagrangeInterpolator.interpolate(v2, origin[k])
@ -1878,7 +1701,7 @@ def SCANNER(options):
if rank == 0:
print('saving checkpoint', l)
path = options['change_mesh']['savepath'] + \
'R1/checkpoint/{i}/'.format(i=l)
'checkpoint/{i}/'.format(i=l)
writepath = path + '/'+options['change_mesh']['mode']+'.h5'
inout.write_HDF5_data(
comm, writepath, changed[l] ,'/'+options['change_mesh']['mode'], t=l*dt)

View File

@ -109,14 +109,10 @@ def WORKcheck(MESH, mode, output_path, checkpoint_path, filename, outname, optio
if mode == 'p' or mode == 'p_cib':
xdmf_p = XDMFFile(output_path+outname+'.xdmf')
for k in range(0, len(indexes), 1):
dt = options['Pressure']['dt']
for k in range(0, len(indexes), options['Pressure']['undersampling']):
te = k*dt
path = checkpoint_path + str(indexes[k]) + '/'+filename+'.h5'
if filename == 'p':
if k < 10 and k > 0:
path = checkpoint_path + '0' + \
str(indexes[k]) + '/'+filename+'.h5'
p = Function(W)
if mode == 'p':
barye2mmHg = 1/1333.22387415
@ -126,36 +122,10 @@ def WORKcheck(MESH, mode, output_path, checkpoint_path, filename, outname, optio
hdf = HDF5File(MESH['mesh'].mpi_comm(), path, 'r')
hdf.read(p, 'p/vector_0')
hdf.close()
p1vec = p.vector().get_local()
p1vec = p1vec - np.mean(p1vec)
#p1vec = p1vec - np.mean(p1vec)
p.vector()[:] = p1vec*barye2mmHg
xdmf_p.write(p, te)
te = te + dt
numt = numt + 1
if mode == 'divu':
xdmf_u = XDMFFile(output_path+outname+'.xdmf')
for k in range(0, len(indexes), 1):
path = checkpoint_path + str(indexes[k]) + '/'+filename+'.h5'
if indexes[k] < 10 and indexes[k] > 0:
path = checkpoint_path + '0' + \
str(indexes[k]) + '/'+filename+'.h5'
v = Function(V)
dv = Function(W)
dv.rename('div', outname)
comm = MPI.COMM_WORLD
hdf = HDF5File(MESH['mesh'].mpi_comm(), path, 'r')
hdf.read(v, 'u/vector_0')
hdf.close()
dv.assign(project(div(v), W))
xdmf_u.write(dv, te)
te = te + dt
numt = numt + 1
def READcheckpoint(MESH, mode, output_path, checkpoint_path, filename, outname, options, flow=False, bnds=None):
@ -203,7 +173,7 @@ def READcheckpoint(MESH, mode, output_path, checkpoint_path, filename, outname,
freq,edges = np.histogram(ValuesPeak, bins=80, density=True)
#Saving the histogram
print('Saving at ' + output_path)
np.savetxt(output_path + 'hist_frew.txt', freq)
np.savetxt(output_path + 'hist_freq.txt', freq)
np.savetxt(output_path + 'hist_edges.txt', edges)
if mode == 'perturbation':
@ -235,6 +205,20 @@ def READcheckpoint(MESH, mode, output_path, checkpoint_path, filename, outname,
noise_in_coil = options['Perturbation']['type']['coil']
umaxima = []
for k in indexes:
path = checkpoint_path + str(k) + '/'+filename+'.h5'
hdf = HDF5File(MESH['mesh'].mpi_comm(), path, 'r')
hdf.read(u, 'u/vector_0')
time = hdf.attributes('u/vector_0').to_dict()['timestamp']
hdf.close()
uvec = u.vector().get_local()
umaxima.append(np.max(uvec))
ufactor = options['Perturbation']['type']['phase_contrast']/100
VENC = np.floor(np.ceil(np.max(umaxima))*ufactor)
print('VENC chosen = ',VENC)
for k in indexes:
path = checkpoint_path + str(k) + '/'+filename+'.h5'
hdf = HDF5File(MESH['mesh'].mpi_comm(), path, 'r')
@ -244,9 +228,7 @@ def READcheckpoint(MESH, mode, output_path, checkpoint_path, filename, outname,
uvec = u.vector().get_local()
if Phase_Contrast:
ufactor = options['Perturbation']['type']['phase_contrast']/100
VENC = np.max(np.abs(uvec))*ufactor
gamma = 267.513e6 # rad/Tesla/sec Gyromagnetic ratio for H nuclei
#gamma = 267.513e6 # rad/Tesla/sec Gyromagnetic ratio for H nuclei
B0 = 1.5 # Tesla Magnetic Field Strenght
TE = 5e-3 # Echo-time
Phi1 = 1*B0*TE + 0*uvec
@ -474,7 +456,11 @@ def ERRORmap(MESH, mode, outpath, reference_path, checkpoint_path, refname,comna
from dolfin import HDF5File
V = MESH['FEM']
V1 = MESH['FEM'].sub(1).collapse()
W = MESH['FEM'].sub(0).collapse()
DGs = FunctionSpace( MESH['mesh'], 'DG',0)
cellv = CellVolume(MESH['mesh'])
h = CellDiameter(MESH['mesh'])
unsort_indexes = os.listdir(checkpoint_path)
indexes = [int(x) for x in unsort_indexes]
indexes.sort()
@ -486,6 +472,80 @@ def ERRORmap(MESH, mode, outpath, reference_path, checkpoint_path, refname,comna
if len(indexes)!=len(indexes0):
raise Exception('The lengh of the checkpoints are not the same!')
if mode == 'algebra':
outname = options['Algebra']['outname']
output = XDMFFile(outpath+outname+'.xdmf')
checkpoint = options['Algebra']['checkpoint']
v1 = Function(W)
v2 = Function(W)
vout = Function(W)
vout.rename('velocity','velocity')
vout_vec = np.zeros(vout.vector().get_local().size)
times_vec = np.zeros(len(indexes0))
vdict1 = {}
vdict2 = {}
if options['Algebra']['mode'] == 'aliasing':
print('Assuming the corrector in the second path entered')
# Reading all the timestamps first
for k in range(len(indexes)):
path_v1 = reference_path + str(indexes0[k]) + '/'+refname+'.h5'
path_v2 = checkpoint_path + str(indexes[k]) + '/'+comname+'.h5'
hdf_v1 = HDF5File(MESH['mesh'].mpi_comm(), path_v1, 'r')
if 'w' in refname:
hdf_v1.read(v1, 'w/vector_0')
time = hdf_v1.attributes('w/vector_0').to_dict()['timestamp']
else:
hdf_v1.read(v1, 'u/vector_0')
time = hdf_v1.attributes('u/vector_0').to_dict()['timestamp']
times_vec[k] = time
hdf_v2 = HDF5File(MESH['mesh'].mpi_comm(), path_v2, 'r')
if 'w' in comname:
hdf_v2.read(v2, 'w/vector_0')
else:
hdf_v2.read(v2, 'u/vector_0')
print('computing algebra for the time',time)
hdf_v1.close()
hdf_v2.close()
vdict1[k] = v1.vector().get_local()
vdict2[k] = v2.vector().get_local()
for k in range(len(indexes)):
if options['Algebra']['mode'] == '+':
vout.vector()[:] = vdict1[k] + vdict2[k]
elif options['Algebra']['mode'] == '-':
vout.vector()[:] = vdict1[k] - vdict2[k]
elif options['Algebra']['mode'] == 'aliasing':
VENC = options['Algebra']['VENC']
aliasing = False
for l in range(len(vout_vec)):
if k>0:
#mean1 = abs(np.mean(vdict2[0][:]))
#mean2 = abs(np.mean(vdict2[1][:]))
#mean3 = abs(np.mean(vdict2[2][:]))
#treshold = 10*max(mean1,mean2,mean3)
#if abs(np.mean(vdict2[k][:]))>treshold:
# vout_vec[l] = 0
if vdict1[k][l]-vdict1[k-1][l] < -VENC:
vdict1[k][l] = vdict1[k][l] + 2*VENC
vout_vec[l] = vdict1[k][l]
else:
vout_vec[l] = vdict1[k][l]
else:
vout_vec[l] = vdict1[k][l] # first case is suppouse to be aliasing-free
vout.vector()[:] = vout_vec
else:
raise Exception('Not supported operation between vectors!')
output.write(vout, times_vec[k])
if checkpoint:
path = outpath + 'checkpoint/' + str(indexes[k]) + '/' + 'u.h5'
inout.write_HDF5_data(MESH['mesh'].mpi_comm(), path , vout, '/u', t=times_vec[k])
if mode =='curves':
if options['Error-curves']['undersampling']>1:
@ -495,27 +555,54 @@ def ERRORmap(MESH, mode, outpath, reference_path, checkpoint_path, refname,comna
u = Function(W)
w = Function(W)
ones = interpolate(Constant(1), V.sub(1).collapse())
L_sys = assemble(ones*dx)
VENC = options['Error-curves']['VENC']
for typs in options['Error-curves']['type']:
ucomp = []
wcomp = []
div_array = []
varu = []
times = []
dt = options['Error-curves']['dt']
for k in range(1,len(indexes)):
path_w = checkpoint_path + str(indexes[k]) + '/'+comname+'.h5'
path_u = reference_path + str(indexes0[k]) + '/'+refname+'.h5'
if typs == 'l2_comp':
wy = Function(V1)
wz = Function(V1)
comname2 = comname
wx_array = []
wy_array = []
wz_array = []
if typs == 'utrue-uobs':
u_path = options['Error-curves']['true_check'] + 'checkpoint/'
w_path = options['Error-curves']['ref_check'] + 'checkpoint/'
comname2 = 'u'
varux_array = []
varuy_array = []
varuz_array = []
else:
u_path = reference_path
w_path = checkpoint_path
dt = options['Error-curves']['dt']
for k in range(1,len(indexes)):
path_w = w_path + str(indexes[k]) + '/'+comname2+'.h5'
path_u = u_path + str(indexes0[k]) + '/'+refname+'.h5'
u.rename('meas', 'meas')
w.rename('w', 'w')
hdf_w = HDF5File(MESH['mesh'].mpi_comm(),path_w,'r')
if 'w' in comname:
if 'w' in comname2:
hdf_w.read(w, 'w/vector_0')
else:
hdf_w.read(w, 'u/vector_0')