AMR/R/get_episode.R

269 lines
12 KiB
R
Raw Normal View History

2020-11-23 21:50:27 +01:00
# ==================================================================== #
# TITLE #
2022-10-05 09:12:22 +02:00
# AMR: An R Package for Working with Antimicrobial Resistance Data #
2020-11-23 21:50:27 +01:00
# #
# SOURCE #
# https://github.com/msberends/AMR #
# #
2022-10-05 09:12:22 +02:00
# CITE AS #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
2023-05-27 10:39:22 +02:00
# https://doi.org/10.18637/jss.v104.i03 #
2022-10-05 09:12:22 +02:00
# #
2022-12-27 15:16:15 +01:00
# Developed at the University of Groningen and the University Medical #
# Center Groningen in The Netherlands, in collaboration with many #
# colleagues from around the world, see our website. #
2020-11-23 21:50:27 +01:00
# #
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
# #
# Visit our website for the full manual and a complete tutorial about #
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
2020-11-23 21:50:27 +01:00
# ==================================================================== #
2023-03-11 14:43:31 +01:00
#' Determine Clinical or Epidemic Episodes
2022-08-28 10:31:50 +02:00
#'
2023-02-24 19:54:56 +01:00
#' These functions determine which items in a vector can be considered (the start of) a new episode. This can be used to determine clinical episodes for any epidemiological analysis. The [get_episode()] function returns the index number of the episode per group, while the [is_new_episode()] function returns `TRUE` for every new [get_episode()] index. Both absolute and relative episode determination are supported.
2021-11-29 11:55:18 +01:00
#' @param x vector of dates (class `Date` or `POSIXt`), will be sorted internally to determine episodes
2023-02-24 19:54:56 +01:00
#' @param episode_days episode length in days to specify the time period after which a new episode begins, can also be less than a day or `Inf`, see *Details*
#' @param case_free_days (inter-epidemic) interval length in days after which a new episode will start, can also be less than a day or `Inf`, see *Details*
2021-04-29 17:16:30 +02:00
#' @param ... ignored, only in place to allow future extensions
#' @details Episodes can be determined in two ways: absolute and relative.
2023-02-24 19:54:56 +01:00
#'
#' 1. Absolute
2023-02-24 19:54:56 +01:00
#'
#' This method uses `episode_days` to define an episode length in days, after which a new episode will start. A common use case in AMR data analysis is microbial epidemiology: episodes of *S. aureus* bacteraemia in ICU patients for example. The episode length could then be 30 days, so that new *S. aureus* isolates after an ICU episode of 30 days will be considered a different (or new) episode.
2023-02-24 19:54:56 +01:00
#'
#' Thus, this method counts **since the start of the previous episode**.
2023-02-24 19:54:56 +01:00
#'
#' 2. Relative
2023-02-24 19:54:56 +01:00
#'
#' This method uses `case_free_days` to quantify the duration of case-free days (the inter-epidemic interval), after which a new episode will start. A common use case is infectious disease epidemiology: episodes of norovirus outbreaks in a hospital for example. The case-free period could then be 14 days, so that new norovirus cases after that time will be considered a different (or new) episode.
#'
#' Thus, this methods counts **since the last case in the previous episode**.
2023-02-24 19:54:56 +01:00
#'
#' In a table:
2023-02-24 19:54:56 +01:00
#'
#' | Date | Using `episode_days = 7` | Using `case_free_days = 7` |
#' |:----------:|:------------------------:|:--------------------------:|
#' | 2023-01-01 | 1 | 1 |
#' | 2023-01-02 | 1 | 1 |
#' | 2023-01-05 | 1 | 1 |
2023-02-24 19:54:56 +01:00
#' | 2023-01-08 | 2** | 1 |
#' | 2023-02-21 | 3 | 2*** |
#' | 2023-02-22 | 3 | 2 |
#' | 2023-02-23 | 3 | 2 |
#' | 2023-02-24 | 3 | 2 |
#' | 2023-03-01 | 4 | 2 |
2023-02-24 19:54:56 +01:00
#'
#' ** This marks the start of a new episode, because 8 January 2023 is more than 7 days since the start of the previous episode (1 January 2023). \cr
#' *** This marks the start of a new episode, because 21 January 2023 is more than 7 days since the last case in the previous episode (8 January 2023).
#'
#' Either `episode_days` or `case_free_days` must be provided in the function.
#'
#' ### Difference between `get_episode()` and `is_new_episode()`
2023-02-24 19:54:56 +01:00
#'
#' The [get_episode()] function returns the index number of the episode, so all cases/patients/isolates in the first episode will have the number 1, all cases/patients/isolates in the second episode will have the number 2, etc.
#'
2023-03-11 14:43:31 +01:00
#' The [is_new_episode()] function on the other hand, returns `TRUE` for every new [get_episode()] index.
2023-02-24 19:54:56 +01:00
#'
#' To specify, when setting `episode_days = 365` (using method 1 as explained above), this is how the two functions differ:
2023-02-24 19:54:56 +01:00
#'
#' | patient | date | `get_episode()` | `is_new_episode()` |
2023-02-12 15:09:54 +01:00
#' |:---------:|:----------:|:---------------:|:------------------:|
#' | A | 2019-01-01 | 1 | TRUE |
#' | A | 2019-03-01 | 1 | FALSE |
#' | A | 2021-01-01 | 2 | TRUE |
#' | B | 2008-01-01 | 1 | TRUE |
#' | B | 2008-01-01 | 1 | FALSE |
#' | C | 2020-01-01 | 1 | TRUE |
2023-02-12 17:10:48 +01:00
#'
#' ### Other
2023-02-24 19:54:56 +01:00
#'
2021-04-29 17:16:30 +02:00
#' The [first_isolate()] function is a wrapper around the [is_new_episode()] function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.
2022-08-28 10:31:50 +02:00
#'
#' The `dplyr` package is not required for these functions to work, but these episode functions do support [variable grouping][dplyr::group_by()] and work conveniently inside `dplyr` verbs such as [`filter()`][dplyr::filter()], [`mutate()`][dplyr::mutate()] and [`summarise()`][dplyr::summarise()].
2022-08-28 10:31:50 +02:00
#' @return
2023-02-12 15:09:54 +01:00
#' * [get_episode()]: an [integer] vector
2020-12-27 00:07:00 +01:00
#' * [is_new_episode()]: a [logical] vector
#' @seealso [first_isolate()]
#' @rdname get_episode
2020-11-23 21:50:27 +01:00
#' @export
#' @examples
#' # difference between absolute and relative determination of episodes:
#' x <- data.frame(dates = as.Date(c(
#' "2021-01-01",
#' "2021-01-02",
#' "2021-01-05",
#' "2021-01-08",
#' "2021-02-21",
#' "2021-02-22",
#' "2021-02-23",
#' "2021-02-24",
#' "2021-03-01",
#' "2021-03-01"
#' )))
#' x$absolute <- get_episode(x$dates, episode_days = 7)
#' x$relative <- get_episode(x$dates, case_free_days = 7)
#' x
2023-02-24 19:54:56 +01:00
#'
#'
#' # `example_isolates` is a data set available in the AMR package.
2022-08-21 16:37:20 +02:00
#' # See ?example_isolates
#' df <- example_isolates[sample(seq_len(2000), size = 100), ]
2022-08-28 10:31:50 +02:00
#'
#' get_episode(df$date, episode_days = 60) # indices
2022-08-21 16:37:20 +02:00
#' is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
2022-08-28 10:31:50 +02:00
#'
#' # filter on results from the third 60-day episode only, using base R
2022-08-21 16:37:20 +02:00
#' df[which(get_episode(df$date, 60) == 3), ]
2022-08-28 10:31:50 +02:00
#'
#' # the functions also work for less than a day, e.g. to include one per hour:
2023-02-12 17:10:48 +01:00
#' get_episode(
#' c(
#' Sys.time(),
#' Sys.time() + 60 * 60
#' ),
#' episode_days = 1 / 24
#' )
2022-08-28 10:31:50 +02:00
#'
2020-12-08 12:37:25 +01:00
#' \donttest{
2020-11-23 21:50:27 +01:00
#' if (require("dplyr")) {
#' # is_new_episode() can also be used in dplyr verbs to determine patient
#' # episodes based on any (combination of) grouping variables:
2022-08-21 16:37:20 +02:00
#' df %>%
2022-08-28 10:31:50 +02:00
#' mutate(condition = sample(
#' x = c("A", "B", "C"),
2023-02-12 15:09:54 +01:00
#' size = 100,
2022-08-28 10:31:50 +02:00
#' replace = TRUE
#' )) %>%
2023-02-12 15:09:54 +01:00
#' group_by(patient, condition) %>%
2022-08-21 16:37:20 +02:00
#' mutate(new_episode = is_new_episode(date, 365)) %>%
2023-02-12 17:10:48 +01:00
#' select(patient, date, condition, new_episode) %>%
2023-02-12 15:09:54 +01:00
#' arrange(patient, condition, date)
2022-08-27 20:49:37 +02:00
#' }
2023-02-12 17:10:48 +01:00
#'
2022-08-27 20:49:37 +02:00
#' if (require("dplyr")) {
2022-08-21 16:37:20 +02:00
#' df %>%
2022-08-27 20:49:37 +02:00
#' group_by(ward, patient) %>%
2022-08-28 10:31:50 +02:00
#' transmute(date,
#' patient,
#' new_index = get_episode(date, 60),
#' new_logical = is_new_episode(date, 60)
2023-02-12 17:10:48 +01:00
#' ) %>%
2023-02-10 13:13:17 +01:00
#' arrange(patient, ward, date)
2022-08-27 20:49:37 +02:00
#' }
2023-02-12 17:10:48 +01:00
#'
2022-08-27 20:49:37 +02:00
#' if (require("dplyr")) {
2022-08-21 16:37:20 +02:00
#' df %>%
2022-08-28 10:31:50 +02:00
#' group_by(ward) %>%
#' summarise(
#' n_patients = n_distinct(patient),
#' n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
#' n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
#' n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
#' )
2022-08-27 20:49:37 +02:00
#' }
2023-02-12 17:10:48 +01:00
#'
#' # grouping on patients and microorganisms leads to the same
#' # results as first_isolate() when using 'episode-based':
2022-08-27 20:49:37 +02:00
#' if (require("dplyr")) {
#' x <- df %>%
#' filter_first_isolate(
#' include_unknown = TRUE,
#' method = "episode-based"
#' )
#'
#' y <- df %>%
#' group_by(patient, mo) %>%
#' filter(is_new_episode(date, 365)) %>%
#' ungroup()
#'
#' identical(x, y)
#' }
2023-02-12 17:10:48 +01:00
#'
#' # but is_new_episode() has a lot more flexibility than first_isolate(),
#' # since you can now group on anything that seems relevant:
#' if (require("dplyr")) {
2022-08-21 16:37:20 +02:00
#' df %>%
2022-08-27 20:49:37 +02:00
#' group_by(patient, mo, ward) %>%
2022-08-21 16:37:20 +02:00
#' mutate(flag_episode = is_new_episode(date, 365)) %>%
#' select(group_vars(.), flag_episode)
2020-11-23 21:50:27 +01:00
#' }
#' }
get_episode <- function(x, episode_days = NULL, case_free_days = NULL, ...) {
2021-12-02 13:32:14 +01:00
meet_criteria(x, allow_class = c("Date", "POSIXt"), allow_NA = TRUE)
meet_criteria(episode_days, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = FALSE, allow_NULL = TRUE)
meet_criteria(case_free_days, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = FALSE, allow_NULL = TRUE)
as.integer(exec_episode(x, episode_days, case_free_days, ...))
2020-12-27 00:07:00 +01:00
}
#' @rdname get_episode
#' @export
is_new_episode <- function(x, episode_days = NULL, case_free_days = NULL, ...) {
2021-12-02 13:32:14 +01:00
meet_criteria(x, allow_class = c("Date", "POSIXt"), allow_NA = TRUE)
meet_criteria(episode_days, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = FALSE, allow_NULL = TRUE)
meet_criteria(case_free_days, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = FALSE, allow_NULL = TRUE)
!duplicated(exec_episode(x, episode_days, case_free_days, ...))
2020-12-27 00:07:00 +01:00
}
exec_episode <- function(x, episode_days, case_free_days, ...) {
stop_ifnot(is.null(episode_days) || is.null(case_free_days),
2023-03-11 14:43:31 +01:00
"either argument `episode_days` or argument `case_free_days` must be set.",
2023-02-24 19:54:56 +01:00
call = -2
)
2023-02-12 17:10:48 +01:00
2023-02-24 19:54:56 +01:00
# running as.double() on a POSIXct object will return its number of seconds since 1970-01-01
x <- as.double(as.POSIXct(x)) # as.POSIXct() required for Date classes
2023-02-12 17:10:48 +01:00
2023-02-24 19:54:56 +01:00
# since x is now in seconds, get seconds from episode_days as well
episode_seconds <- episode_days * 60 * 60 * 24
case_free_seconds <- case_free_days * 60 * 60 * 24
2023-02-12 17:10:48 +01:00
2023-02-24 19:54:56 +01:00
if (length(x) == 1) { # this will also match 1 NA, which is fine
return(1)
} else if (length(x) == 2 && all(!is.na(x))) {
if ((length(episode_seconds) > 0 && (max(x) - min(x)) >= episode_seconds) ||
(length(case_free_seconds) > 0 && (max(x) - min(x)) >= case_free_seconds)) {
if (x[1] <= x[2]) {
return(c(1, 2))
} else {
2023-02-24 19:54:56 +01:00
return(c(2, 1))
2020-11-23 21:50:27 +01:00
}
2023-02-24 19:54:56 +01:00
} else {
return(c(1, 1))
2020-11-23 21:50:27 +01:00
}
2023-02-24 19:54:56 +01:00
}
2023-02-12 17:10:48 +01:00
2023-02-24 19:54:56 +01:00
run_episodes <- function(x, episode_seconds, case_free) {
NAs <- which(is.na(x))
x[NAs] <- 0
indices <- integer(length = length(x))
start <- x[1]
ind <- 1
indices[ind] <- 1
for (i in 2:length(x)) {
if ((length(episode_seconds) > 0 && (x[i] - start) >= episode_seconds) ||
(length(case_free_seconds) > 0 && (x[i] - x[i - 1]) >= case_free_seconds)) {
ind <- ind + 1
start <- x[i]
}
2023-02-24 19:54:56 +01:00
indices[i] <- ind
}
2023-02-24 19:54:56 +01:00
indices[NAs] <- NA
indices
}
ord <- order(x)
out <- run_episodes(x[ord], episode_seconds, case_free_seconds)[order(ord)]
out[is.na(x) & ord != 1] <- NA # every NA expect for the first must remain NA
out
2020-11-23 21:50:27 +01:00
}