2020-08-17 17:59:46 +02:00
\documentclass [xcolor=dvipsnames,notheorem,mathserifs] { beamer}
\usepackage { amsmath}
2020-08-11 17:15:00 +02:00
%\documentclass{beamer}
\usepackage [english] { babel}
%\usepackage[latin1]{inputenc}
\usepackage { multicol} % indice en 2 columnas
\usepackage [utf8] { inputenc}
\usepackage { helvet}
\usefonttheme { serif}
%\usepackage{ccfonts} % Font family: Concrete Math
\usepackage [T1] { fontenc}
%\usepackage{graphicx}
%\usepackage{movie15}
%\usepackage{media9}[2013/11/04]
2020-08-17 17:59:46 +02:00
\usepackage { xcolor}
2020-08-11 17:15:00 +02:00
\usepackage { graphicx}
\usepackage { multimedia}
\usepackage { media9}
2020-08-17 17:59:46 +02:00
\usepackage { listings,xcolor,caption, mathtools, wrapfig}
\usepackage { amsfonts}
\usepackage { amssymb,graphicx,enumerate}
2020-11-23 13:41:11 +01:00
\usepackage { subcaption}
2020-08-17 17:59:46 +02:00
\usepackage { hyperref}
\usepackage [normalem] { ulem} % for strike out command \sout
2020-08-11 17:15:00 +02:00
2020-08-14 14:43:35 +02:00
2020-08-11 17:15:00 +02:00
%\usetheme{default}
%\usetheme{AnnArbor}
%\usetheme{Antibes}
%\usetheme{Bergen}
%\usetheme{Berkeley}
%\usetheme{Berlin}
%\usetheme{Boadilla}
%\usetheme{CambridgeUS}
%\usetheme{Copenhagen}
%\usetheme{Darmstadt}
%\usetheme{Dresden}
%\usetheme{Frankfurt}
%\usetheme{Goettingen}
%\usetheme{Hannover}
%\usetheme{Ilmenau}
%\usetheme{JuanLesPins}
%\usetheme{Luebeck}
%\usetheme{Madrid}
%\usetheme{Malmoe}
%\usetheme{Marburg}
%\usetheme{Montpellier}
%\usetheme{PaloAlto}
%\usetheme{Pittsburgh}
%\usetheme{Rochester}
%\usetheme{Singapore}
%\usetheme{Szeged}
\usetheme { Warsaw}
%\usecolortheme{albatross}
%\usecolortheme{beaver}
%\usecolortheme{beetle}
\usecolortheme { crane}
%\usecolortheme{dolphin}
%\usecolortheme{dove}
%\usecolortheme{fly}
%\usecolortheme{lily}
%\usecolortheme{orchid}
%\usecolortheme{rose}
%\usecolortheme{seagull}
%\usecolortheme{seahorse}
%\usecolortheme{whale}
%\usecolortheme{wolverine}
%\useoutertheme{infolines}
%\useoutertheme{miniframes}
%\useoutertheme{sidebar}
\useoutertheme { smoothbars}
%\useoutertheme{shadow}
%\useoutertheme{smoothtree}
%\useoutertheme{split}
%\useoutertheme{tree}
\usepackage { amssymb,mathrsfs,amsmath,latexsym,amsthm,amsfonts}
\useinnertheme { rectangles}
\setbeamertemplate { navigation symbols} { } % quitar simbolitos
\setbeamerfont { page number in head/foot} { size=\large }
2020-08-13 14:59:48 +02:00
%\setbeamertemplate{footline}[frame number] number in footer
\setbeamertemplate { footline} { }
2020-08-11 17:15:00 +02:00
2020-08-21 16:36:13 +02:00
\title [A new mathematical model for verifying the Navier-Stokes compatibility of 4D flow MRI data] { A new mathematical model for verifying the Navier-Stokes compatibility of 4D flow MRI}
2020-08-11 17:15:00 +02:00
%\author[Jeremías Garay Labra]
%{Jeremías Garay Labra}
\institute [University of Groningen]
{
Bernoulli Institute\\
Faculty of Sciences and Engineering\\
University of Groningen\\ [0.5cm]
%\includegraphics[height=1.5cm]{Imagenes/escudoU2014.pdf}
% \includegraphics[height=1cm]{Imagenes/fcfm.png} \\[0.5cm]
2020-08-21 16:36:13 +02:00
Jeremías Garay Labra \emph { join with} Hernan Mella, Julio Sotelo, Sergio Uribe, Cristobal Bertoglio and Joaquin Mura.}
2020-08-11 17:15:00 +02:00
\date { \today }
\begin { document}
\frame { \titlepage }
2020-08-12 17:52:10 +02:00
% \onslide<1->
2020-08-11 17:15:00 +02:00
\begin { frame}
\frametitle { Index}
\tableofcontents
\end { frame}
2020-08-13 14:59:48 +02:00
\section [4D flow MRI] { 4D flow MRI}
2020-08-11 17:15:00 +02:00
\begin { frame}
\frametitle { 4D flow MRI}
\begin { columns} [c]
2020-08-19 11:19:31 +02:00
\column { .5\textwidth } % Left column and width
2020-08-11 17:15:00 +02:00
\footnotesize
2020-08-13 14:59:48 +02:00
\begin { itemize}
2020-08-21 16:36:13 +02:00
\item <2-> Full 3D coverage of the region of interest
\item <3-> Rich post-proccesing: derived parameters
2020-08-13 14:59:48 +02:00
\end { itemize}
2020-08-11 17:15:00 +02:00
2020-08-26 13:04:23 +02:00
\onslide <4-> Disadvantages:
\begin { itemize}
\item <5-> Long scan time
\end { itemize}
2020-08-19 11:19:31 +02:00
\column { .54\textwidth } % Right column and width
2020-08-21 16:36:13 +02:00
\onslide <1->
2020-08-19 11:19:31 +02:00
\begin { figure} [!hbtp]
\begin { center}
\includegraphics [height=0.9\textwidth] { images/4dflow.png}
\caption { \footnotesize 4D flow MRI of a human thorax}
\end { center}
\end { figure}
2020-08-11 17:15:00 +02:00
\end { columns}
\end { frame}
\begin { frame}
\frametitle { 4D flow MRI}
\footnotesize
2020-08-26 13:04:23 +02:00
\onslide <1-> Strategies:
2020-08-11 17:15:00 +02:00
\begin { itemize}
2020-08-26 13:04:23 +02:00
\item <2-> modest spatial resolutions $ \sim ( 2 . 5 \times 2 . 5 \times 2 . 5 \ mm ^ 3 ) $
\item <3-> partial data coverage
2020-08-11 17:15:00 +02:00
\end { itemize}
2020-08-21 16:36:13 +02:00
\begin { columns} [c]
\column { .4\textwidth } % Right column and width
2020-08-26 13:04:23 +02:00
\onslide <4->
2020-08-21 16:36:13 +02:00
\footnotesize
\begin { figure} [!hbtp]
\begin { center}
\includegraphics [height=0.25\textwidth] { images/channel_ noise.png} \\
(a) Noise
%\caption{Noise}
\end { center}
\end { figure}
\column { .4\textwidth } % Right column and width
2020-08-26 13:04:23 +02:00
\onslide <5->
2020-08-21 16:36:13 +02:00
\footnotesize
\begin { figure} [!hbtp]
\begin { center}
\includegraphics [height=0.25\textwidth] { images/channel_ aliasing.png} \\
(b) Aliasing
%\caption{Aliasing}
\end { center}
\end { figure}
\column { .4\textwidth } % Right column and width
2020-08-26 13:04:23 +02:00
\onslide <6->
2020-08-21 16:36:13 +02:00
\footnotesize
\begin { figure} [!hbtp]
\begin { center}
\includegraphics [height=0.25\textwidth] { images/channel_ under.png} \\
(c) Undersampling
%\caption{Aliasing}
\end { center}
\end { figure}
\end { columns}
2020-08-26 13:04:23 +02:00
\vspace { 0.5cm}
2020-08-21 16:36:13 +02:00
2020-08-26 13:04:23 +02:00
\onslide <7-> Typical quality estimators: SNR, VNR, peak flows/velocities, mass conservation (zero divergence)
2020-08-17 17:59:46 +02:00
\vspace { 0.5cm}
2020-08-26 13:04:23 +02:00
\onslide <8-> This work $ \longrightarrow $ \textbf { conservation of linear momentum} (Navier-Stokes compatibility).
2020-08-11 17:15:00 +02:00
\end { frame}
2020-08-13 14:59:48 +02:00
\section [] { The corrector field}
2020-08-11 17:15:00 +02:00
2020-08-21 16:36:13 +02:00
\begin { frame}
\frametitle { The corrector field}
\begin { center}
Methodology
\end { center}
\end { frame}
2020-08-11 17:15:00 +02:00
\begin { frame}
\frametitle { The corrector field}
\footnotesize
2020-08-17 17:59:46 +02:00
\onslide <1-> We assume a perfect physical velocity field $ \vec { u } $
\onslide <2-> \begin { eqnarray*}
2020-08-11 17:15:00 +02:00
\rho \frac { \partial \vec { u} } { \partial t} + \rho \big ( \vec { u} \cdot \nabla \big ) \vec { u} - \mu \Delta \vec { u} + \nabla p = 0 \quad \text { in} \quad \Omega \label { eq:NSmom}
\end { eqnarray*}
2020-08-17 17:59:46 +02:00
\onslide <3-> And a corrector field $ \vec { w } $ which satisfies:
\onslide <4-> \begin { align}
2020-08-21 16:36:13 +02:00
\vec { u} & = \vec { u} _ { meas} + \vec { w} \quad \text { in} \quad \Omega \label { eq:corrector} \\
2020-08-11 17:15:00 +02:00
\nabla \cdot \vec w & = 0 \quad \text { in} \quad \Omega \label { eq:correctorDiv} \\
\vec w & = \vec 0 \quad \text { on} \quad \partial \Omega \label { eq:correctorBC}
\end { align}
2020-08-17 17:59:46 +02:00
\onslide <5-> The corrector field $ \vec { w } $ measures the level of agreedment of the 4D flow measures respect to the Navier-Stokes equations.
2020-08-12 17:52:10 +02:00
\end { frame}
2020-08-14 14:43:35 +02:00
\begin { frame}
\frametitle { The corrector field: Continuum problem}
\footnotesize
2020-08-21 16:36:13 +02:00
\onslide <1-> Applying the decomposition $ \vec { u } = \vec { u } _ { meas } + \vec { w } $ into the original equation and writing a variational problem for $ \vec w $ we have:\\ [0.2cm]
Find $ ( \vec w ( t ) ,p ( t ) ) \in H ^ 1 _ 0 ( \Omega ) \times L ^ 2 ( \Omega ) $ such that:
2020-08-17 17:59:46 +02:00
\onslide <2-> \begin { equation*}
2020-08-14 14:43:35 +02:00
\int _ { \Omega } \rho \frac { \partial \vec { w} } { \partial t} \cdot \vec { v} + \rho \big ( ( \vec { u} _ { meas} + \vec w) \cdot \nabla \big ) \vec { w} \cdot \vec { v} + \rho \big ( \vec { w} \cdot \nabla \big ) \vec { u} _ { meas} \cdot \vec { v} + \mu \nabla \vec { w} : \nabla \vec { v} - p \nabla \cdot \vec { v} + q \nabla \cdot \vec { w} \notag
\end { equation*}
\begin { equation*}
= - \int _ { \Omega } \rho \frac { \partial \vec { u} _ { meas} } { \partial t} \cdot \vec { v} + \rho \big ( \vec { u} _ { meas} \cdot \nabla \big ) \vec { u} _ { meas} \cdot \vec { v} + \mu \nabla \vec { u} _ { meas} : \nabla \vec { v} + q \nabla \cdot \vec { u} _ { meas}
\end { equation*}
2020-08-17 17:59:46 +02:00
\vspace { 0.2cm}
\onslide <3-> or in simple terms:
\onslide <4-> \begin { equation*}
2020-08-14 14:43:35 +02:00
A(\vec w,p;\vec v ,q ) = \mathcal { L} (\vec v)
\end { equation*}
for all $ ( \vec v,q ) \in H ^ 1 _ 0 ( \Omega ) \times L ^ 2 ( \Omega ) $ .
\end { frame}
\begin { frame}
\frametitle { The corrector field: Discrete problem}
\footnotesize
2020-08-17 17:59:46 +02:00
\onslide <1-> In the Discrete, we can write the problem as follows:
2020-08-14 14:43:35 +02:00
2020-08-17 17:59:46 +02:00
\onslide <2-> \begin { equation}
2020-08-21 16:36:13 +02:00
A_ { k} (\vec w,p;\vec v ,q ) + \color { blue} { S^ { press} _ { k} (\vec w,p;\vec v ,q)} + \color { red} { S^ { conv} _ { k} (\vec w;\vec v)} \color { black} { = \mathcal { L} _ j (\vec v)}
2020-08-17 17:59:46 +02:00
\label { eq:Corrector_ discrete}
2020-08-14 14:43:35 +02:00
\end { equation}
\begin { itemize}
\small
2020-08-17 17:59:46 +02:00
\item <3-> $
2020-08-14 14:43:35 +02:00
A_ { k} (\vec w,p;\vec v ,q ) := \int _ { \Omega } \frac { \rho } { \tau } \vec { w} \cdot \vec { v} + \rho \big ( ( \vec { u} _ { meas} ^ k + \vec { w} ^ { k-1} ) \cdot \nabla \big ) \vec { w} \cdot \vec { v} + \rho \big ( \vec { w} \cdot \nabla \big ) \vec { u} _ { meas} ^ k \cdot \vec { v} + \mu \nabla \vec { w} : \nabla \vec { v} - p \nabla \cdot \vec { v} + q \nabla \cdot \vec { w}
$ \vspace { 0 . 2 cm }
2020-08-17 17:59:46 +02:00
\item <3-> $ \mathcal { L } _ j ( \vec v ) : = \int _ { \Omega } \frac { \rho } { \tau } \vec { w } ^ { k - 1 } \cdot \vec { v } + \mathcal { \ell } _ j ( \vec v,q ) $
\vspace { 0.2cm}
2020-08-21 16:36:13 +02:00
\item <4-> \color { blue} $
2020-08-14 14:43:35 +02:00
S^ { press} _ { k} (\vec w,p;\vec v ,q) := \delta \sum _ { K \in \Omega } \int _ { K} \frac { h_ j^ 2} { \mu } \bigg ( \rho \big ( (\vec u^ k_ { meas} + \vec w^ { k-1} ) \cdot \nabla \big ) \vec { w} + \rho \big ( \vec { w} \cdot \nabla \big ) \vec { u} _ { meas} ^ k + \nabla p \bigg ) \cdot \notag \bigg ( \rho \big ( (\vec u^ k_ { meas} + \vec w^ { k-1} ) \cdot \nabla \big ) \vec { v} + \rho \big ( \vec { v} \cdot \nabla \big ) \vec { u} _ { meas} ^ k + \nabla q \bigg )
2020-08-17 17:59:46 +02:00
$
2020-08-21 16:36:13 +02:00
\vspace { 0.2cm}
\item <5-> \color { red} $
S^ { conv} _ { k} (\vec w;\vec v) := \int _ { \Omega } \frac { \rho } { 2} \ \big ( \nabla \cdot (\vec u^ k_ { meas} + \vec w^ { k-1} ) \big ) \ \vec { w} \cdot \vec { v}
$ \vspace { 0 . 2 cm }
2020-08-14 14:43:35 +02:00
\end { itemize}
\end { frame}
2020-08-13 14:59:48 +02:00
2020-08-17 17:59:46 +02:00
\begin { frame}
\frametitle { The corrector field: Well-posedness}
\footnotesize
\onslide <1->
\begin { theorem}
2020-08-18 15:49:00 +02:00
There exists a unique solution of Problem (\ref { eq:Corrector_ discrete} ) under the condition: $$ \rho / \tau + C _ \Omega ^ { - 2 } \mu / 2 - \rho 3 \| \nabla \vec u _ { meas } ^ k \| _ \infty > 0 $$ for all $ k> 0 $ .
2020-08-17 17:59:46 +02:00
\end { theorem}
\onslide <2->
We can furthermore prove the following energy balance:
\onslide <3->
2020-08-18 15:49:00 +02:00
\begin { theorem} For $ ( \vec w ^ k ,p ^ k ) $ solution of Problem (\ref { eq:Corrector_ discrete} ), with $ \ell _ j ( \vec v,q ) = 0 $ it holds
2020-08-17 17:59:46 +02:00
\begin { equation*} \label { eq:energy}
\| \vec w^ k \| ^ 2_ { L_ 2(\Omega )} \leq \| \vec w^ { k-1} \| ^ 2_ { L_ 2(\Omega )}
\end { equation*}
under the condition
\begin { equation*} \label { eq:condstab}
\mu \geq C_ \Omega ^ 2 \rho \| \nabla \vec u_ { meas} ^ k\| _ \infty
\end { equation*}
\end { theorem}
\end { frame}
2020-08-13 14:59:48 +02:00
\section [Synthetic data] { Experiments using synthetic data }
2020-08-14 14:43:35 +02:00
\begin { frame}
\frametitle { Experiments}
\begin { center}
Experiments using synthetic data
\end { center}
\end { frame}
2020-08-13 14:59:48 +02:00
2020-08-12 17:52:10 +02:00
\begin { frame}
\frametitle { Numerical tests}
2020-08-21 16:36:13 +02:00
\onslide <1->
2020-08-11 17:15:00 +02:00
\footnotesize
2020-08-13 14:59:48 +02:00
\begin { columns} [c]
2020-08-21 16:36:13 +02:00
\column { .4\textwidth } % Right column and width
2020-08-13 14:59:48 +02:00
\footnotesize
2020-08-21 16:36:13 +02:00
Simulated channel flow as measurements (Stokes flow)
\column { .5\textwidth } % Right column and width
2020-08-12 17:52:10 +02:00
\footnotesize
2020-08-11 17:15:00 +02:00
\begin { figure} [!hbtp]
\begin { center}
2020-08-21 16:36:13 +02:00
\includegraphics [height=0.35\textwidth] { images/cilinder_ 2.png} \\
(b) Channel mesh
%\caption{Aliasing}
2020-08-11 17:15:00 +02:00
\end { center}
\end { figure}
\end { columns}
2020-08-21 16:36:13 +02:00
\vspace { 0.2cm}
2020-08-11 17:15:00 +02:00
2020-08-21 16:36:13 +02:00
%\onslide<1-> We tested the corrector using CFD simulations as a measurements, in the following testcases:
%\onslide<2->
%\begin{itemize}
%\item Womersley flow in a cilinder
%\item Navier-Stokes simulations in an aortic mesh
%\end{itemize}
\onslide <2-> Afterwards, perturbations were added:
\begin { itemize}
\item <3-> velocity aliasing (varying the $ venc $ parameter)
\item <4-> additive noise (setting SNR in decibels)
\item <5-> simulated k-space undersampling (compressed sensing for the reconstruction)
\end { itemize}
%\onslide<7-> All simulations were done using a stabilized finite element method implemented in FEniCS. Afterwards, all numerical simulations were interpolated into a voxel-type structured mesh
\end { frame}
2020-08-13 14:59:48 +02:00
2020-08-21 16:36:13 +02:00
%
%\begin{frame}
% \frametitle{Numerical tests: channel}
%\begin{columns}[c]
%\column{.6\textwidth} % Left column and width
%\footnotesize
%\textbf{Channel:}
%\begin{itemize}
%\item Convective term was neglected
%\item Non-slip condition at walls
%\item Oscilatory pressure at $\Gamma_{inlet}$
%\end{itemize}
%\column{.5\textwidth} % Right column and width
%\footnotesize
%\begin{figure}[!hbtp]
% \begin{center}
% \includegraphics[height=1.0\textwidth]{images/cilinder.png}
% \caption{3D channel mesh}
% \end{center}
% \end{figure}
%\end{columns}
%\end{frame}
%
2020-08-17 17:59:46 +02:00
2020-08-24 18:42:03 +02:00
\begin { frame}
\frametitle { Numerical tests}
\begin { center}
Results
\end { center}
\end { frame}
2020-08-17 17:59:46 +02:00
\begin { frame}
2020-08-24 18:42:03 +02:00
\frametitle { Aliasing and noise}
2020-08-13 14:59:48 +02:00
\footnotesize
2020-08-17 17:59:46 +02:00
\onslide <1-> For comparison we defined a perfect corrector field as: $ \delta \vec u = \vec u _ { ref } - \vec u _ { meas } $
\onslide <2->
2020-08-13 14:59:48 +02:00
\begin { figure} [!hbtp]
\begin { center}
2020-08-21 16:36:13 +02:00
\includegraphics [height=0.45\textwidth] { images/channel_ ppt_ 1.png}
2020-08-24 18:42:03 +02:00
\caption { \small Fields for the channel: $ ( SNR,venc ) = ( \infty , 120 \% ) $ . $ \vec { w } \times 200 $ }
2020-08-13 14:59:48 +02:00
\end { center}
\end { figure}
2020-08-11 17:15:00 +02:00
2020-08-13 14:59:48 +02:00
\end { frame}
2020-08-11 17:15:00 +02:00
\begin { frame}
2020-08-24 18:42:03 +02:00
\frametitle { Aliasing and noise}
2020-08-11 17:15:00 +02:00
\footnotesize
2020-08-21 16:36:13 +02:00
For comparison we defined a perfect corrector field as: $ \delta \vec u = \vec u _ { ref } - \vec u _ { meas } $
2020-08-13 14:59:48 +02:00
\begin { figure} [!hbtp]
\begin { center}
2020-08-21 16:36:13 +02:00
\includegraphics [height=0.45\textwidth] { images/channel_ ppt_ 2.png}
2020-08-24 18:42:03 +02:00
\caption { \small Fields for the channel: $ ( SNR,venc ) = ( \infty , 80 \% ) $ . $ \vec { w } \times 4 $ }
2020-08-21 16:36:13 +02:00
%\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ }
2020-08-13 14:59:48 +02:00
\end { center}
\end { figure}
2020-08-11 17:15:00 +02:00
\end { frame}
2020-08-13 14:59:48 +02:00
2020-08-11 17:15:00 +02:00
\begin { frame}
2020-08-24 18:42:03 +02:00
\frametitle { Aliasing and noise}
2020-08-11 17:15:00 +02:00
\footnotesize
2020-08-21 16:36:13 +02:00
For comparison we defined a perfect corrector field as: $ \delta \vec u = \vec u _ { ref } - \vec u _ { meas } $
2020-08-11 17:15:00 +02:00
2020-08-17 17:59:46 +02:00
\begin { figure} [!hbtp]
\begin { center}
2020-08-21 16:36:13 +02:00
\includegraphics [height=0.45\textwidth] { images/channel_ ppt_ 3.png}
2020-08-24 18:42:03 +02:00
\caption { \small Fields for the channel: $ ( SNR,venc ) = ( 10 \ dB, 120 \% ) $ . $ \delta \vec { u } , \vec { w } \times 4 $ }
2020-08-21 16:36:13 +02:00
%\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ }
2020-08-17 17:59:46 +02:00
\end { center}
\end { figure}
\end { frame}
\begin { frame}
2020-08-24 18:42:03 +02:00
\frametitle { Aliasing and noise}
2020-08-17 17:59:46 +02:00
\footnotesize
2020-08-21 16:36:13 +02:00
For comparison we defined a perfect corrector field as: $ \delta \vec u = \vec u _ { ref } - \vec u _ { meas } $
2020-08-13 14:59:48 +02:00
\begin { figure} [!hbtp]
\begin { center}
2020-08-21 16:36:13 +02:00
\includegraphics [height=0.45\textwidth] { images/channel_ ppt_ 4.png}
2020-08-24 18:42:03 +02:00
\caption { \small Fields for the channel: $ ( SNR,venc ) = ( 10 \ dB, 80 \% ) $ . $ \vec { w } \times 4 $ }
2020-08-21 16:36:13 +02:00
%\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ }
2020-08-13 14:59:48 +02:00
\end { center}
\end { figure}
2020-08-17 17:59:46 +02:00
2020-08-14 14:43:35 +02:00
\end { frame}
2020-08-21 16:36:13 +02:00
\begin { frame}
2020-08-24 18:42:03 +02:00
\frametitle { Aliasing and noise}
2020-08-21 16:36:13 +02:00
\footnotesize
2020-08-17 17:59:46 +02:00
2020-08-21 16:36:13 +02:00
\begin { figure} [!hbtp]
\begin { center}
\includegraphics [height=0.5\textwidth] { images/channel_ curves_ SNRinf.png}
\caption { \footnotesize Evolution of the $ L - 2 $ norms of the components of $ \vec w $ }
\end { center}
\end { figure}
2020-08-17 17:59:46 +02:00
2020-08-21 16:36:13 +02:00
\end { frame}
2020-08-17 17:59:46 +02:00
2020-08-14 14:43:35 +02:00
\begin { frame}
2020-08-24 18:42:03 +02:00
\frametitle { Aliasing and noise}
2020-08-14 14:43:35 +02:00
\footnotesize
\begin { figure} [!hbtp]
\begin { center}
2020-08-21 16:36:13 +02:00
\includegraphics [height=0.5\textwidth] { images/channel_ curves_ SNR10.png}
\caption { \footnotesize Evolution of the $ L - 2 $ norms of the components of $ \vec w $ }
2020-08-14 14:43:35 +02:00
\end { center}
\end { figure}
2020-08-11 17:15:00 +02:00
2020-08-21 16:36:13 +02:00
2020-08-11 17:15:00 +02:00
\end { frame}
2020-08-21 16:36:13 +02:00
2020-08-17 17:59:46 +02:00
\begin { frame}
2020-08-24 18:42:03 +02:00
\frametitle { Undersampling}
2020-08-17 17:59:46 +02:00
\footnotesize
\begin { figure} [!hbtp]
\begin { center}
2020-08-21 16:36:13 +02:00
\includegraphics [height=0.6\textwidth] { images/histo_ channel.png}
\caption { \footnotesize Histograms of different undersampling rates for the channel}
2020-08-17 17:59:46 +02:00
\end { center}
\end { figure}
\end { frame}
2020-08-24 18:42:03 +02:00
%\begin{frame}
% \frametitle{Results for channel: undersampling}
%\footnotesize
%
%\begin{figure}[!hbtp]
% \begin{center}
% \includegraphics[height=0.6\textwidth]{images/undersampling_press.png}
%\caption{ \footnotesize Different undersampling rates for the channel}
% \end{center}
% \end{figure}
%
%
%\end{frame}
%
2020-08-14 14:43:35 +02:00
2020-08-21 16:36:13 +02:00
%\begin{frame}
% \frametitle{Numerical tests: aorta}
%
%\begin{columns}[c]
%\column{.6\textwidth} % Left column and width
%\footnotesize
%\textbf{Aorta}
%\begin{itemize}
%\item a mild coartation was added in the descending aorta
%\item $u_{inlet}$ simulates a cardiac cycle
%\item 3-element Windkessel for the outlets
%\item Non-slip condition at walls
%\end{itemize}
%\column{.5\textwidth} % Right column and width
%\footnotesize
%\begin{figure}[!hbtp]
% \begin{center}
% \includegraphics[height=1.0\textwidth]{images/aorta_blender.png}
%\caption{Aortic mesh}
% \end{center}
% \end{figure}
%\end{columns}
%
%
%\end{frame}
%
%
%\begin{frame}
% \frametitle{Results for aorta: aliasing and noise}
%\footnotesize
%
%\begin{figure}[!hbtp]
% \begin{center}
% \includegraphics[height=0.7\textwidth]{images/aorta_perturbation.png}
%\caption{Different perturbation scenarios for the aortic mesh}
% \end{center}
% \end{figure}
%
%\end{frame}
%
%
%\begin{frame}
% \frametitle{Results for aorta: undersampling}
%\footnotesize
%
%\begin{figure}[!hbtp]
% \begin{center}
% \includegraphics[height=0.6\textwidth]{images/histo_blender.png}
%\caption{ \footnotesize Histograms of different undersampling rates for the aortic mesh}
% \end{center}
% \end{figure}
%
%\end{frame}
%
%\begin{frame}
% \frametitle{Results for aorta: undersampling}
%\footnotesize
%
%\begin{figure}[!hbtp]
% \begin{center}
% \includegraphics[height=0.7\textwidth]{images/undersampling_blender.png}
%\caption{ \footnotesize Different undersampling rates for the aortic mesh}
% \end{center}
% \end{figure}
%
%\end{frame}
%
%
2020-08-13 14:59:48 +02:00
\section [4D flow data] { Experiments using real 4D flow data }
2020-08-14 14:43:35 +02:00
\begin { frame}
\frametitle { Experiments}
\begin { center}
Experiments using real 4D flow data
\end { center}
\end { frame}
2020-08-13 14:59:48 +02:00
\begin { frame}
\frametitle { Experiments}
\footnotesize
2020-08-14 14:43:35 +02:00
\begin { columns} [c]
\column { .6\textwidth } % Left column and width
2020-08-13 14:59:48 +02:00
\begin { itemize}
2020-08-17 17:59:46 +02:00
\item <1-> 4D flow measurements were taken from a silicon thoracic aortic phantom made of silicon.
2020-08-21 16:36:13 +02:00
\item <2-> A controled pump (heart rate, peak flow, stroke volume and flow waveform)
2020-08-17 17:59:46 +02:00
\item <3-> A stenosis of $ 11 \ mm $ of diameter was added in the descending aorta
\item <4-> The phantom was scanned using a clinical $ 1 . 5 \ T $ MR scanner (Philips Achieva, Best, The Netherlands)
2020-08-13 14:59:48 +02:00
\end { itemize}
2020-08-14 14:43:35 +02:00
\column { .5\textwidth } % Right column and width
\begin { figure} [!hbtp]
\begin { center}
\footnotesize
\includegraphics [height=\textwidth] { images/phantom.jpg}
2020-08-17 17:59:46 +02:00
\caption { \footnotesize { Experiment done at the Centre of Biomedical Images (CIB) of the Catholic Unversity of Chili (PUC)} }
2020-08-14 14:43:35 +02:00
\end { center}
\end { figure}
\end { columns}
%\includemedia[width=0.6\linewidth,height=0.6\linewidth,activate=pageopen,
%passcontext,
%transparent,
%addresource=images/phantom.mp4,
%flashvars={source=images/phantom.mp4}
%]{\includegraphics[width=0.6\linewidth]{images/phantom.jpg}}{VPlayer.swf}
%
2020-08-13 14:59:48 +02:00
\end { frame}
2020-11-23 13:41:11 +01:00
2020-08-11 17:15:00 +02:00
\begin { frame}
\frametitle { Results}
\footnotesize
2020-11-23 13:41:11 +01:00
\begin { figure}
\begin { subfigure} { .31\textwidth }
\centering
\includegraphics [trim=100 80 100 150, clip, width=1.0\textwidth] { images/u_ 15.png}
\caption * { (a) $ \vec { u } _ { meas } $ }
\end { subfigure}
\begin { subfigure} { .01\textwidth }
\hfill
\end { subfigure}
\begin { subfigure} { .31\textwidth }
\centering
\includegraphics [trim=100 80 100 150, clip, width=1.0\textwidth] { images/w_ 15.png}
\caption * { (b) $ \vec { w } $ }
\end { subfigure}
\begin { subfigure} { .01\textwidth }
\hfill
\end { subfigure}
\begin { subfigure} { .31\textwidth }
\centering
\includegraphics [trim=100 80 100 150, clip, width=1.0\textwidth] { images/uc_ 15.png}
\caption * { (c) $ \vec { u } _ { meas } + \vec { w } $ }
\end { subfigure}
\caption { Measurements, corrector fields and corrected velocities for all the cases.}
\label { fig:phantom_ resolution}
\end { figure}
2020-08-11 17:15:00 +02:00
\end { frame}
2020-08-13 14:59:48 +02:00
2020-08-11 17:15:00 +02:00
\section { Conclusions}
2020-08-18 15:49:00 +02:00
\begin { frame}
\frametitle { Experiments}
\begin { center}
Conclusions
\end { center}
\end { frame}
2020-08-11 17:15:00 +02:00
\begin { frame}
2020-08-17 17:59:46 +02:00
\frametitle { Conclusions and future work}
2020-08-11 17:15:00 +02:00
\footnotesize
2020-08-17 17:59:46 +02:00
\onslide <1-> Potential of the new quality parameter:
2020-08-12 17:52:10 +02:00
\begin { itemize}
2020-08-21 16:36:13 +02:00
\item <2-> Vector fields has more details
\item <3-> Artifacts recognition
\end { itemize}
\onslide <4-> Future:
\begin { itemize}
\item <5-> The use of the field for create new inverse problems which can be used for further accelerations
2020-08-12 17:52:10 +02:00
\end { itemize}
2020-08-11 17:15:00 +02:00
2020-08-21 16:36:13 +02:00
2020-08-11 17:15:00 +02:00
\end { frame}
\begin { frame}
\begin { center}
\huge { Thank you for your time!}
\end { center}
\end { frame}
%\includegraphics<1>[height=4.5cm]{images/pat1.png}
%\includegraphics<2>[height=4.5cm]{images/pat2.png}
\end { document}